

DDR 13-Bit to 26-Bit Registered Buffer

Recommended Applications:

- DDR Memory Modules
- Provides complete DDR DIMM logic solution with ICS93V857 or ICS95V857
- SSTL_2 compatible data registers

Product Features:

- Differential clock signals
- Meets SSTL_2 signal data
- Supports SSTL_2 class II specifications on outputs
- Low-voltage operation
- V_{DD} = 2.3V to 2.7V
 Available in 64 pin TSSOP and 56 pin VFQFN (MLF2) packages

Truth Table¹

	Q Outputs			
RESET#	CLK	CLK#	D	Q
L	X or Floating	X or Floating	X or Floating	L
Н	↑	\downarrow	Н	Н
н	↑	\downarrow	L	L
Н	L or H	L or H	Х	Q ₀ ⁽²⁾

Notes:

- 1. H = "High" Signal Level
 - L = "Low" Signal Level
 - \uparrow = Transition "Low"-to-"High"
 - \downarrow = Transition "High"-to-"Low"
 - X = Don't Care
- 2. Output level before the indicated steady state input conditions were established.

Pin Configurations

ICSSSTV16859C

General Description

The 13-bit-to-26-bit ICSSSTV16859C is a universal bus driver designed for 2.3V to 2.7V V_{DD} operation and SSTL_2 I/O levels, except for the LVCMOS RESET# input.

Data flow from D to Q is controlled by the differential clock (CLK/CLK#) and a control signal (RESET#). The positive edge of CLK is used to trigger the data flow and CLK# is used to maintain sufficient noise margins where as RESET#, an LVCMOS asynchronous signal, is intended for use at the time of power-up only. ICSSSTV16859C supports low-power standby operation. A logic level "Low" at RESET# assures that all internal registers and outputs (Q) are reset to the logic "Low" state, and all input receivers, data (D) and clock (CLK/CLK#) are switched off. Please note that RESET# must always be supported with LVCMOS levels at a valid logic state because VREF may not be stable during power-up.

To ensure that outputs are at a defined logic state before a stable clock has been supplied, RESET# must be held at a logic "Low" level during power up.

In the DDR DIMM application, RESET# is specified to be completely asynchronous with respect to CLK and CLK#. Therefore, no timing relationship can be guaranteed between the two signals. When entering a low-power standby state, the register will be cleared and the outputs will be driven to a logic "Low" level quickly relative to the time to disable the differential input receivers. This ensures there are no glitches on the output. However, when coming out of low-power standby state, the register will become active quickly relative to the time to enable the differential input receivers. When the data inputs are at a logic level "Low" and the clock is stable during the "Low"-to-"High" transition of RESET# until the input receivers are fully enabled, the design ensures that the outputs will remain at a logic "Low" level.

Pin Configuration (64-Pin TSSOP)

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION
1-5, 8-14, 16, 17, 19-25, 28-32	Q (13:1)	OUTPUT	Data output
7, 15, 26, 34, 39, 43, 50, 54, 58, 63	GND	PWR	Ground
6, 18, 27, 33, 38, 47, 59, 64	VDDQ	PWR	Output supply voltage, 2.5V nominal
35, 36, 40-42, 44, 52, 53, 55- 57, 61, 62	D (13:1)	INPUT	Data input
48	CLK	INPUT	Positive master clock input
49	CLK#	INPUT	Negative master clock input
37, 46, 60	VDD	PWR	Core supply voltage, 2.5V nominal
51	RESET#	INPUT	Reset (active low)
45	VREF	INPUT	Input reference voltage, 2.5V nominal

Pin Configuration (56-Pin MLF2)

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION
1-8, 10-16, 18-22, 50-54, 56	Q (13:1)	OUTPUT	Data output
37, 48	GND	PWR	Ground
9, 17, 23, 27, 34, 44, 49, 55	VDDQ	PWR	Output supply voltage, 2.5V nominal
24, 25, 28-31, 39-43, 46, 47	D (13:1)	INPUT	Data input
35	CLK	INPUT	Positive master clock input
36	CLK#	INPUT	Negative master clock input
26, 33, 45	VDD	PWR	Core supply voltage, 2.5V nominal
38	RESET#	INPUT	Reset (active low)
32	VREF	INPUT	Input reference voltage, 2.5V nominal
-	Center PAD	PWR	Ground (MLF2 package only)

Absolute Maximum Ratings

Storage Temperature	–65°C to +150°C
Supply Voltage	-0.5 to 3.6V
Input Voltage ¹	
Output Voltage ^{1,2}	-0.5 to V_{DDQ} +0.5
Input Clamp Current	±50 mA
Output Clamp Current	±50 mA
Continuous Output Current	±50 mA
V _{DD} , V _{DDQ} or GND Current/Pin	±100 mA
Package Thermal Impedance ³	55°C/W

Notes:

- 1. The input and output negative voltage ratings may be excluded if the input and output clamp ratings are observed.
- 2. This current will flow only when the output is in the high state level $V_0 > V_{DDQ}$.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

PARAMETER	DESCRIPTION		MIN	TYP	MAX	UNITS
V _{DD}	Supply Voltage		2.3	2.5	2.7	
V _{DDQ}	I/O Supply Voltage		2.3	2.5	2.7	
V _{REF}	Reference Voltage		1.15	1.25	1.35	
Vπ	Termination Voltage		V _{REF} - 0.04	V_{REF}	V _{REF} + 0.04	
VI	Input Voltage		0		V _{DDQ}	
V _{IH (DC)}	DC Input High Voltage		V _{REF} + 0.15			
V _{IH (AC)}	AC Input High Voltage		V _{REF} + 0.31			
V _{IL (DC)}	DC Input Low Voltage	Data Inputs			V _{REF} - 0.15	V
V _{IL (DC)}	AC Input Low Voltage				V _{REF} - 0.31	
V _{IH}	Input High Voltage Level	RESET#	1.7			
V _{IL}	Input Low Voltage Level	RESET#			0.7	
V _{ICR}	Common mode Input Range	CLK, CLK#	0.97		1.53	
V _{ID}	Differential Input Voltage	CLN, CLN#	0.36			
V _{IX}	Cross Point Voltage of Differential Clock Pair		(V _{DDQ} /2) - 0.2		$(V_{DDQ}/2) + 0.2$	
I _{OH}	High-Level Output Current				-20	
I _{OL}	Low-Level Output Current				20	mA
T _A	Operating Free-Air Temperatu	re	0		70	°C

Recommended Operating Conditions

¹Guarenteed by design, not 100% tested in production.

Electrical Characteristics - DC

 T_{A} = 0 - 70° C; V_{DD} = 2.5 +/-0.2V, V_{DDQ} =2.5 +/-0.2V; (unless otherwise stated)

SYMBOL	PARAMETERS	CONDITIONS		V_{DDQ}	MIN	TYP	MAX	UNITS
V _{IK}		I _I = -18mA		2.3V			-1.2	
V _{он}		I _{OH} = -100µA		2.3V-2.7V	V _{DDQ} - 0.2			N
		I _{OH} = -16mA		2.3V	1.95			V
V _{OL}		I _{OL} = 100μA		2.3V-2.7V			0.2	
V OL		$I_{OL} = 16 \text{mA}$		2.3V			0.35	
I _I	All Inputs	$V_{I} = V_{DD}$ or GND		2.7V			±5	μA
	Standby (Static)	RESET# = GND					0.01	μA
I _{DD}	Operating (Static)	$V_{I} = V_{IH(AC)}$ or $V_{IL(AC)}$, RESET# = V_{DD}				50		mA
	Dynamic operating (clock only)	$\begin{split} \text{RESET\#} &= V_{\text{DD}}, \\ \text{V}_{\text{I}} &= V_{\text{IH(AC)}} \text{ or } V_{\text{IL(AC)}}, \\ \text{CLK and CLK\# switching} \\ \text{50\% duty cycle.} \end{split}$	I _O = 0	2.7V		70		µ/clock MHz
I _{DDD}	Dynamic Operating (per each data input)	$\begin{split} \text{RESET\#} &= \text{V}_{\text{DD}}, \\ \text{V}_{\text{I}} &= \text{V}_{\text{IH}(\text{AC})} \text{ or } \text{V}_{\text{IL} (\text{AC})}, \\ \text{CLK and CLK\# switching} \\ \text{50\% duty cycle. One data} \\ \text{input switching at half} \\ \text{clock frequency, 50\%} \\ \text{duty cycle} \end{split}$	10 - 0	2.7 V		30		µA/ clock MHz/data
r _{OH}	Output High	I _{OH} = -20mA		2.3V-2.7V	7	13.5	20	Ω
r _{oL}	Output Low	I _{OL} = 20mA		2.3V-2.7V	7	13	20	Ω
r _{O(D)}	[r _{OH} - r _{OL}] each separate bit	I _O = 20mA, T _A = 25° C		2.5V			4	Ω
C _i	Data Inputs CLK and CLK#	$V_{I} = V_{REF} \pm 350 mV$ $V_{ICR} = 1.25V, V_{I(PP)} = 360 m$	۱V	2.5V	2.5 2.5		3.5 3.5	pF

Notes:

1 - Guaranteed by design, not 100% tested in production.

Timing Requirements¹

(over recommended operating free-air temperature range, unless otherwise noted)

SYMBOL	PARAMETERS		$V_{DDQ} = 2.5$	5V ± 0.2V	UNITS
STIVIDUL	FARAMETERS		MIN	MAX	01113
f _{clock}	Clock frequency			200	MHz
+	Clock to output time	TSSOP	1.7	2.7	ns
t _{PD}		VFQFN [MLF2]	1.6	2.6	ns
t _{RST}	Reset to output time			3.5	ns
t _{SL}	Output slew rate		1	4	V/ns
+.	Setup time, fast slew rate 2 & 4	Data before CLK↑ , CLK#↓	0.4		ns
t _S	Setup time, slow slew rate 3 & 4		0.6		ns
	Hold time, fast slew rate 2 & 4	Data after CLK↑ , CLK#↓	0.4		ns
T _h	Hold time, slow slew rate ^{3 & 4}		0.5		ns

Notes: 1 - Guaranteed by design, not 100% tested in production.

2 - For data signal input slew rate of \geq 1V/ns.

3 - For data signal input slew rate of \geq 0.5V/ns and < 1V/ns.

4 - CLK, CLK# signals input slew rate of \geq 1V/ns.

Switching Characteristics

(over recommended operating free-air temperature range, unless otherwise noted) (see Figure 1)

SYMBOL	From	То	V _{DD} :	= 2.5V ±0.	2V	UNITS
STIVIDOL	(Input)	(Output)	MIN	TYP	MAX	UNITS
f _{max}			200			MHz
+	CLK, CLK# (TSSOP)	Q	1.7	2.3	2.7	ns
t _{PD}	CLK, CLK# (VFQFN[MLF2])	Q	1.6	2.1	2.6	ns
t _{phl}	RESET#	Q			3.5	ns

TSD

Figure 1 - Parameter Measurement Information ($V_{DDQ} = 2.5V \pm 0.2V$)

- Notes: 1. CL incluces probe and jig capacitance.
 - 2. I_{DD} tested with clock and data inputs held at V_{DDQ} or GND, and $I_{O} = 0$ mA.
 - 3. All input pulses are supplied by generators having the following characteristics: PRR @10 MHz, Zo= 50Ω , input slew rate = 1 V/ns $\pm 20\%$ (unless otherwise specified).
 - 4. The outputs are measured one at a time with one transition per measurement.

5.
$$V_{TT} = V_{REF} = V_{DDQ}/2$$

- 6. $V_{IH} = V_{REF} + 310 \text{mV}$ (AC voltage levels) for differential inputs. $V_{IH} = V_{DDQ}$ for LVCMOS input.
- 7. $V_{IL} = V_{REF}$ 310mV (AC voltage levels) for differential inputs. $V_{IL} = GND$ for LVCMOS input.
- 8. t_{PLH} and t_{PHL} are the same as t_{pd}

r	L. MUUS		La La a		
	In Millimeters		In Inches		
SYMBOL	COMMON DI	MENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
A		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
с	0.09	0.20	.0035	.008	
D	SEE VAR	IATIONS	SEE VAR	IATIONS	
E	8.10 BASIC		0.319 E	BASIC	
E1	6.00	6.20	.236	.244	
е	0.50 B	0.50 BASIC		BASIC	
L	0.45	0.75	.018	.030	
N	SEE VAR	IATIONS	SEE VARIATIONS		
α	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS

N	D mm.		D (ir	nch)	
	MIN	MAX	MIN	MAX	
64	16.90	17.10	.665	.673	
Defenses Deer JEDEO Birklassies 05 M.O. 452					

Reference Doc.: JEDEC Publication 95, M O-153

10-0039

(240 mil) (0.020 mil)

6.10 mm. Body, 0.50 mm. pitch TSSOP

Ordering Information

ICSSSTV16859CG-T

Example: ICS XXXX y G - PPP - T Designation for tape and reel packaging Pattern Number (2 or 3 digit number for parts with ROM code patterns) Package Type G=TSSOP Revision Designator (will not correlate with datasheet revision) Device Type (consists of 3 or 4 digit numbers) Prefix

Г

A

56 pin MLF2

Symbol	Common Dimensions			
А	-	0.85	1.00	
A1	0.00	0.01	0.05	
A2	-	0.65	0.80	
A3		0.20 BSC		
D		8.00 BSC		
D1		7.75 BSC		
Е		8.00 BSC		
E1		7.75 BSC		
Θ			12	
Р	0.24	0.42	0.60	
R	0.13	0.17	0.23	
	Pitch Va	ration D		
e		0.50 BSC		
Ν		56		
Nd		14		
Ne		14		
L	0.30	0.40	0.50	
b	0.18	0.23	0.30	
Q	0.00	0.20	0.45	
D2	4.35	4.50	4.65	
E2	5.05	5.20	5.35	

Ordering Information

ICSSSTV16859CK

Example:

ICS, AV = Standard Device

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support clockhelp@idt.com

408-284-8200

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA