

Errata Sheet
V1.6 2014-10

Microcontrol lers

16-Bit
Architecture

XE166 Derivatives
16-Bit Single-Chip
Real Time Signal Controller
XE166 Family / Alpha Line

Edition 2014-10
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

Errata Sheet
V1.6 2014-10

Microcontrol lers

16-Bit
Architecture

XE166 Derivatives
16-Bit Single-Chip
Real Time Signal Controller
XE166 Family / Alpha Line

XE166 Derivatives
XE166 Family / Alpha Line

Errata Sheet 4 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Table of Contents
1 History List / Change Summary . 8

2 General . 9

3 Current Documentation . 10

4 Short Errata Description . 11
4.1 Functional Deviations . 11
4.2 Deviations from Electrical and Timing Specification 14
4.3 Application Hints . 15
4.4 Documentation Updates . 17

5 Detailed Errata Description . 18
5.1 Functional Deviations . 18

ADC_AI.001 . 18
BROM_TC.006 . 18
BSL_CAN_X.001 . 19
BSL_X.004 . 19
DPRAM_X.001 . 19
EBC_X.007 . 20
ESR_X.004 . 20
FLASH_X.008 . 21
GPT12E_X.001 . 22
GPT12E_X.002 . 22
GSC_X.001 . 23
INT_X.007 . 24
INT_X.008 . 25
INT_X.009 . 26
INT_X.010 . 27
MultiCAN_AI.040 . 28
MultiCAN_AI.041 . 29
MultiCAN_AI.042 . 29
MultiCAN_AI.043 . 29
MultiCAN_AI.044 . 30
MultiCAN_AI.045 . 30
MultiCAN_AI.046 . 31
MultiCAN_TC.025 . 31
MultiCAN_TC.026 . 32
MultiCAN_TC.027 . 32
MultiCAN_TC.028 . 32
MultiCAN_TC.029 . 33
MultiCAN_TC.030 . 34
MultiCAN_TC.031 . 35
Errata Sheet 5 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

MultiCAN_TC.032 . 35
MultiCAN_TC.035 . 36
MultiCAN_TC.037 . 37
MultiCAN_TC.038 . 38
OCDS_X.003 . 38
RESET_X.002 . 39
RESET_X.003 . 39
RESET_X.004 . 40
RTC_X.003 . 40
USIC_AI.003 . 41
USIC_AI.004 . 41
USIC_AI.005 . 41
USIC_AI.016 . 42
USIC_AI.018 . 42

5.2 Deviations from Electrical- and Timing Specification 44
SWD_X.P002 . 44

5.3 Application Hints . 45
ADC_AI.H002 . 45
CAPCOM12_X.H001 . 45
CC6_X.H001 . 46
GPT12_AI.H001 . 47
GPT12E_X.H002 . 47
INT_X.H002 . 48
INT_X.H004 . 49
JTAG_X.H001 . 49
LXBUS_X.H001 . 50
MultiCAN_AI.H005 . 50
MultiCAN_AI.H006 . 51
MultiCAN_AI.H007 . 51
MultiCAN_AI.H008 . 51
MultiCAN_TC.H002 . 52
MultiCAN_TC.H003 . 52
MultiCAN_TC.H004 . 52
OCDS_X.H002 . 53
PVC_X.H001 . 54
RESET_X.H003 . 55
RTC_X.H003 . 55
StartUp_X.H002 . 55
USIC_AI.H001 . 56
USIC_AI.H002 . 56
USIC_AI.H003 . 57

5.4 Documentation Updates . 58
EBC_X.D001 . 58
Errata Sheet 6 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

ID_X.D001 . 58
RESET_X.D001 . 59
SCU_X.D007 . 59
StartUp_X.D002 . 59
USIC_X.D003 . 60
XTAL_X.D001 . 60
Errata Sheet 7 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

History List / Change Summary

Errata Sheet 8 V1.6, 2014-10

1 History List / Change Summary

Trademarks
C166TM, TriCoreTM and DAVETM are trademarks of Infineon Technologies AG.

Table 1 History List
Version Date Remark1)

1) Errata changes to the previous Errata Sheet are marked in chapter Short Errata Description.

1.0 19.07.2007
1.1 11.04.2008 Errata Sheet for all product steps.
1.2 20.08.2008
1.3 30.01.2009
1.4 08.07.2010 Errata No. 01540AERRA, new Errata Sheet layout
1.5 16.04.2013 Errata No. 02598AERRA. Removed EES-AA, EES-

AB, EE-AB, EES-AC, ES-AC references from
Marking/Step. Removed chapter 4 “Errata Device
Overview”

1.6 10.10.2014 Errata No. 03266AERRA. Removed Errata
BSL_X.003, CPU_X.004, FLASH_X.007,
POWER_X.003, POWER_X.005, RESET_X.H002,
WDT_X.H001 (already fixed in Marking/Step AB)

We Listen to Your Comments
Is there any information in this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

mailto:mcdocu.comments@infineon.com

XE166 Derivatives
XE166 Family / Alpha Line

General

Errata Sheet 9 V1.6, 2014-10

2 General
This Errata Sheet describes the deviations of the XE166 Derivatives from the current
user documentation.

Each erratum identifier follows the pattern Module_Arch.TypeNumber:
• Module: subsystem, peripheral, or function affected by the erratum
• Arch: microcontroller architecture where the erratum was initially detected.

– AI: Architecture Independent
– TC: TriCore
– X: XC166 / XE166 / XC2000 Family

• Type: category of deviation
– [none]: Functional Deviation
– P: Parametric Deviation
– H: Application Hint
– D: Documentation Update

• Number: ascending sequential number within the three previous fields. As this
sequence is used over several derivatives, including already solved deviations, gaps
inside this enumeration can occur.

This Errata Sheet applies to all temperature and frequency versions and to all memory
size variants of this device, unless explicitly noted otherwise.
Note: This device is equipped with a C166S V2 Core. Some of the errata have

workarounds which are possibly supported by the tool vendors.
Some corresponding compiler switches need possibly to be set. Please see the
respective documentation of your compiler.
For effects of issues related to the on-chip debug system, see also the
documentation of the debug tool vendor.

XE166 Derivatives
XE166 Family / Alpha Line

Current Documentation

Errata Sheet 10 V1.6, 2014-10

3 Current Documentation
The Infineon XE166 Family comprises device types from the XE164 Series and the
XE167 Series.

Device XE164x, XE167x

Marking/Step AB, AC

Package PG-LQFP-100, PG-LQFP-144

This Errata Sheet refers to the following documentation:
• XE166 Derivatives User’s Manual
• XE164 Data Sheet
• XE167 Data Sheet
• Documentation Addendum (if applicable)

Make sure you always use the corresponding documentation for this device available in
category 'Documents' at www.infineon.com/xe166 .

The specific test conditions for EES and ES are documented in a separate Status Sheet.

Note: Devices marked with EES or ES are engineering samples which may not be
completely tested in all functional and electrical characteristics, therefore they
should be used for evaluation only.

XE166 Derivatives
XE166 Family / Alpha Line

Short Errata Description
4 Short Errata Description
This chapter gives an overview on the deviations and application hints. Changes to the
last Errata Sheet are shown in the column “Chg”.

