NUP3105L, SZNUP3105L

Dual Line CAN Bus Protector

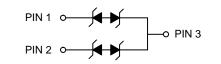
The SZ/NUP3105L has been designed to protect the CAN transceiver in 24 V systems from ESD and other harmful transient voltage events. This device provides bidirectional protection for each data line with a single compact SOT–23 package, giving the system designer a low cost option for improving system reliability and meeting stringent EMI requirements.

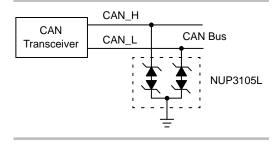
Features

- 350 W Peak Power Dissipation per Line (8/20 µsec Waveform)
- Low Reverse Leakage Current (< 100 nA)
- Low Capacitance High-Speed CAN Data Rates
- IEC Compatibility: IEC 61000-4-2 (ESD): Level 4
 - IEC 61000-4-4 (EFT): 50 A 5/50 ns
 - IEC 61000–4–5 (Lighting) 8.0 A (8/20 μs)
- Flammability Rating UL 94 V–0
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

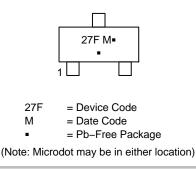
Applications

- Industrial Control Networks
 - Smart Distribution Systems (SDS[®])
 - ♦ DeviceNetTM
- Automotive Networks
 - Low and High-Speed CAN
 - ◆ Fault Tolerant CAN
 - Trucks


ON Semiconductor®


www.onsemi.com

SOT-23 DUAL BIDIRECTIONAL VOLTAGE SUPPRESSOR 350 W PEAK POWER



CASE 318 STYLE 27

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

NUP3105L, SZNUP3105L

MAXIMUM RATINGS (T_J = 25° C, unless otherwise specified)

Symbol	Rating	Value	Unit
PPK	Peak Power Dissipation 8 x 20 μs Double Exponential Waveform (Note 1)	350	W
ТJ	Operating Junction Temperature Range	-55 to 150	°C
ТJ	Storage Temperature Range	-55 to 150	°C
ΤL	Lead Solder Temperature (10 s)	260	°C
ESD	Human Body model (HBM) Machine Model (MM) IEC 61000-4-2 Specification (Contact)	8.0 400 30	kV V kV

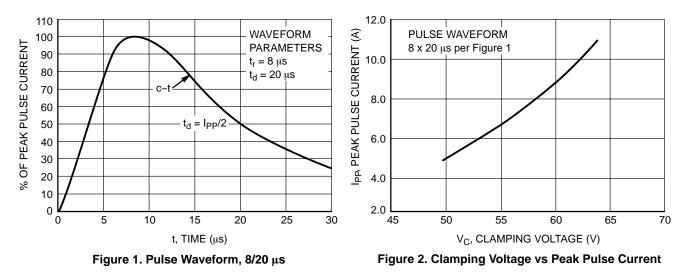
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Non-repetitive current pulse per Figure 1.

ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{RWM}	Reverse Working Voltage	(Note 2)	_	-	32	V
V_{BR}	Breakdown Voltage	I _T = 1 mA (Note 3)	35.6	-	-	V
I _R	Reverse Leakage Current	V _{RWM} = 32 V	-	-	100	nA
V _C	Clamping Voltage	I _{PP} = 5 A (8/20 μs Waveform) (Note 4)	-	-	59	V
V _C	Clamping Voltage	I _{PP} = 8 A (8/20 μs Waveform) (Note 4)	-	-	66	V
I _{PP}	Maximum Peak Pulse Current	8/20 μs Waveform (Note 4)	-	-	8.0	А
CJ	Capacitance	$V_R = 0 V$, f = 1 MHz (Line to GND)	_	-	30	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

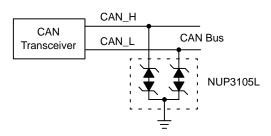

TVS devices are normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal or greater than the DC or continuous peak operating voltage level.

3. V_{BR} is measured at pulse test current I_T.

4. Pulse waveform per Figure 1.

TYPICAL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$



TVS Diode Protection Circuit

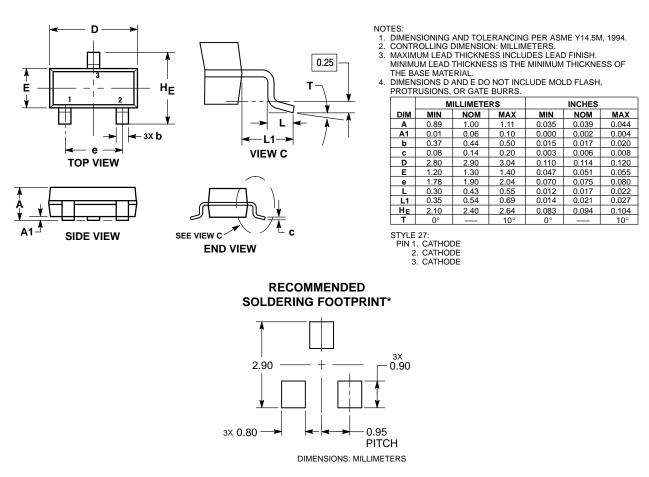
TVS diodes provide protection to a transceiver by clamping a surge voltage to a safe level. TVS diodes have high impedance below and low impedance above their breakdown voltage. A TVS Zener diode has its junction optimized to absorb the high peak energy of a transient event, while a standard Zener diode is designed and specified to clamp a steady state voltage.

Figure 3 provides an example of a dual bidirectional TVS diode array that can be used for protection with the high–speed CAN network. The bidirectional array is created from four identical Zener TVS diodes. The clamping voltage of the composite device is equal to the breakdown

voltage of the diode that is reversed biased, plus the diode drop of the second diode that is forwarded biased.

Figure 3. High–Speed and Fault Tolerant CAN TVS Protection Circuit

ORDERING INFORMATION


Device	Package	Shipping [†]	
NUP3105LT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel	
SZNUP3105LT1G*	SOT-23 (Pb-Free)	3,000 / Tape & Reel	
NUP3105LT3G	SOT-23 (Pb-Free)	10,000 / Tape & Reel	
SZNUP3105LT3G*	SOT-23 (Pb-Free)	10,000 / Tape & Reel	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 ISSUE AR

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Honeywell and SDS are registered trademarks of Honeywell International Inc. DeviceNet is a trademark of Rockwell Automation.

ON Semiconductor and image are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/dt/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products for any particulars purpose, nor does ON Semiconductor and do vary in different applications and actual performance may vary over the rights on the rights of others. ON Semiconductor resolucts, and and/or specifically parameters, including "Typicals" must be validated for each customer application or suctor does not convey any license under its patent rights on the rights of others. ON Semiconductor products are not designed, intended, or authorized for implantation in the human body. Should Buyer purchase or use ON Semiconductor products are not designed, purpose, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligitor is not designed in frequence. All setting of the subject or any such unintended or unauthorized application or any devices arising out of, directly or indirectly, any claim of personal injury or death associated with

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative