

AC/DC Converter Non-Isolation Buck Converter PWM method 15 W 15 V BM2P016 Reference Board

<High Voltage Safety Precautions>

 \bigcirc Read all safety precautions before use

Please note that this document covers only the BM2P016 evaluation board (BM2P016-EVK-001) and its functions. For additional information, please refer to the datasheet.

To ensure safe operation, please carefully read all precautions before handling the evaluation board

<u>A</u>

Depending on the configuration of the board and voltages used,

Potentially lethal voltages may be generated.

Therefore, please make sure to read and observe all safety precautions described in the red box below.

Before Use

- [1] Verify that the parts/components are not damaged or missing (i.e. due to the drops).
- [2] Check that there are no conductive foreign objects on the board.
- [3] Be careful when performing soldering on the module and/or evaluation board to ensure that solder splash does not occur.
- [4] Check that there is no condensation or water droplets on the circuit board.

During Use

- [5] Be careful to not allow conductive objects to come into contact with the board.
- [6] Brief accidental contact or even bringing your hand close to the board may result in discharge and lead to severe injury or death.

Therefore, DO NOT touch the board with your bare hands or bring them too close to the board. In addition, as mentioned above please exercise extreme caution when using conductive tools such as tweezers and screwdrivers.

- [7] If used under conditions beyond its rated voltage, it may cause defects such as short-circuit or, depending on the circumstances, explosion or other permanent damages.
- [8] Be sure to wear insulated gloves when handling is required during operation.

After Use

- [9] The ROHM Evaluation Board contains the circuits which store the high voltage. Since it stores the charges even after the connected power circuits are cut, please discharge the electricity after using it, and please deal with it after confirming such electric discharge.
- [10] Protect against electric shocks by wearing insulated gloves when handling.

This evaluation board is intended for use only in research and development facilities and should by handled **only by qualified personnel familiar with all safety and operating procedures.**

We recommend carrying out operation in a safe environment that includes the use of high voltage signage at all entrances, safety interlocks, and protective glasses.

AC/DC Converter Non-Isolation Buck Converter PWM method Output 15 W 15 V BM2P016 Reference Board BM2P016-EVK-001

The BM2P016-EVK-001 evaluation board outputs a 15 V voltage from an input of 90 Vac to 264 Vac. The output current provides up to 1.0 A. The BM2P016 PWM type DC / DC converter IC with 650 V MOSFET is used. The BM2P016 contributes to low power consumption by incorporating a 650 V withstand voltage startup circuit. Using current mode control, cycle-by-cycle current limiting provides excellent performance in bandwidth and transient response. The switching frequency is fixed at 65 kHz. At light loads, frequency reduction achieves high efficiency. Built-in frequency hopping function contributes to low EMI. The low on-resistance 1.4 Ω · 650 V withstand voltage MOSFET is built in, contributing to low power consumption and easy design.

The optimized EMI design complies with CISPR 22 Class B for noise terminal voltage / radiation emission testing.

Figure 1. BM2P016-EVK-001

Electronics Characteristics

Not guarantee the characteristics, is representative value. Unless otherwise noted: VIN = 230 Vac, IOUT = 500 mA, Ta = 25 °C

Parameter	Min	Тур	Max	Units	Conditions
Input Voltage Range	90	230	264	Vac	
Input Frequency	47	50/60	63	Hz	
Output Voltage	13.5	15.0	16.5	V	
Maximum Output Power	-	-	15.0	W	I _{OUT} = 1000mA
Output Current Range (NOTE1)	0	500	1000	mA	
Stand-by Power	-	121	-	mW	Iout = 0A
Efficiency	-	83.3	-	%	
Output Ripple Voltage (NOTE2)	-	48	-	mVpp	
Operating Temperature Range	-10	25	65	C	

(NOTE1) Please adjust operating time, within any parts surface temperature under 105 °C

(NOTE2) Not include spike noise

Operation Procedure

- 1. Operation Equipment
 - (1) AC Power supply 90 ~ 264 Vac, over 20W
 - (2) Electronic Load capacity 1.0 A
 - (3) Multi meter
- 2. Connect method
 - (1) AC power supply presetting range 90~264 Vac, Output switch is off.
 - (2) Load setting under 1.0 A. Load switch is off.
 - (3) AC power supply N terminal connect to the board AC (N) of CN1-1, and L terminal connect to AC (L) of CN1-2.
 - (4) Load + terminal connect to VOUT terminal, Load terminal connect to GND terminal.
 - (5) AC power meter connect between AC power supply and board.
 - (6) Output test equipment connects to output terminal
 - (7) AC power supply switch ON.
 - (8) Check that output voltage is 15 V
 - (9) Electronic load switch ON
 - (10) Check output voltage drop by load connect wire resistance

Deleting

The operating temperature range of this evaluation board is -10 to 65 °C. Make sure that the part surf ace temperature does not exceed 105 °C. The maximum power that can be supplied continuously is 7.5 W (IOUT = 0.5 A). The figure below shows the derating curve. A load of 12 W (IOUT = 0.8 A) can be applied continuously until the ambient temperature is -10 °C to 40 °C. The temperature from 40 °C to 65 °C follows the derating curve. The maximum power that can be supplied instantaneously is 15 W (IOUT = 1.0 A). When using the product beyond the derating curve, adjust the load current time so that the component surface temperature does not exceed 105 °C within the opera ting temperature range (-10 to 65 °C).

Application Circuit

Figure 4. BM2P016-EVK-001 Application Circuit

Non-isolated buck converter method. The output voltage is monitored by a feedback circuit and fed back to the FB terminal through a photo coupler. At startup, the VCC voltage is charged from the DRAIN pin through the Starter circuit. The switching operation starts when the VCC voltage reaches the UVLO release voltage 13.5 V typ.

BM2P016 Overview

Feature

- PWM frequency : 65 kHz
- PWM current mode method
- Frequency hopping function
- Burst operation at light load
- Frequency reduction function
- Built-in 650V start circuit
- Built-in 650V switching MOSFET
- VCC pin under voltage protection
- VCC pin over voltage protection
- SOURCE pin Open protection
- SOURCE pin Short protection
- SOURCE pin Leading-Edge-Blanking function
- Per-cycle over current protection circuit
- AC Correction function of over current limiter
- Soft Start Function
- Secondary over current protection circuit

Key specifications

Operation Voltage Range:	VCC:	8.9 V ~ 26.0 V
	DRAIN:	650 V(Max)
Normal Operating Current:		0.95 mA(Typ)
Burst Operating Current:		0.30 mA(Typ)
Oscillation Frequency:		65 kHz(Typ)
Operating Temperature:		-40 ℃ ~ +105 ℃
MOSFET Ron:		1.4 Ω(Typ)

Application

AC adapters and household appliance (vacuum cleaners, humidifiers, air cleaners, air conditioners, IH cooking heaters, rice cookers, etc.)

Dimension

W(Typ) x D(Typ) x H(Max)

DIP7

9.20 mm x 6.35 mm x 4.30 mm Pitch 2.54 mm

Figure 5. DIP7 Package

(*) Product structure: Monolithic integrated circuit mainly made of silicon. No radiation resistant design

(*) Exceeding the absolute maximum ratings, such as applied voltage and operating temperature range, may lead to deterioration or destruction. Also, the short mode or open mode cannot assume the destruction state. If a special mode that exceeds the absolute maximum rating is assumed, Please consider physical safety measures such as fuses.

No.	Name	I/O	Function	ESD	Diode
NO.	name	1/0	Function	VCC	GND
1	SOURCE	I/O	MOSFET SOURCE pin	\checkmark	\checkmark
2	FADJ	I	MAX burst frequency setting pin	\checkmark	\checkmark
3	GND	I/O	GND pin	\checkmark	-
4	FB	I	Feed-back signal input pin	\checkmark	\checkmark
5	VCC	I	Power supply input pin	-	\checkmark
6	DRAIN	I/O	MOSFET DRAIN pin	-	-
7	DRAIN	I/O	MOSFET DRAIN pin	-	-

Table 1	BM2P016	PIN	description

Design Overview

- 1 Important parameter
- V_{IN} : Input Voltage Range AC 90 V ~ 264 Vac (DC 100 V ~ 380 V)
- Vout : Output Voltage DC 15 V
- I_{OUT}(typ) : Constant Output Current 1 0.5 A
- I_{OUT}(typ) : Constant Output Current 2 0.8 A
- I_{OUT}(max) : Maximum Output Current 1.0 A
- f_{SW} : Max Switching Frequency min:60 kHz, typ:65 kHz, max:70 kHz

There are three types of coil operation modes:

- CCM (Continuous Current Mode) : The primary side switching element is turned on before the charging current of the secondary side coil is completely discharged. Since the coil current is continuous.
- BCM (Boundary Current Mode) : The switching element on the primary side is turned on at the same time the discharge of the coil on the secondary side is completed.
- DCM (Dis-continuous Current Mode): The primary side switching element turns on after the secondary side coil is completely discharged. It is called current discontinuous mode because the coil current is not continuous.

Figure 6. Switching Waveform (MOSFET VDS, IDS)

2 Selection of Coil

2.1 Calculation of inductor

The switching operation mode determines the L value to be in discontinuous mode (DCM) as much as possible. In the case of continuous mode (CCM), the reverse current flows between the diode trr, which causes the diode loss to increase. Furthermore, this reverse current becomes the peak current when the MOSFET is ON, and the loss of the MOSFET also increases. Calculate the L value to be in boundary mode (BCM) at constant load current.

The steady-state load current I_{OUT} (Typ): 0.5 A, and the peak current IP flowing through the inductor is

$$I_P(BCM) = I_{OUT}(typ) \times 2 = 1.0 \text{ [A]}$$

When the input voltage drops, it tends to be in continuous mode (CCM). Calculate under the condition that the minimum voltage of input voltage V_{IN} (min) = 100 Vdc. Output voltage Calculate the maximum value of Duty: Duty (max) from VOUT: 15 V and diode V_F: 1 V.

$$Duty(max) = \frac{V_{OUT} + V_F}{V_{IN}(min)} = 0.16$$

From the switching frequency minimum value f_{sw} (min) = 60 kHz, calculate the on time ton (max).

$$ton(Max) = \frac{Duty(max)}{f_{SW}(min)} = 2.67 \ [\mu sec]$$

Calculate the L value to operate in discontinuous mode.

$$L < ton(Max) \times \frac{V_{IN}(min) - V_{OUT}}{I_P} = 227.0 \ [\mu H]$$

In EVK, the L value is tentatively selected 220 μ H in consideration of versatility.

Figure 7. Coil current waveform in boundary mode

2.2 Calculation of inductor current

The value of current flowing through the coil is maximum when the input voltage is maximum. Operates with the minimum ON time when the input voltage is maximum V_{IN} (max): 380 V. The maximum ON time is about 0.6 to 1.2 µsec depending on the conditions such as the output voltage and L value of the coil. The maximum peak current I_P (max) is

$$I_P(max) = t_{ON}(min) \times \frac{V_{IN}(max) - V_{OUT}}{L} = 0.9 \ \mu s \times \frac{380 \ V - 15 \ V}{220 \ \mu H} = 1.49 \ [A]$$

Therefore, the inductor to be selected should have an inductor current of 1.5 A or more. The inductor current is checked on the actual device to confirm that magnetic saturation does not occur.

In this EVK, use an inductance value of 220 μH and an allowable current of 1.6 A.

 Radial Inductor (Closed Magnetic Type)
 Core Size Φ9.0 mm x 11.0 mm

 Product Name:
 XE1501Y-221

 Manufacturer:
 Alpha transformer Co., Ltd

3. Selection of current detection resistor R_S (R1, R2)

The current detection resistance R_S (R1, R2) is calculated so that the overcurrent detection becomes maximum load current I_{OUT} : 1000 mA or more. Set the load current I_{LIM} for overcurrent detection to be I_{LIM} : 1200 mA with a 20% margin. When over current is detected, switching operation is performed in continuous mode.

Figure 8. Coil waveform at overcurrent detection (in continuous mode)

The coil current IPEAK at the time of over current detection is calculated by the following formula. Overcurrent detection turns off after a delay time t_{dly} after coil current is detected by IPEAK current.

$$I_{LIM} = I_P - \frac{I_{ripple}}{2}$$

$$I_P = I_{PEAK} + \frac{V_{IN}}{L} \times t_{dly}$$

$$I_{ripple} = \Delta I_L \times t_{ON} = \frac{V_{IN}}{L} \times \frac{Duty}{fsw} = \frac{V_{OUT} + V_F}{L \times f_{SW}}$$

BM2P016-EVK-001

3 Selection of current detection resistor - Continued

$$I_{LIM} = I_{PEAK} + \frac{VIN(min)}{L} - \frac{1}{2} \times \frac{V_{OUT} + V_F}{L \times f_{SW}(min)}$$

The coil current at the time of over current detection is as follows.

$$I_{PEAK} = I_{LIM} - \frac{VIN}{L} \times t_{dly} + \frac{V_{OUT} + V_F}{2 \times L \times f_{SW}(min)} = 1.2 \text{ A} - \frac{100 \text{ V}}{220 \ \mu\text{H}} \times 0.1 \ \mu\text{s} + \frac{15 \text{ V} + 1 \text{ V}}{2 \times 220 \ \mu\text{H} \times 60 \ k\text{Hz}} = 1.76 \ [A]$$

The time t_{ON} 'at which the IC detects an overcurrent is

$$t'_{ON} = \frac{Duty(max)}{f_{SW}(min)} = \frac{V_{OUT} + V_F}{V_{IN}(min) \times f_{SW}(min)} - t_{dly} = \frac{15 V + 1 V}{100 V \times 60 kHz} - 0.1 \ \mu\text{s} = 2.57 \ [\mu\text{sec}]$$

AC voltage compensation function is built into overload protection, and the difference of the overload protection point is compensated by the difference of input voltage (100 Vac, 200 Vac, etc). This function is an AC voltage correction function by increasing the over current limiter level V_{CS} _Lim with time.

The overcurrent detection voltage $V_{SOURCE} = 0.4 \text{ V}$, the correction coefficient K_{SOURCE} is 20 mV / µs, and the voltage V_{CS} _LIM of the SOUCE pin at the time of overcurrent detection is

$$V_{CS_{LIM}} = V_{SOURCE} + t_{ON} \times K_{SOURCE} = 0.4 V + 2.57 \ \mu s \times 20 \ mV/\mu s = 451.4 \ mV$$

The sense resistance R_S is as follows.

$$Rs < \frac{V_{CS} - LIM}{I_{PEAK}} = \frac{451.4 \ mV}{1.76 \ A} = 0.256 \ \Omega$$

In this EVK, R1 and R2 have two 0.36 Ω in parallel, and R_s is 0.18 Ω . The overload protection point needs to be checked in the board.

Voltage V_R applied to sense resistors R1 and R2 is

$$V_{R} = \frac{I_{P}}{2} \times R1 = \frac{1}{2} \times \left(I_{PEAK} + \frac{V_{IN}}{L} \times t_{dly} \right) \times R1 = 0.5 \times \left(1.76 \, A + \frac{100 \, V}{220 \, \mu H} \times 0.1 \, \mu s \right) \times 0.36 \, \Omega = 0.325 \, V$$

Power loss P_R of sense resistors R1 and R2 is

$$P_R = I_P (rms)^2 \times R_S = \left(I_P \times \sqrt{\frac{Duty}{3}}\right)^2 \times R_S = \left(1.81 \, A \times \sqrt{\frac{0.16}{3}}\right)^2 \times 0.18 \, \Omega = 31.5 \, [mW]$$

The resistors used are the MCR18 series, with a maximum device voltage of 1.51 V and a rated power of 0.25 W.

© 2019 ROHM Co., Ltd.

- 4 Selection of diode
- 4.1 Flywheel diode: D1

Flywheel diodes use high-speed diodes (fast recovery diodes). The reverse voltage applied to the diode is V_{IN} (Max): 380 V when the output voltage at startup is 0 V. Ensure derating and select 600 V withstand voltage product. The conditions for maximum diode effective current are when the input voltage is maximum voltage V_{IN} (max): 380 V, maximum load current I_{OUT} (Max): 1.0 A, and the switching frequency is a minimum of 60 kHz. The peak current I_P at this time is calculated. The ripple current Iripple is as follows.

$$I_{ripple} = \frac{di}{dt} \times t_{ON} = \frac{\{V_{IN}(max) - (V_{OUT} + V_F)\}}{L} \times \frac{(V_{OUT} + V_F)}{V_{IN}(max) \times f_{SW}(min)}$$

Applying to the peak current formula,

$$I_P = I_{OUT}(max) + \frac{I_{ripple}}{2} = 1.0 A + \frac{1}{2} \times \frac{380 V - (15 V + 1 V)}{220 \mu H} \times \frac{15 V + 1 V}{380 V \times 60 \ kHz} = 1.58 \ [A]$$

Duty =
$$\frac{V_{OUT} + V_F}{V_{IN}(max)} = \frac{15 V + 1 V}{380 V} = 4.2 [\%]$$

The average current I_{D} of the diode is from peak current I_{P} : 1.58 A

$$I_D(rms) = I_P \times \sqrt{\frac{1 - Duty}{3}} = 1.58 A \times \sqrt{\frac{1 - 0.042}{3}} = 0.89 [A]$$

Select a rated current of 0.89 A or more.

In practice, the 3A / 600V RFN3BM6S is used in consideration of board mounting and component heat generation.

4.2 VCC rectifier diode: D2

The diode supplying VCC uses a rectifying diode. The reverse voltage applied to the diode is V_{IN} (Max): 380V. Ensure derating and select 600 V withstand voltage product. Because the current flowing to the IC is small enough, we use the 0.2 A / 600 V RRE02VSM6S.

5 Selection of capacitor

5.1 Input Capacitor: C3

The input capacitor is determined by the input voltage VI and the output power P_{OUT} . As a guide, for an input voltage of 90 to 264 Vac, 2 x P_{OUT} [W] μ F. In the case of 176 to 264 Vac, it is 1 x P_{OUT} [W] μ F. Since the output power P_{OUT} = 15.0 W, use 33 μ F / 450 V with a standard of 30.0 μ F.

5.2 VCC Capacitor: C7

VCC capacitor C7 is necessary for stable operation of the IC and stable feedback of the output voltage. We recommend 1.0 μ F to 22 μ F at a withstand voltage of 25 V or more. I am using 10 μ F / 35 V.

5.3 Output Capacitor: C8, C9

The output capacitor should be 25 V or more in consideration of derating for the output voltage V₀. The C2 electrolytic capacitor needs to consider the capacitance, impedance and rated ripple current. The output ripple voltage is the combined waveform generated by the ripple current of inductor current: ΔI_{L} flowing into the output capacitor and the capacitance: Cout, impedance: ESR, and is expressed by the following formula.

$$\Delta Vripple = \Delta I_L \times \left(\frac{1}{8 \times Cout \times f_{sw}}\right) + ESR$$

Inductor current ripple current: IL, DC current: IDC

$$\Delta I_L = 2 \times \{I_P - I_{OUT}(max)\} = 2 \times (1.58 - 1.00) = 1.16 [A] \qquad I_{DC} = I_P - \Delta I_L = 1.58 A - 1.16A = 0.42 [A]$$

In this EVK, using capacitance: 680 μF, ESR: 0.049 Ω, the design value of the output ripple voltage is 100 mV or less.

$$\Delta Vripple = \Delta I_L \times \left\{ \left(\frac{1}{8 \times Cout \times f_{sw}} \right) + ESR \right\} = 1.16 A \times \left\{ \left(\frac{1}{8 \times 680 \mu \times 65k} \right) + 0.049 \right\} = 60.1 \ [\text{mV}]$$

Next, check if the ripple current of the capacitor satisfies the rated ripple current. Inductor ripple current RMS conversion,

$$I_L[rms] = \Delta I_L \times \sqrt{\frac{1}{3}} + I_{DC} = 1.16 \times \sqrt{\frac{1}{3}} + 0.42 \text{ A} = 1.09 \text{ [Arms]}$$

The ripple current of the capacitor is

$$I_C[rms] = \sqrt{{I_L}^2 - {I_{OUT}}^2} = \sqrt{1.09^2 - 1.0^2} = 0.434 \ [A]$$

Select a rated current of 0.434 A or more. The output capacitor C8 used rated ripple current 1.24 A at 680 μ F / 25 V. C9 adds a 0.1 μ F ceramic capacitor to reduce switching noise.

6 Output voltage setting resistor: R6,R7,R8

The output voltage is set by the following formula.

$$V_{OUT} = \left(1 + \frac{R6 + R7}{R8}\right) \times Vref$$

Set the feedback current I_{BIAS} flowing to R8 at 0.1 mA to 1.0 mA. Assuming that IBIAS = 0.25 mA, and the reference voltage VREF=2.485 V of the shunt regulator IC2, the resistance value of R8 is

$$R8 = \frac{V_{REF}}{I_{BIAS}} = \frac{2.485 V}{0.25 mA} = 9.9 [k\Omega]$$

In this EVK, select R8: 10 k Ω .

The combined resistance of the feedback resistors (R6+R7+R8) is

$$R6 + R7 + R8 = \frac{V_{OUT}}{I_{BIAS}} = \frac{15 V}{0.25 mA} = 60 [k\Omega]$$

In this EVK, R6 = 47 k Ω and R7 = 3.3 k Ω are selected. The theoretical value of the output voltage is as follows.

$$V_{OUT} = \left(1 + \frac{47 \ k\Omega + 3.3 \ k\Omega}{10 \ k\Omega}\right) \times 2.485 \ V = 14.98 \ V$$

7 Control circuit adjustment: R9,R10,R11,C10

R10 is the dark current setting resistor for shunt regulator IC2. The current value Imin for stable operation of the shunt regulator is 1.2 mA according to the data sheet of the IC. This current is the combined current of R10 and the photo coupler's I_F. Since the voltage applied to R10 is the V_F of the photo coupler, assuming that the V_F of the photo coupler is 1.1 V,

R10
$$< \frac{V_F}{Imin} = \frac{1.1 V}{1.2 mA} = 0.92 [k\Omega]$$

In this EVK, select R10 = 1.0 k Ω .

R9 is the control circuit current limiting resistor. Adjust with 300 to 2.2 k $\!\Omega$

In this EVK, select R9 = 1.0 k Ω .

R11 and C10 are phase compensation circuits. Adjust R11 = 1 k-30 k Ω , C10 = 0.1 μ F or so with the actual device.

R9 R6 R10 C10 R11 R7 PC1 IC2 TL431B SGND R7 GND

Figure 9. Feed-back Circuit

Performance Data

Figure 10. Load Regulation (IOUT vs VOUT)

Table 3. Load Regulation (V _{IN} =230 Vac)					
Ιουτ	νουτ	Efficiency			
250 mA	14.919 V	81.97 %			
500 mA	14.904 V	83.26 %			
800 mA	14.891 V	82.32 %			
1000 mA	14.884 V	81.16 %			

Performance Data – Continued

Table 4. Load Regulation: VII	N=100 Vac
-------------------------------	-----------

(Yac) (W) (W) (W) (Y) (W) (W) </th <th></th> <th></th> <th>0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0</th> <th></th> <th></th> <th></th> <th></th>			0							0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Vout				Efficiency		PIN					Efficiency
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											[mA]			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				0							0			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				1				-			1			10.83
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-			2							2			19.29
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-			5	0.075	0.063					5	0.075		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				7		0.068					7	0.105	0.139	42.89
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	100				0.149	0.075	66.74	230				0.150	0.148	50.34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100				0.299	0.098	75.30	230				0.299	0.174	63.21
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	100	0.571			0.448	0.123	78.53	230	0.655	14.947		0.448	0.207	68.46
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100				0.747	0.172	81.31	230	1.008			0.747	0.261	74.12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100	1.267	14.942	70	1.046	0.221	82.55	230	1.365	14.940	70	1.046	0.319	76.62
100 2.656 14.938 150 2.241 0.415 84.36 230 2.781 14.928 150 2.239 0.542 80.52 100 3.528 14.937 200 2.987 0.541 84.68 230 3.667 14.923 200 2.985 0.682 81.33 100 4.403 14.935 250 3.734 0.669 84.80 230 4.550 14.919 250 3.730 0.820 81.97 100 5.278 14.933 300 4.480 0.798 84.88 230 5.433 14.911 375 5.99 0.991 84.96 230 6.758 14.911 375 5.99 1.166 82.74 100 7.03 14.931 400 5.972 1.058 84.96 230 7.195 14.910 400 5.964 1.231 82.86 100 10.55 14.925 600 8.955 1.595 84.88 230 10.71	100	1.787	14.940	100	1.494	0.293	83.60	230	1.895	14.936	100	1.494	0.401	78.82
100 100 <td>100</td> <td>2.221</td> <td>14.939</td> <td>125</td> <td>1.867</td> <td>0.354</td> <td>84.08</td> <td>230</td> <td>2.339</td> <td>14.932</td> <td>125</td> <td>1.867</td> <td>0.473</td> <td>79.80</td>	100	2.221	14.939	125	1.867	0.354	84.08	230	2.339	14.932	125	1.867	0.473	79.80
100 11000 11	100	2.656	14.938	150	2.241	0.415	84.36	230	2.781	14.928	150	2.239	0.542	80.52
100 11000 11000	100	3.528	14.937	200	2.987	0.541	84.68	230	3.667	14.923	200	2.985	0.682	81.39
100 6.590 14.931 375 5.599 0.991 84.96 230 6.758 14.911 375 5.592 1.166 82.74 100 7.03 14.931 400 5.972 1.058 84.96 230 7.195 14.910 400 5.964 1.231 82.86 100 8.78 14.928 500 7.464 1.316 85.01 230 8.95 14.904 500 7.452 1.498 83.26 100 10.55 14.925 600 8.955 1.595 84.88 230 10.71 14.899 600 8.939 1.771 83.47 100 14.91 14.913 3.067 82.94 230 18.34 14.841 1000 14.884 3.456 81.16 100 21.90 14.910 1200 17.892 4.008 81.70 230 22.38 14.877 1200 17.852 4.528 79.77 100 28.09 14.906 <td>100</td> <td>4.403</td> <td>14.935</td> <td>250</td> <td>3.734</td> <td>0.669</td> <td>84.80</td> <td>230</td> <td>4.550</td> <td>14.919</td> <td>250</td> <td>3.730</td> <td>0.820</td> <td>81.97</td>	100	4.403	14.935	250	3.734	0.669	84.80	230	4.550	14.919	250	3.730	0.820	81.97
100 7.03 14.931 400 5.972 1.058 84.96 230 7.195 14.910 400 5.964 1.231 82.88 100 8.78 14.928 500 7.464 1.316 85.01 230 8.95 14.904 500 7.452 1.498 83.26 100 10.55 14.925 600 8.955 1.595 84.88 230 10.71 14.899 600 8.939 1.771 83.47 100 14.19 14.916 800 11.933 2.257 84.09 230 14.46 14.891 800 11.913 2.547 82.38 100 17.98 14.913 1000 14.913 3.067 82.94 230 18.34 14.884 1000 14.884 3.456 81.16 100 21.90 14.910 1200 17.892 4.008 81.70 230 22.38 14.877 1200 17.852 4.528 79.77 100 <td>100</td> <td>5.278</td> <td>14.933</td> <td>300</td> <td>4.480</td> <td>0.798</td> <td>84.88</td> <td>230</td> <td>5.433</td> <td>14.916</td> <td>300</td> <td>4.475</td> <td>0.958</td> <td>82.36</td>	100	5.278	14.933	300	4.480	0.798	84.88	230	5.433	14.916	300	4.475	0.958	82.36
1008.7814.9285007.4641.31685.012308.9514.9045007.4521.49883.2610010.5514.9256008.9551.59584.8823010.7114.8996008.9391.77183.4710014.1914.91680011.9332.25784.0923014.4614.89180011.9132.54782.3810017.9814.913100014.9133.06782.9423018.3414.884100014.8843.45681.1610021.9014.910120017.8924.00881.7023022.3814.877120017.8524.52879.7710028.0914.906150022.3595.73179.6023028.8914.866150022.2996.59177.1910033.9814.904175026.0827.89876.7623034.6414.861175026.0078.63375.0810038.1714.905192028.6189.55274.9723040.7414.856200029.71211.02872.991000.1000.00019300.0000.1000.00023041.9814.846204030.28611.69472.14	100	6.590	14.931	375	5.599	0.991	84.96	230	6.758	14.911	375	5.592	1.166	82.74
100 10.55 14.925 600 8.955 1.595 84.88 230 10.71 14.899 600 8.939 1.771 83.47 100 14.19 14.916 800 11.933 2.257 84.09 230 14.46 14.891 800 11.913 2.547 82.36 100 17.98 14.913 1000 14.913 3.067 82.94 230 18.34 14.884 1000 14.884 3.456 81.16 100 21.90 14.910 1200 17.892 4.008 81.70 230 22.38 14.877 1200 17.852 4.528 79.77 100 28.09 14.906 1500 22.359 5.731 79.60 230 28.89 14.866 1500 22.299 6.591 77.19 100 33.98 14.904 1750 26.082 7.898 76.76 230 34.64 14.861 1750 26.007 8.633 75.06	100	7.03	14.931	400	5.972	1.058	84.96	230	7.195	14.910	400	5.964	1.231	82.89
100 14.19 14.916 800 11.933 2.257 84.09 230 14.46 14.891 800 11.913 2.547 82.36 100 17.98 14.913 1000 14.913 3.067 82.94 230 18.34 14.884 1000 14.884 3.456 81.16 100 21.90 14.910 1200 17.892 4.008 81.70 230 22.38 14.877 1200 17.852 4.528 79.77 100 28.09 14.906 1500 22.359 5.731 79.60 230 28.89 14.866 1500 22.299 6.591 77.19 100 33.98 14.904 1750 26.082 7.898 76.76 230 34.64 14.861 1750 26.007 8.633 75.06 100 38.17 14.905 1920 28.618 9.552 74.97 230 40.74 14.856 2000 29.712 11.028 72.99	100	8.78	14.928	500	7.464	1.316	85.01	230	8.95	14.904	500	7.452	1.498	83.26
100 17.98 14.913 1000 14.913 3.067 82.94 230 18.34 14.884 1000 14.884 3.456 81.16 100 21.90 14.910 1200 17.892 4.008 81.70 230 22.38 14.877 1200 17.852 4.528 79.77 100 28.09 14.906 1500 22.359 5.731 79.60 230 28.89 14.866 1500 22.299 6.591 77.19 100 33.98 14.904 1750 26.082 7.898 76.76 230 34.64 14.861 1750 26.007 8.633 75.06 100 38.17 14.905 1920 28.618 9.552 74.97 230 40.74 14.856 2000 29.712 11.028 72.93 100 0.100 0.000 0.100 0.000 230 41.98 14.846 2040 30.286 11.694 72.14	100	10.55	14.925	600	8.955	1.595	84.88	230	10.71	14.899	600	8.939	1.771	83.47
100 21.90 14.910 1200 17.892 4.008 81.70 230 22.38 14.877 1200 17.852 4.528 79.77 100 28.09 14.906 1500 22.359 5.731 79.60 230 28.89 14.866 1500 22.299 6.591 77.19 100 33.98 14.904 1750 26.082 7.898 76.76 230 34.64 14.861 1750 26.007 8.633 75.06 100 38.17 14.905 1920 28.618 9.552 74.97 230 40.74 14.856 2000 29.712 11.028 72.93 100 0.100 0.000 0.100 0.000 230 41.98 14.846 2040 30.286 11.694 72.14	100	14.19	14.916	800	11.933	2.257	84.09	230	14.46	14.891	800	11.913	2.547	82.38
100 28.09 14.906 1500 22.359 5.731 79.60 230 28.89 14.866 1500 22.299 6.591 77.19 100 33.98 14.904 1750 26.082 7.898 76.76 230 34.64 14.861 1750 26.007 8.633 75.08 100 38.17 14.905 1920 28.618 9.552 74.97 230 40.74 14.856 2000 29.712 11.028 72.93 100 0.100 0.000 0.100 0.000 230 41.98 14.846 2040 30.286 11.694 72.14	100	17.98	14.913	1000	14.913	3.067	82.94	230	18.34	14.884	1000	14.884	3.456	81.16
100 33.98 14.904 1750 26.082 7.898 76.76 230 34.64 14.861 1750 26.007 8.633 75.08 100 38.17 14.905 1920 28.618 9.552 74.97 230 40.74 14.856 2000 29.712 11.028 72.93 100 0.10 0.000 1930 0.000 0.100 0.00 230 41.98 14.846 2040 30.286 11.694 72.14 <td>100</td> <td>21.90</td> <td>14.910</td> <td>1200</td> <td>17.892</td> <td>4.008</td> <td>81.70</td> <td>230</td> <td>22.38</td> <td>14.877</td> <td>1200</td> <td>17.852</td> <td>4.528</td> <td>79.77</td>	100	21.90	14.910	1200	17.892	4.008	81.70	230	22.38	14.877	1200	17.852	4.528	79.77
100 33.98 14.904 1750 26.082 7.898 76.76 230 34.64 14.861 1750 26.007 8.633 75.08 100 38.17 14.905 1920 28.618 9.552 74.97 230 40.74 14.856 2000 29.712 11.028 72.93 100 0.10 0.000 1930 0.000 0.100 0.00 230 41.98 14.846 2040 30.286 11.694 72.14 <td></td> <td>28.09</td> <td></td> <td>1500</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1500</td> <td></td> <td></td> <td>77.19</td>		28.09		1500							1500			77.19
100 38.17 14.905 1920 28.618 9.552 74.97 230 40.74 14.856 2000 29.712 11.028 72.93 100 0.10 0.000 1930 0.000 0.100 0.000 230 41.98 14.846 2040 30.286 11.694 72.14														75.08
100 0.10 0.000 1930 0.000 0.100 0.00 230 41.98 14.846 2040 30.286 11.694 72.14								-						72.93
								-						72.14
								230	0.10	0.000	2050	0.000	0.100	0.00

Table 5. Load Regulation: VIN=230 Vac

Performance Data – Continued

Figure 15. Line Regulation (V_{IN} vs Efficiency)

Figure 16. Switching Frequency (IOUT vs fsw)

Coil Peak Current

Output Ripple Voltage

Performance Data – Continued

Normal 2016/03/201952-05 Normal 2016/03/201952-05 Normal 2016/03/201952-05 State of a first state of

Figure 18. V_{IN} = 100 Vdc, I_{OUT} = 10 mA

Figure 20. V_{IN} = 100 Vac, I_{OUT} = 500 mA

Figure 22. V_{IN} = 100 Vac, I_{OUT} = 1000 mA

Figure 23. V_{IN} = 230 Vac, I_{OUT} = 1000 mA

Performance Data – Continued

Parts surface temperature

Table 6. Parts s	urface temperature		Ta = 25 ℃, m easu	red 30minites after	startup
		Con	dition		
Part	V _{IN} =90 Vac, Іо∪т=0.5 А	V _{IN} =90 Vac, Іоυт=0.8 А	V _{IN} =264 Vac, Iout=0.5 A	V _{IN} =264 Vac, Іо∪т=0.8 А	
IC1	49.3 °C	77.0 ℃	55.3 °C	88.3 °C	
D1	58.0 °C	82.7 °C	62.3 °C	87.7 °C	
L1	49.9 °C	60.8 °C	54.2 °C	65.6 °C	

EMI

Schematics

 $V_{IN} = 90 \sim 264 \text{ Vdc}, V_{OUT} = 15 \text{ V}$

Bill of Materials

Table 7. BoM of BM2P016-EVK-001

Part Reference	Qty.	Туре	Value	Description	Part Number	Manufacture	Configuration mm (inch)
C1	1	Film	0.22µF	X2	890324023028CS	Wurth	-
C2	1	Film	0.1µF	X2	890324023023CS	Wurth	-
C3	1	Electrolytic	33uF	450V	450BXW33MEFR12.5X25	Rubycon	-
C4	0	Ceramic	47pF	1000V, X7R, ±10%	RDER73A470J2K1H03B	Murata	-
C5	0	Ceramic	-	-	-	-	1608 (0603)
C6	1	Ceramic	1000pF	100V, X7R, ±20%	HMK107B7102MA-T	Taiyo Yuden	1608 (0603)
C7	1	Ceramic	10µF	35V, X7R, ±20%	GMK316AB7106ML-TR	Taiyo Yuden	3216 (1206)
C8	1	Electrolytic	680uF	25V, Low-Z	UPA1E681MPD	Nichicon	-
C9,C10	2	Ceramic	0.1µF	100V, X7R, ±20%	HMK107B7104MA-T	Taiyo Yuden	1608 (0603)
CN1	1	Connector	-	2pin	B2P-NV	JST	-
D1	1	FRD	3A	600V	RFN3BM6S	ROHM	TO-252
D2	1	Diode	0.2A	600V	RRE02VSM6S	ROHM	TUMD2SM
DB1	1	Bridge	1A	800V	D1UBA80	Shindengen	SOPA-4
F1	1	Fuse	1.6A	300Vac	36911600000	LitteleFuse	-
IC1	1	AC/DC Converter	-	-	BM2P016-Z	ROHM	DIP7
IC2	1	Shunt Regulator	-	±0.5%	TL431BIDBZT	TI	SOT-23-3
L1	1	Coil	220µH	1.9A	XF1501Y-221	Alpha Trans	Φ13.5
LF1	1	Line Filter	13mH	1A	XF1482Y	Alpha Trans	-
LF2	1	Line Filter	60µH	1A	LF1246Y	Alpha Trans	-
PC1	1	Optocoupler	-	5kV	LTV-817-B	LiteOn	DIP4
R1,R2,R3	3	Resistor	220kΩ	200V, ±5%	MCR18EZPJ224	ROHM	3216 (1206)
R4,R5	2	Resistor	0.36Ω	0.25W, ±1%	MCR18EZHFLR360	ROHM	3216 (1206)
R6	1	Resistor	47kΩ	0.1W, ±1%	MCR03EZPFX4702	ROHM	1608 (0603)
R7	1	Resistor	3.3kΩ	0.1W, ±1%	MCR03EZPFX3301	ROHM	1608 (0603)
R8	1	Resistor	10kΩ	0.1W, ±1%	MCR03EZPFX1002	ROHM	1608 (0603)
R9	1	Resistor	4.7kΩ	0.1W, ±1%	MCR03EZPFX4701	ROHM	1608 (0603)
R10	1	Resistor	1kΩ	0.1W, ±5%	MCR03EZPJ102	ROHM	1608 (0603)
R11	1	Resistor	10kΩ	0.1W, ±5%	MCR03EZPJ103	ROHM	1608 (0603)
ZNR1	1	Varistor	-	470V, 400A	V470ZA05P	LitteleFuse	-

PCB

Size : 55 mm x 80 mm

Figure 27. Top Layout (Top view)

Figure 28. Bottom Layout (Top view)

	Notes
1)	The information contained herein is subject to change without notice.
2)	Before you use our Products, please contact our sales representative and verify the latest specifications :
3)	Although ROHM is continuously working to improve product reliability and quality, semicon- ductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
4)	Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
5)	The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
6)	The Products specified in this document are not designed to be radiation tolerant.
7)	For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative : transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
8)	Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
9)	ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
10)	ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
11)	Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
12)	When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
13)	This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/