4.1 Functional Deviations
Table 2 shows a short description of the functional deviations.

Table 2 Functional Deviations
Functional
Deviation

Short Description Chg Pg

ADC_AI.001 Conversions requested in Slot 0 started twice 18
BROM_TC.006 Baud Rate Detection for CAN Bootstrap Loader 18
BSL_CAN_X.001 Quartz Crystal Settling Time after PORST too

Long for CAN Bootstrap Loader
19

BSL_X.004 Evaluation of UART Bootstrap Loader
Identification Byte in Single Wire Configuration

19

DPRAM_X.001 Parity Error Flag for DPRAM 19
EBC_X.007 Bus Arbitration not Properly Working 20
ESR_X.004 Wrong Value of SCU_RSTCONx Registers after

ESRy Application Reset
20

FLASH_X.008 Flash Read after Flash Erase Command 21
GPT12E_X.001 T5/T6 in Counter Mode with BPS2 = 1XB 22
GPT12E_X.002 Effects of GPT Module Microarchitecture 22
GSC_X.001 Clearing of Request Triggers by the GSC 23
INT_X.007 Interrupt using a Local Register Bank during

execution of IDLE
24

INT_X.008 HW Trap during Context Switch in Routine
using a Local Bank

25

INT_X.009 Delayed Interrupt Service of Requests using a
Global Bank

26

INT_X.010 HW Traps and Interrupts may get postponed 27
MultiCAN_AI.040 Remote frame transmit acceptance filtering

error
28

MultiCAN_AI.041 Dealloc Last Obj 29
Errata Sheet 11 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Short Errata Description
MultiCAN_AI.042 Clear MSGVAL during transmit acceptance
filtering

29

MultiCAN_AI.043 Dealloc Previous Obj 29
MultiCAN_AI.044 RxFIFO Base SDT 30
MultiCAN_AI.045 OVIE Unexpected Interrupt 30
MultiCAN_AI.046 Transmit FIFO base Object position 31
MultiCAN_TC.025 RXUPD behavior 31
MultiCAN_TC.026 MultiCAN Timestamp Function 32
MultiCAN_TC.027 MultiCAN Tx Filter Data Remote 32
MultiCAN_TC.028 SDT behavior 32
MultiCAN_TC.029 Tx FIFO overflow interrupt not generated 33
MultiCAN_TC.030 Wrong transmit order when CAN error at start

of CRC transmission
34

MultiCAN_TC.031 List Object Error wrongly triggered 35
MultiCAN_TC.032 MSGVAL wrongly cleared in SDT mode 35
MultiCAN_TC.035 Different bit timing modes 36
MultiCAN_TC.037 Clear MSGVAL 37
MultiCAN_TC.038 Cancel TXRQ 38
OCDS_X.003 Peripheral Debug Mode Settings cleared by

Reset
38

RESET_X.002 Startup Mode Selection is not Valid in
SCU_STSTAT.HWCFG

39

RESET_X.003 P2.[2:0] and P10.[12:0] Switch to Input 39
RESET_X.004 Sticky “Register Access Trap” forces device

into power-save mode after reset.
40

RTC_X.003 Interrupt Generation in Asynchronous Mode 40
USIC_AI.003 TCSRL.SOF and TCSRL.EOF not cleared after a

transmission is started
41

USIC_AI.004 Receive shifter baudrate limitation 41
USIC_AI.005 Only 7 data bits are generated in IIC mode when

TBUF is loaded in SDA hold time
41

Table 2 Functional Deviations (cont’d)

Functional
Deviation

Short Description Chg Pg
Errata Sheet 12 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Short Errata Description
USIC_AI.016 Transmit parameters are updated during FIFO
buffer bypass

42

USIC_AI.018 Clearing PSR.MSLS bit immediately deasserts
the SELOx output signal

New 42

Table 2 Functional Deviations (cont’d)

Functional
Deviation

Short Description Chg Pg
Errata Sheet 13 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Short Errata Description
4.2 Deviations from Electrical and Timing Specification
Table 3 shows a short description of the electrical- and timing deviations from the
specification.

Table 3 Deviations from Electrical- and Timing Specification
AC/DC/ADC
Deviation

Short Description Chg Pg

SWD_X.P002 Supply Watchdog (SWD) Supervision Level in
Data Sheet.

44
Errata Sheet 14 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Short Errata Description
4.3 Application Hints
Table 4 shows a short description of the application hints.

Table 4 Application Hints
Hint Short Description Chg Pg
ADC_AI.H002 Minimizing Power Consumption of an ADC

Module
45

CAPCOM12_X.H001 Enabling or Disabling Single Event Operation 45
CC6_X.H001 Modifications of Bit MODEN in Register

CCU6x_KSCFG
46

GPT12_AI.H001 Modification of Block Prescalers BPS1 and
BPS2

47

GPT12E_X.H002 Reading of Concatenated Timers 47
INT_X.H002 Increased Latency for Hardware Traps 48
INT_X.H004 SCU Interrupts Enabled After Reset 49
JTAG_X.H001 JTAG Pin Routing 49
LXBUS_X.H001 Do Not Access Reserved Locations on the

LXBus
50

MultiCAN_AI.H005 TxD Pulse upon short disable request 50
MultiCAN_AI.H006 Time stamp influenced by resynchronization 51
MultiCAN_AI.H007 Alert Interrupt Behavior in case of Bus-Off 51
MultiCAN_AI.H008 Effect of CANDIS on SUSACK 51
MultiCAN_TC.H002 Double Synchronization of receive input 52
MultiCAN_TC.H003 Message may be discarded before

transmission in STT mode
52

MultiCAN_TC.H004 Double remote request 52
OCDS_X.H002 Suspend Mode Behavior for MultiCAN 53
PVC_X.H001 PVC Threshold Level 2 54
RESET_X.H003 How to Trigger a PORST after an Internal

Failure
55

RTC_X.H003 Changing the RTC Configuration 55
StartUp_X.H002 FCONCS0..FCONCS4 Registers are Always

Configured in External Start-Up Mode
55

USIC_AI.H001 FIFO RAM Parity Error Handling 56
Errata Sheet 15 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Short Errata Description
USIC_AI.H002 Configuration of USIC Port Pins 56
USIC_AI.H003 PSR.RXIDLE Cleared by Software 57

Table 4 Application Hints (cont’d)

Hint Short Description Chg Pg
Errata Sheet 16 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Short Errata Description
4.4 Documentation Updates
Table 5 gives a short description of the documentation updates.

Table 5 Documentation Updates
Documentation
Updates

Short Description Chg Pg

EBC_X.D001 Visibility of Internal LXBus Cycles on External
Address Bus

58

ID_X.D001 Identification Register 58
RESET_X.D001 Reset Types of Trap Registers 59
SCU_X.D007 SCU Interrupts Enabled After Reset 59
StartUp_X.D002 External Start-Up Mode Selection by

Configuration Pins
59

USIC_X.D003 USIC0 Channel 1 Connection DX0D and DOUT 60
XTAL_X.D001 Input Voltage Amplitude VAX1 on XTAL1 60
Errata Sheet 17 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
5 Detailed Errata Description
This chapter provides a detailed description for each erratum. If applicable a workaround
is suggested.

5.1 Functional Deviations

ADC_AI.001 Conversions requested in Slot 0 started twice

A conversion n+1 requested in arbiter slot 0 will be started twice if all configuration and
timing conditions of the following sequence are met:
1. A conversion n of a channel is currently running.
2. Slot 0 has won the arbitration while conversion n is in progress.
3. Conversion n ends one fADCD clock cycle before the end of an arbitration cycle.
4. The conversion n+1 initiated in slot 0 is started exactly in the last fADCD clock cycle of

this arbitration-cycle (see 3.).
5. The conversion time of conversion n+1 is shorter than 2 arbitration cycles.
If all these conditions are met, then the request of slot 0 cannot be cleared in time by the
arbiter, and conversion n+1 is requested a second time.

Workaround
The conversion time for channels requested in slot 0 must not be shorter than two
arbitration cycles.

BROM_TC.006 Baud Rate Detection for CAN Bootstrap Loader

In a specific corner case, the baud rate detected during reception of the initialization
frame for the CAN bootstrap loader may be incorrect. The probability for this sporadic
problem is relatively low, and it decreases with decreasing CAN baud rate and
increasing module clock frequency.

Workaround:
If communication fails, the host should repeat the CAN bootstrap loader initialization
procedure after a reset of the device.
Errata Sheet 18 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
BSL_CAN_X.001 Quartz Crystal Settling Time after PORST too Long for
CAN Bootstrap Loader

The startup configuration of the CAN bootstrap loader when called immediately after
PORST limits the settling time of the external oscillation to 0.5 ms. For typical quartz
crystal this settling time is too short. The CAN bootstrap loader generates a time-out and
goes into Startup Error State.

Workaround
• For low performance CAN applications a ceramic resonator with settling time less

than 0.5 ms can be used.
• An alternative is the Internal Start from on-chip Flash memory as startup mode after

PORST. Then switch the system clock to external source and trigger a software reset
with CAN bootstrap loader mode selected. Now the device starts with a CAN
bootstrap loader without limitation of the oscillator settling time.

BSL_X.004 Evaluation of UART Bootstrap Loader Identification Byte in
Single Wire Configuration

In the current implementation, transmission of the start bit of the identification byte (D5H)
partially overlaps with the stop bit time slot of the zero byte sent by the host. This does
not present any problem in a duplex (2-wire) configuration.
If the UART bootstrap loader is used in a single wire configuration (RxD/TxD externally
connected, e.g. K-line environment), depending on the baudrate, the start bit of the
identification byte may not be correctly recognized by the host. At 9600 Baud, the host
typically interprets the identification byte as F5H.

Workaround
The host software either should not evaluate the received identification byte, or should
also tolerate values other than D5H.

DPRAM_X.001 Parity Error Flag for DPRAM

The parity error flag for the dual port memory (DPRAM) does not work correctly. Under
certain conditions bit PECON.PEFDP is set, although there is no error in the DPRAM.
Errata Sheet 19 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Workaround
Do not enable the parity error trap for the dual port memory, i.e. leave bit
PECON.PEENDP = 0 (default after power-on reset).

EBC_X.007 Bus Arbitration not Properly Working

Due to a mismatch of pad propagation delays and internal operation cycle time the
arbitration feature of the External Bus Controller (EBC) can only be used with severe
restrictions. It is recommended not to use this feature, as future members of the
XC2000/XE166 Family will no longer support bus arbitration.

Workaround
The usable conditions also depend on the application system and can only be defined
for a specific use case.

ESR_X.004 Wrong Value of SCU_RSTCONx Registers after ESRy Applica-
tion Reset

SCU_RSTCONx registers are reset only by Power-On, but they may be wrongly affected
after a second application reset requested by an ESRy pin. This may lead to the
SCU_RSTCONx register values being set to zero, which could unexpectedly disable reset
sources within the user application. The conditions which lead to this behavior are:
1. First, an application reset by SW (software), CPU (Central Processing Unit), MP

(Memory), WDT (Watchdog Timer) or ESRy (External Service Request y) occurs.
2. Following this, an application reset on an ESRy pin occurs.
3. If the above mentioned ESRy reset occurs during a critical time window of the SSW

(startup software), then it’s possible that the application will operate with the wrong
SCU_RSTCONx register value. The critical time window occurs when the SSW is
writing the SCU_RSTCONx registers, and at the same time, the ESRy reset request is
processed by the reset circuitry. The width of this critical window fcritical window is less
than 13 cycles.
Errata Sheet 20 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Figure 1 Critical application reset sequence

Workaround
• Initialize SCU_RSTCONx registers by user software after any reset, or
• assure that a second application reset request with an ESR pin does not occur during

the critical time window.

FLASH_X.008 Flash Read after Flash Erase Command

Under certain conditions all Flash erase commands do not work correctly. After erasing,
all erased bits must be programmed with new data or with all-zero data before reading
any data from the addressed sector is allowed.

Workarounds
1. Erase a range of Flash memory and program it completely with new data before

reading. This is the fastest solution.
Additional hint: A Flash driver could implement a programming function that performs
first an “Erase Page” and uses directly thereafter “Program Page” to program the
data of this page. The Flash driver wouldn’t need any separate erase function.

2. Erase a range of Flash memory and program it completely with all-zero data. Only
after this the range may be read. Data can be programmed later1).

1) Please note: only in order to implement this workaround for the noted device steps it is allowed to execute two
program commands before erasing it.

Reset
by ESRy pin

Application
Reset tcritical window

SSW Start of
SSW

Write
RSTCON

Application
Software

Application
Runs

Start of
SSW

End of
SSW

Application
Runs

ESR_X.004 Fig. 1
Errata Sheet 21 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
GPT12E_X.001 T5/T6 in Counter Mode with BPS2 = 1XB

When T5 and/or T6 are configured for counter mode (bit field TxM = 001B in register
GPT12E_TxCON, x = 5, 6), and bit field BPS2 = 1XB in register GPT12E_T6CON, then
edge detection for the following count input and control signals does not work correctly:
T5IN, T6IN, T5EUD, T6EUD.
Note: The configuration where T5 counts the overflow/underflow events of T6 is not

affected by this problem.

Workaround
Do not set bit field BPS2 = 1XB in register GPT12E_T6CON when T5 and/or T6 are
configured for counter mode. Use only settings BPS2 = 0XB when T5 and/or T6 are
configured for counter mode.

GPT12E_X.002 Effects of GPT Module Microarchitecture

The present GPT module implementation provides some enhanced features (e.g. block
prescalers BPS1, BPS2) while still maintaining timing and functional compatibility with the
original implementation in the C166 Family of microcontrollers.
Both of the GPT1 and GPT2 blocks use a finite state machine to control the actions
within each block. Since multiple interactions are possible between the timers (T2 .. T6)
and register CAPREL, these elements are processed sequentially within each block in
different states. However, all actions are normally completed within one basic clock
cycle.
The GPT2 state machine has 4 states (2 states when BPS2 = 01B) and processes T6
before T5. The GPT1 state machine has 8 states (4 states when BPS1 = 01B) and
processes the timers in the order T3 - T2 (all actions except capture) - T4 - T2 (capture).
In the following, two effects of the internal module microarchitecture that may require
special consideration in an application are described in more detail.

1.) Reading T3 by Software with T2/T4 in Reload Mode
When T2 or T4 are used to reload T3 on overflow/underflow, and T3 is read by software
on the fly, the following unexpected values may be read from T3:
• when T3 is counting up, 0000H or 0001H may be read from T3 directly after an

overflow, although the reload value in T2/T4 is higher (0001H may be read in
particular if BPS1 = 01B and T3I = 000B),
Errata Sheet 22 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
• when T3 is counting down, FFFFH or FFFEH may be read from T3 directly after an
underflow, although the reload value in T2/T4 is lower (FFFEH may be read in
particular if BPS1 = 01B and T3I = 000B).

Note: All timings derived from T3 in this configuration (e.g. distance between interrupt
requests, PWM waveform on T3OUT, etc.) are accurate except for the specific
case described under 2.) below.

Workaround:
• When T3 counts up, and value_x < reload value is read from T3, value_x should be

replaced with the reload value for further calculations.
• When T3 counts down, and value_x > reload value is read from T3, value_x should

be replaced with the reload value for further calculations.
Alternatively, if the intention is to identify the overflow/underflow of T3, the T3 interrupt
request may be used.

2.) Reload of T3 from T2 with setting BPS1 = 01B and T3I = 000B

When T2 is used to reload T3 in the configuration with BPS1 = 01B and T3I = 000B (i.e.
fastest configuration/highest resolution of T3), the reload of T3 is performed with a delay
of one basic clock cycle.

Workaround 1:
To compensate the delay and achieve correct timing,
• increment the reload value in T2 by 1 when T3 is configured to count up,
• decrement the reload value in T2 by 1 when T3 is configured to count down.

Workaround 2:
Alternatively, use T4 instead of T2 as reload register for T3. In this configuration the
reload of T3 is not delayed, i.e. the effect described above does not occur with T4.

GSC_X.001 Clearing of Request Triggers by the GSC

After a request from sources with priority 5..10 (ESR0...GPT12E, see table in Chapter
“Global State Controller (GSC)” of the current User’s Manual), the following problem will
occur:
A trigger for a command request (Wake-up, Clock-off, Suspend Mode) that is enabled in
register GSCEN remains pending in the GSC after the arbitration has been finished and
the command has been requested. As a consequence, further request triggers with the
same or a lower priority will be ignored (14 = lowest priority).
Errata Sheet 23 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Example
A request from the OCDS to enter Suspend Mode (request source OCDS entry, priority
14) will be ignored if (at any time before) an interrupt request has occurred (request
source ITC, priority 9), and the ITC request trigger is enabled in register GSCEN. In this
case, modules that are programmed to stop in Suspend Mode (selected in bit field
SUMCFG) will continue to run.

Workaround
Disable triggers from request sources that are not used by the application in register
GSCEN.
For other sources that shall trigger the GSC, clear and then set again the respective
trigger enable bits in register GSCEN each time the GSC logic shall be armed.

INT_X.007 Interrupt using a Local Register Bank during execution of IDLE

During the execution of the IDLE instruction, if an interrupt which uses a local register
bank is acknowledged, the CPU may stall, preventing further code execution. Recovery
from this condition can only be made through a hardware or watchdog reset.
All of the following conditions must be present for the problem to occur:
• The IDLE instruction is executed while the global register bank is selected (bit field

BANK = 00B in register PSW),
• The interrupting routine is using one of the local register banks (BANK = 10B or 11B),

and the local register bank is selected automatically via the bank selection registers
BNKSEL0...3, (i.e. the interrupting routine has a priority level ≥12),

• The system stack is located in the internal dual-ported RAM (DPRAM, locations
0F600H ... 0FDFFH),

• The interrupt is acknowledged during the first 8 clock cycles of the IDLE instruction
execution.

Workaround 1
Disable interrupts (either globally, or only interrupts using a local register bank) before
execution of IDLE:
BCLR IEN ; Disable interrupts globally
IDLE ; CPU enters idle mode
BSET IEN ; After exit from idle mode
 ; re-enable interrupts

If an interrupt request is generated during this sequence, the CPU leaves idle mode and
acknowledges the interrupt after BSET IEN.
Errata Sheet 24 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Workaround 2
Do not use local register banks, use only global register banks.

Workaround 3
Locate the system stack in a memory other than the DPRAM, e.g. in DSRAM.

INT_X.008 HW Trap during Context Switch in Routine using a Local Bank

When a hardware trap occurs under specific conditions in a routine using a local register
bank, the CPU may stall, preventing further code execution. Recovery from this condition
can only be made through a hardware or watchdog reset.
All of the following conditions must be present for this problem to occur:
• The routine that is interrupted by the hardware trap is using one of the local register

banks (bit field PSW.BANK = 10B or 11B)
• The system stack is located in the internal dual-ported RAM (DPRAM, locations

0F600H ... 0FDFFH)
• The hardware trap occurs in the second half (load phase) of a context switch

operation triggered by one of the following actions:
– a) Execution of the IDLE instruction, or
– b) Execution of an instruction writing to the Context Pointer register CP (untypical

case, because this would mean that the routine using one of the local banks
modifies the CP contents of a global bank)

Workaround 1
Locate the system stack in a memory other than the DPRAM, e.g. in DSRAM.

Workaround 2
Do not use local register banks, use only global register banks.

Workaround 3
Condition b) (writing to CP while a local register bank context is selected) is not typical
for most applications. If the application implementation already eliminates the possibility
for condition b), then only a workaround for condition a) is required.
The workaround for condition a) is to make sure that the IDLE instruction is executed
within a code sequence that uses a global register bank context.
Errata Sheet 25 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
INT_X.009 Delayed Interrupt Service of Requests using a Global Bank

Service of an interrupt request using a global register bank is delayed - regardless of its
priority - if it would interrupt a routine using one of the local register banks in the following
situations:
Case 1:
• The Context Pointer CP is written to (e.g. by POP, MOV, SCXT ... instructions) within

a routine that uses one of the local register banks (bit field PSW.BANK = 10B or 11B),
• Then an interrupt request occurs which is programmed (with GPRSELx = 00B) to

automatically use the global bank via the bank selection registers BNKSEL0...3 (i.e.
the interrupting routine has a priority level ≥12).

Note that this scenario is regarded as untypical case, because this would mean that the
routine using one of the local banks modifies the CP contents of a global bank.
In this case service of the interrupt request is delayed until bit field PSW.BANK becomes
00B, e.g. by explicitly writing to the PSW, or by an implicit update from the stack when
executing the RETI instruction at the end of the routine using the local bank.
Case 2 (see also Figure 1):
• The Context Pointer CP is written to (e.g. by POP, MOV, SCXT ... instructions) within

a routine (Task A) that uses a global register bank (bit field PSW.BANK = 00B), i.e.
the context for this routine will be modified,

• This context switch procedure (19 cycles) is interrupted by an interrupt request (Task
B) which is programmed (with GPRSELx = 1XB) to automatically use one of the local
banks via the bank selection registers BNKSEL0...3 (i.e. the interrupting routine has
a priority level ≥12),

• Before the corresponding interrupt service routine is finished, another interrupt
request (Task C) occurs which is programmed (with GPRSELx = 00B) to
automatically use the global bank via the bank selection registers BNKSEL0...3 (i.e.
the interrupting routine has a priority level ≥13)

In this case service of this interrupt request (for Task C) is delayed until bit field
PSW.BANK becomes 00B after executing the RETI instruction at the end of the routine
(Task B) using the local bank.
Errata Sheet 26 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Figure 2 Example for Case 2: Interrupt Service for Task C delayed

Workaround for Case 1
Do not write to the CP register (i.e. modify the context of a global bank) while a local
register bank context is selected.

Workaround for Case 2
When using both local and global register banks via the bank selection registers
BNKSEL0...3 for interrupts on levels ≥12, ensure that there is no interrupt using a global
register bank that has a higher priority than an interrupt using a local register bank.
Example 1:
Local bank interrupts are used on levels 14 and 15, no local bank interrupts on level 12
and 13. In this case, global bank interrupts on level 15 must not be used.
Example 2:
Local bank interrupts are used on level 12. In this case, no global bank interrupts must
be used on levels 13, 14, 15.

INT_X.010 HW Traps and Interrupts may get postponed

Under the special conditions described below, a hardware trap (HWTx) and subsequent
interrupts, PEC transfers, OCDS service requests (on priority level < 11H) or class B and
class A traps (if HWTx also was class A) may get postponed until the next RETI
instruction is executed. If no RETI is executed, these requests may get postponed
infinitely.

Task B
Interrupt

Register Bank
Validation,

interrupted...

SCXT
CP

Task A
Global Bank

Task B
Local Bank

Task C
Interrupt

Task C
Global Bank

RETI
Task C

RETI
Task B

Task A
Global Bank

Task C Delayed!

Register Bank
Validation,
… finished
Errata Sheet 27 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Both of the following conditions must be fulfilled at the same time when the trigger for the
hardware trap HWTx occurs in order to cause the problem:
1. The pipeline is cancelled due to one of the following reasons:

a) a multiply or divide instruction is followed by a mispredicted conditional (zero-
cycle) jump.

b) a class A hardware trap is triggered quasi-simultaneously with the request for a
class B trap (= HWTx), i.e. the trigger for the class A trap arrives before the
previously injected TRAP instruction for the class B trap has reached the Execute
stage of the pipeline.
In this case, the class A trap is entered, but when the RETI instruction at the end
of the class A trap routine is executed, the pending class B trap (HWTx) is not
entered, and subsequent interrupts/PECs/class B traps are postponed until the
next RETI.

c) a break is requested by the debugger.
2. The pipeline is stalled in the Execute or Write Back stage due to consecutive writes,

or due to a multi-cycle write that is performed to a memory area with wait states
(PSRAM, external memory).

Workaround
Disable overrun of pipeline bubbles by setting bit OVRUN (CPUCON2.4) = 0.

MultiCAN_AI.040 Remote frame transmit acceptance filtering error

Correct behaviour:
Assume the MultiCAN message object receives a remote frame that leads to a valid
transmit request in the same message object (request of remote answer), then the
MultiCAN module prepares for an immediate answer of the remote request. The answer
message is arbitrated against the winner of transmit acceptance filtering (without the
remote answer) with a respect to the priority class (MOARn.PRI).

Wrong behaviour:
Assume the MultiCAN message object receives a remote frame that leads to a valid
transmit request in the same message object (request of remote answer), then the
MultiCAN module prepares for an immediate answer of the remote request. The answer
message is arbitrated against the winner of transmit acceptance filtering (without the
remote answer) with a respect to the CAN arbitration rules and not taking the PRI values
into account.
If the remote answer is not sent out immediately, then it is subject to further transmit
acceptance filtering runs, which are performed correctly.
Errata Sheet 28 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Workaround
Set MOFCRn.FRREN=1B and MOFGPRn.CUR to this message object to disable the
immediate remote answering.

MultiCAN_AI.041 Dealloc Last Obj

When the last message object is deallocated from a list, then a false list object error can
be indicated.

Workaround
• Ignore the list object error indication that occurs after the deallocation of the last

message object.
or
• Avoid deallocating the last message object of a list.

MultiCAN_AI.042 Clear MSGVAL during transmit acceptance filtering

Assume all CAN nodes are idle and no writes to MOCTRn of any other message object
are performed. When bit MOCTRn.MSGVAL of a message object with valid transmit
request is cleared by software, then MultiCAN may not start transmitting even if there are
other message objects with valid request pending in the same list.

Workaround
• Do not clear MOCTRn.MSGVAL of any message object during CAN operation. Use

bits MOCTRn.RXEN, MOCTRn.TXEN0 instead to disable/reenable reception and
transmission of message objects.

or
• Take a dummy message object, that is not allocated to any CAN node. Whenever a

transmit request is cleared, set MOCTRm.TXRQ of the dummy message object
thereafter. This retriggers the transmit acceptance filtering process.

MultiCAN_AI.043 Dealloc Previous Obj

Assume two message objects m and n (message object n = MOCTRm.PNEXT, i.e. n is the
successor of object m in the list) are allocated. If message m is reallocated to another
list or to another position while the transmit or receive acceptance filtering run is
Errata Sheet 29 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
performed on the list, then message object n may not be taken into account during this
acceptance filtering run. For the frame reception message object n may not receive the
message because n is not taken into account for receive acceptance filtering. The
message is then received by the second priority message object (in case of any other
acceptance filtering match) or is lost when there is no other message object configured
for this identifier.For the frame transmission message object n may not be selected for
transmission, whereas the second highest priority message object is selected instead (if
any). If there is no other message object in the list with valid transmit request, then no
transmission is scheduled in this filtering round. If in addition the CAN bus is idle, then
no further transmit acceptance filtering is issued unless another CAN node starts a
transfer or one of the bits MSGVAL, TXRQ, TXEN0, TXEN1 is set in the message object
control register of any message object.

Workaround
• After reallocating message object m, write the value one to one of the bits MSGVAL,

TXRQ, TXEN0, TXEN1 of the message object control register of any message object
in order to retrigger transmit acceptance filtering.

• For frame reception, make sure that there is another message object in the list that
can receive the message targeted to n in order to avoid data loss (e.g. a message
object with an acceptance mask=0D and PRI=3D as last object of the list).

MultiCAN_AI.044 RxFIFO Base SDT

If a receive FIFO base object is located in that part of the list, that is used for the FIFO
storage container (defined by the top and bottom pointer of this base object) and bit SDT
is set in the base object (CUR pointer points to the base object), then MSGVAL of the base
object is cleared after storage of a received frame in the base object without taking the
setting of MOFGPRn.SEL into account.

Workaround
Take the FIFO base object out of the list segment of the FIFO slave objects, when using
Single Data Transfer.

MultiCAN_AI.045 OVIE Unexpected Interrupt

When a gateway source object or a receive FIFO base object with MOFCRn.OVIE set
transmits a CAN frame, then after the transmission an unexpected interrupt is generated
on the interrupt line as given by MOIPRm.RXINP of the message object referenced by
m=MOFGPRn.CUR.
Errata Sheet 30 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Workaround
Do not transmit any CAN message by receive FIFO base objects or gateway source
objects with bit MOFCRn.OVIE set.

MultiCAN_AI.046 Transmit FIFO base Object position

If a message object n is configured as transmit FIFO base object and is located in the
list segment that is used for the FIFO storage container (defined by MOFGPRn.BOT and
MOFGPRn.TOP) but not at the list position given by MOFGPRn.BOT, then the MultiCAN
uses incorrect pointer values for this transmit FIFO.

Workaround
The transmit FIFO works properly when the transmit FIFO base object is either at the
bottom position within the list segment of the FIFO (MOFGPRn.BOT=n) or outside of the
list segment as described above.

MultiCAN_TC.025 RXUPD behavior

When a CAN frame is stored in a message object, either directly from the CAN node or
indirectly via receive FIFO or from a gateway source object, then bit MOCTR.RXUPD is
set in the message object before the storage process and is automatically cleared after
the storage process.

Problem description
When a standard message object (MOFCR.MMC) receives a CAN frame from a CAN
node, then it processes its own RXUPD as described above (correct).
In addition to that, it also sets and clears bit RXUPD in the message object referenced by
pointer MOFGPR.CUR (wrong behavior).

Workaround
The “foreign” RXUPD pulse can be avoided by initializing MOFGPR.CUR with the message
number of the object itself instead of another object (which would be message object 0
by default, because MOFGPR.CUR points to message object 0 after reset initialization of
MultiCAN).
Errata Sheet 31 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
MultiCAN_TC.026 MultiCAN Timestamp Function

The timestamp functionality does not work correctly.

Workaround
Do not use timestamp.

MultiCAN_TC.027 MultiCAN Tx Filter Data Remote

Message objects of priority class 2 (MOAR.PRI = 2) are transmitted in the order as given
by the CAN arbitration rules. This implies that for 2 message objects which have the
same CAN identifier, but different DIR bit, the one with DIR = 1 (send data frame) shall
be transmitted before the message object with DIR = 0, which sends a remote frame.
The transmit filtering logic of the MultiCAN leads to a reverse order, i.e the remote frame
is transmitted first. Message objects with different identifiers are handled correctly.

Workaround
None.

MultiCAN_TC.028 SDT behavior

Correct behavior
Standard message objects:
MultiCAN clears bit MOCTR.MSGVAL after the successful reception/transmission of a
CAN frame if bit MOFCR.SDT is set.
Transmit Fifo slave object:
MultiCAN clears bit MOCTR.MSGVAL after the successful reception/transmission of a
CAN frame if bit MOFCR.SDT is set. After a transmission, MultiCAN also looks at the
respective transmit FIFO base object and clears bit MSGVAL in the base object if bit SDT
is set in the base object and pointer MOFGPR.CUR points to MOFGPR.SEL (after the
pointer update).
Gateway Destination/Fifo slave object:
MultiCAN clears bit MOCTR.MSGVAL after the storage of a CAN frame into the object
(gateway/FIFO action) or after the successful transmission of a CAN frame if bit
MOFCR.SDT is set. After a reception, MultiCAN also looks at the respective FIFO
base/Gateway source object and clears bit MSGVAL in the base object if bit SDT is set in
Errata Sheet 32 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
the base object and pointer MOFGPR.CUR points to MOFGPR.SEL (after the pointer
update).

Problem description
Standard message objects:
After the successful transmission/reception of a CAN frame, MultiCAN also looks at
message object given by MOFGPR.CUR. If bit SDT is set in the referenced message
object, then bit MSGVAL is cleared in the message object CUR is pointing to.
Transmit FIFO slave object:
Same wrong behaviour as for standard message object. As for transmit FIFO slave
objects CUR always points to the base object, the whole transmit FIFO is set invalid after
the transmission of the first element instead after the base object CUR pointer has
reached the predefined SEL limit value.
Gateway Destination/Fifo slave object:
Correct operation of the SDT feature.

Workaround
Standard message object:
Set pointer MOFGPR.CUR to the message number of the object itself.
Transmit FIFO:
Do not set bit MOFCR.SDT in the transmit FIFO base object. Then SDT works correctly
with the slaves, but the FIFO deactivation feature by CUR reaching a predefined limit
SEL is lost.

MultiCAN_TC.029 Tx FIFO overflow interrupt not generated

Specified behaviour
After the successful transmission of a Tx FIFO element, a Tx overflow interrupt is
generated if the FIFO base object fulfils these conditions:
• Bit MOFCR.OVIE=1, AND
• MOFGPR.CUR becomes equal to MOFGPR.SEL

Real behaviour
A Tx FIFO overflow interrupt will not be generated after the transmission of the Tx FIFO
base object.
Errata Sheet 33 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Workaround
If Tx FIFO overflow interrupt needed, take the FIFO base object out of the circular list of
the Tx message objects. That is to say, just use the FIFO base object for FIFO control,
but not to store a Tx message.

Figure 3 FIFO structure

MultiCAN_TC.030 Wrong transmit order when CAN error at start of CRC
transmission

The priority order defined by acceptance filtering, specified in the message objects,
define the sequential order in which these messages are sent on the CAN bus. If an error
occurs on the CAN bus, the transmissions are delayed due to the destruction of the
message on the bus, but the transmission order is kept. However, if a CAN error occurs
when starting to transmit the CRC field, the arbitration order for the corresponding CAN
node is disturbed, because the faulty message is not retransmitted directly, but after the
next transmission of the CAN node.

Figure 4

base object:
MO s

List X

MO c

MO z

MO a

MO l

MO n

TxFiFo

TO
P

B
O

TTO
M

crc
field

error

CAN
bus
Errata Sheet 34 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Workaround
None.

MultiCAN_TC.031 List Object Error wrongly triggered

If the first list object in a list belonging to an active CAN node is deallocated from that list
position during transmit/receive acceptance filtering (happening during message
transfer on the bus), then a "list object" error may occur (NSRx.LOE=1B), which will
cause that effectively no acceptance filtering is performed for this message by the
affected CAN node.
As a result:
• for the affected CAN node, the CAN message during which the error occurs will not

be stored in a message object. This means that although the message is
acknowledged on the CAN bus, its content will be ignored.

• the message handling of an ongoing transmission is not disturbed, but the
transmission of the subsequent message will be delayed, because transmit
acceptance filtering has to be started again.

• message objects with pending transmit request might not be transmitted at all due to
failed transmit acceptance filtering.

Workaround
EITHER:
• Avoid deallocation of the first element on active CAN nodes. Dynamic reallocations

on message objects behind the first element are allowed, OR
• Avoid list operations on a running node. Only perform list operations, if CAN node is

not in use (e.g. when NCRx.INIT=1B)

MultiCAN_TC.032 MSGVAL wrongly cleared in SDT mode

When Single Data Transfer Mode is enabled (MOFCRn.SDT=1B), the bit
MOCTRn.MSGVAL is cleared after the reception of a CAN frame, no matter if it is a data
frame or a remote frame.
In case of a remote frame reception and with MOFCR.FRREN = 0B, the answer to the
remote frame (data frame) is transmitted despite clearing of MOCTRn.MSGVAL (incorrect
behaviour). If, however, the answer (data frame) does not win transmit acceptance
filtering or fails on the CAN bus, then no further transmission attempt is made due to
cleared MSGVAL (correct behaviour).
Errata Sheet 35 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Workaround
• To avoid a single trial of a remote answer in this case, set MOFCR.FRREN = 1B and

MOFGPR.CUR = this object.

MultiCAN_TC.035 Different bit timing modes

Bit timing modes (NFCRx.CFMOD=10B) do not conform to the specification.
When the modes 001B-100B are set in register NFCRx.CFSEL, the actual configured
mode and behaviour is different than expected.

Workaround
None.

Table 6
Bit timing mode
(NFCR.CFSEL)
according to spec

Value to be written to
NFCR.CFSEL instead

Measurement

001B Mode is missing (not
implemented) in
MultiCAN

Whenever a recessive edge (transition
from 0 to 1) is monitored on the receive
input the time (measured in clock
cycles) between this edge and the
most recent dominant edge is stored in
CFC.

010B 011B Whenever a dominant edge is received
as a result of a transmitted dominant
edge the time (clock cycles) between
both edges is stored in CFC.

011B 100B Whenever a recessive edge is
received as a result of a transmitted
recessive edge the time (clock cycles)
between both edges is stored in CFC.

100B 001B Whenever a dominant edge that
qualifies for synchronization is
monitored on the receive input the time
(measured in clock cycles) between
this edge and the most recent sample
point is stored in CFC.
Errata Sheet 36 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
MultiCAN_TC.037 Clear MSGVAL

Correct behaviour:
When MSGVAL is cleared for a message object in any list, then this should not affect the
other message objects in any way.
Message reception (wrong behaviour):
Assume that a received CAN message is about to be stored in a message object A,
which can be a standard message object, FIFO base, FIFO slave, gateway source or
gateway destination object.
If during of the storage action the user clears MOCTR.MSGVAL of message object B in
any list, then the MultiCAN module may wrongly interpret this temporarily also as a
clearing of MSGVAL of message object A. The result of this is that the message is not
stored in message object A and is lost. Also no status update is performed on message
object A (setting of NEWDAT, MSGLST, RXPND) and no message object receive interrupt
is generated. Clearing of MOCTR.MSGVAL of message object B is performed correctly.
Message transmission (wrong behaviour):
Assume that MultiCAN is about to copy the message content of a message object A into
the internal transmit buffer of the CAN node for transmission.
If during of the copy action the user clears MOCTR.MSGVAL of message object B in any
list, then the MultiCAN module may wrongly interpret this also as a clearing of MSGVAL
of message object A. The result of this is that the copy action for message A is not
performed, bit NEWDAT is not cleared and no transmission takes place (clearing
MOCTR.MSGVAL of message object B is performed correctly). In case of idle CAN bus
and the user does not actively set the transmit request of any message object, this may
lead to not transmitting any further message object, even if they have a valid transmit
request set.
Single data transfer feature:
When the MultiCAN module clears MSGVAL as a result of a single data transfer
(MOFCR.SDT = 1 in the message object), then the problem does not occur. The problem
only occurs if MSGVAL of a message object is cleared via CPU.

Workaround
Do not clear MOCTR.MSGVAL of any message object during CAN operation. Use bits
MOCTR.RXEN, MOCTR.TXEN0 instead to disable/reenable reception and transmission of
message objects.
Errata Sheet 37 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
MultiCAN_TC.038 Cancel TXRQ

When the transmit request of a message object that has won transmit acceptance
filtering is cancelled (by clearing MSGVAL, TXRQ, TXEN0 or TXEN1), the CAN bus is idle
and no writes to MOCTR of any message object are performed, then MultiCAN does not
start the transmission even if there are message objects with valid transmit request
pending.

Workaround
To avoid that the CAN node ignores the transmission:
• take a dummy message object, that is not allocated to any CAN node. Whenever a

transmit request is cleared, set TXRQ of the dummy message object thereafter. This
retriggers the transmit acceptance filtering process.

or:
• whenever a transmit request is cleared, set one of the bits TXRQ, TXEN0 or TXEN1,

which is already set, again in the message object for which the transmit request is
cleared or in any other message object. This retriggers the transmit acceptance
filtering process.

OCDS_X.003 Peripheral Debug Mode Settings cleared by Reset

The behavior (run/stop) of the peripheral modules in debug mode is defined in bitfield
SUMCFG in the KSCCFG registers. The intended behavior is, that after an application
reset has occurred during a debug session, a peripheral re-enters the mode defined for
debug mode.
For some peripherals, the debug mode setting in SUMCFG is erroneously set to normal
mode upon any reset (instead upon a debug reset only). It remains in this state until
SUMCFG is written by software or the debug system.
Some peripherals will not re-enter the state defined for debug mode after an application
reset:
GPT12, CAPCOM2, and MultiCAN will resume normal operation like after reset, i.e.
they are inactive until they are initialized by software.
In case the RTC has been running before entry into debug mode, and it was configured
in SUMCFG to stop in debug mode, it will resume operation as before entry into debug
mode instead.
All other peripheral modules, i.e. ADC, CCU6 and USIC, will correctly re-enter the state
defined for debug mode after an application reset in debug mode.
Errata Sheet 38 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
For Flash and CPU, bitfield SUMCFG must be configured to normal mode anyway, since
they are required for debugging.

Workaround
None.

RESET_X.002 Startup Mode Selection is not Valid in SCU_STSTAT.HWCFG

Reading from SCU_STSTAT.HWCFG-bitfield returns all zeros instead of the information
which startup mode has been entered after the last reset.

Workaround
Read the initial value from VECSEG register to evaluate where from the user code is
started:
• VECSEG[7:0]=00H - start from an off-chip memory, external startup mode
• VECSEG[7:0]=C0H - start from on-chip flash, internal startup mode
• VECSEG[7:0]=E0H - start from on-chip PSRAM, bootstrap loader mode

 (UART, CAN or SSC)

RESET_X.003 P2.[2:0] and P10.[12:0] Switch to Input

During the execution of an Application Reset and Debug Reset the pins P2.[2:0] and
P10.[12:0] are intermediately switched to input.
These pins return to their previous mode approximately 35 system clock cycles after the
application reset counter has expired (approx. 0.6 µs with default reset delay at 80 MHz).
If such a pin is used as output, make sure that this short interruption does not lead to
critical system conditions.

Workaround
External pull devices can be added to have a defined level on these pins during
Application and Debug Reset.
Errata Sheet 39 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
RESET_X.004 Sticky “Register Access Trap” forces device into power-
save mode after reset.

The system control unit (SCU) provides trap generation, to respond to certain system
level events or faults. Certain trap sources maintain sticky trap flags which are only
cleared explicitly by software, or by a power-on reset. These sticky trap flags are
contained in the SCU register DMPMIT.
In case the “Register Access Trap” flag (DMPMIT.RAT) becomes set, but is not cleared
before a debug, internal application, or application reset occurs, then the microcontroller
will reset, but will fail to start-up correctly. The microcontroller start-up software will
detect that the sticky trap flag is set, and will force the device into power-save mode with
DMP_1 shut down and DMP_M powered.

Workaround
In response to the trap event, software must explicitly clear the sticky trap flag using the
SCU register DMPMITCLR, before executing a debug, internal application, or
application reset.
Note that this workaround does not address unexpected debug, internal application, or
application resets which occur between the sticky trap event and the clearing of the
sticky flags by software. To keep this exposure period as short as possible, it is
recommended to clear the flag early in the trap routine.
Note: Register DMPMITCLR is protected by the register security mechanism after

execution of the EINIT instruction and must be unlocked before accessing.

RTC_X.003 Interrupt Generation in Asynchronous Mode

Asynchronous Mode must be selected (bit RTCCM = 1B in register RTCCLKCON)
whenever the system clock is less than 4 times faster than the RTC count input clock
(fSYS < fRTC × 4). While in Asynchronous Mode, generation of the RTC interrupt via flag
RTCIR in register RTC_IC does not work correctly.

Workaround 1
Select the system clock such that it is at least 4 times faster than the RTC count input
clock (fSYS ≥ fRTC × 4) and operate the RTC in Synchronous Mode.

Workaround 2
Before switching from Synchronous to Asynchronous Mode, clear the individual interrupt
enable bits (CNTxIE, T14IE) in register RTC_ISNC. After returning to Synchronous
Mode, set the individual interrupt enable bits as required by the application. Then flag
Errata Sheet 40 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
RTCIR will get set if at least one of the individual interrupt requests (flags CNTxIR,
T14IR) was pending.

USIC_AI.003 TCSRL.SOF and TCSRL.EOF not cleared after a transmission
is started

The Start of Frame (SOF) and End of Frame (EOF) bit in the Transmit Control/Status
Register (TCSRL) will not be cleared by hardware when the data is transfered from the
transmit buffers (TBUFx) to the transmit shift register, i.e. the transmission of a new word
starts.

Workaround
Clear TCSRL.SOF and TCSRL.EOF by software.

USIC_AI.004 Receive shifter baudrate limitation

If the frame length of SCTRH.FLE does not match the frame length of the master, then
the baudrate of the SSC slave receiver is limited to fsys/2 instead of fsys.

Workaround
None.

USIC_AI.005 Only 7 data bits are generated in IIC mode when TBUF is
loaded in SDA hold time

When the delay time counter is used to delay the data line SDA (HDEL > 0), and the
empty transmit buffer TBUF was loaded between the end of the acknowledge bit and the
expiration of programmed delay time HDEL, only 7 data bits are transmitted.
With setting HDEL=0 the delay time will be tHDEL = 4 x 1/fSYS + delay (approximately 60ns
@ 80MHz).

Workaround
• Do not use the delay time counter, i.e use only HDEL=0 (default),

or
• write TBUF before the end of the last transmission (end of the acknowledge bit) is

reached.
Errata Sheet 41 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
USIC_AI.016 Transmit parameters are updated during FIFO buffer bypass

Transmit Control Information (TCI) can be transferred from the bypass structure to the
USIC channel when a bypass data is loaded into TBUF. Depending on the setting of
TCSR register bit fields, different transmit parameters are updated by TCI:
• When SELMD = 1, PCR.CTR[20:16] is updated by BYPCR.SELO (applicable only in

SSC mode)
• When WLEMD = 1, SCTR.WLE and TCSR.EOF are updated by BYPCR.BWLE
• When FLEMD = 1, SCTR.FLE[4:0] is updated by BYPCR.BWLE
• When HPCMD = 1, SCTR.HPCDIR and SCTR.DSM are updated by BHPC
• When all of the xxMD bits are 0, no transmit parameters will be updated
However in the current device, independent of the xxMD bits setting, the following are
always updated by the TCI generated by the bypass structure, when TBUF is loaded with
a bypass data:
• WLE, HPCDIR and DSM bits in SCTR register
• EOF and SOF bits in TCSR register
• PCR.CTR[20:16] (applicable only in SSC mode)

Workaround
The application must take into consideration the above behaviour when using FIFO
buffer bypass.

USIC_AI.018 Clearing PSR.MSLS bit immediately deasserts the SELOx
output signal

In SSC master mode, the transmission of a data frame can be stopped explicitly by
clearing bit PSR.MSLS, which is achieved by writing a 1 to the related bit position in
register PSCR.
This write action immediately clears bit PSR.MSLS and will deassert the slave select
output signal SELOx after finishing a currently running word transfer and respecting the
slave select trailing delay (Ttd) and next-frame delay (Tnf).
However in the current implementation, the running word transfer will also be
immediately stopped and the SELOx deasserted following the slave select delays.
If the write to register PSCR occurs during the duration of the slave select leading delay
(Tld) before the start of a new word transmission, no data will be transmitted and the
SELOx gets deasserted following Ttd and Tnf.

Workaround
There are two possible workarounds:
Errata Sheet 42 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
• Use alternative end-of-frame control mechanisms, for example, end-of-frame
indication with TSCR.EOF bit.

• Check that any running word transfer is completed (PSR.TSIF flag = 1) before
clearing bit PSR.MSLS.
Errata Sheet 43 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
5.2 Deviations from Electrical- and Timing Specification

SWD_X.P002 Supply Watchdog (SWD) Supervision Level in Data Sheet.

The Supply Watchdog (SWD) Supervision Level VSWD tolerance boundaries for 5.5 V are
changed from ± 0.15 V to ± 0.30 V.
Errata Sheet 44 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
5.3 Application Hints

ADC_AI.H002 Minimizing Power Consumption of an ADC Module

For a given number of A/D conversions during a defined period of time, the total energy
(power over time) required by the ADC analog part during these conversions via supply
VDDPA is approximately proportional to the converter active time.

Recommendation for Minimum Power Consumption:
In order to minimize the contribution of A/D conversions to the total power consumption,
it is recommended
1. to select the internal operating frequency of the analog part (fADCI) near the maximum

value specified in the Data Sheet, and
2. to switch the ADC to a power saving state (via ANON) while no conversions are

performed. Note that a certain wake-up time is required before the next set of
conversions when the power saving state is left.

Note: The selected internal operating frequency of the analog part that determines the
conversion time will also influence the sample time tS. The sample time tS can
individually be adapted for the analog input channels via bit field STC.

CAPCOM12_X.H001 Enabling or Disabling Single Event Operation

The single event operation mode of the CAPCOM1/2 unit eliminates the need for
software to react after the first compare match when only one event is required within a
certain time frame. The enable bit SEEy for a channel CCy is cleared by hardware after
the compare event, thus disabling further events for this channel.
One Channel in Single Event Operation
As the Single Event Enable registers CC1_SEE, CC2_SEE are not located in the bit-
addressable SFR address range, they can only be modified by instructions operating on
data type WORD. This is no problem when only one channel of a CAPCOM unit is used
in single event mode.
Two or more Channels in Single Event Operation
When two or more channels of a CAPCOM unit are independently operating in single
event mode, usually an OR instruction is used to enable one or more compare events in
register CCn_SEE, while an AND instruction may be used to disable events before they
Errata Sheet 45 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
have occurred. In these cases, the timing relation of the channels must be considered,
otherwise the following typical problem may occur:
• In the Memory stage, software reads register CCn_SEE with bit SEEy = 1B (event for

channel CCy has not yet occurred)
• Meanwhile, event for CCy occurs, and bit SEEy is cleared to 0B by hardware
• In the Write-Back stage, software writes CCn_SEE with bit SEEx = 1B (intended event

for CCx enabled via OR instruction) and bit SEEy = 1B
• or, as inverse procedure, software writes CCn_SEE with bit SEEx = 0B (intended

event for CCx disabled via AND instruction) and bit SEEy = 1B

In these cases, another unintended event for channel CCy is enabled.
To avoid this effect, one of the following solutions - depending on the characteristics of
the application - is recommended to enable or disable further compare events for
CAPCOM channels concurrently operating in single event mode:
• Modify register CCn_SEE only when it is ensured that no compare event in single

event mode can occur, i.e. when CCn_SEE = 0x0000, or
• Modify register CCn_SEE only when it is ensured that there is a sufficient time

distance to the events of all channels operating in single event mode, such that none
of the bits in CCn_SEE can change in the meantime, or

• Use single event operation for one channel only (i.e. only one bit SEMx may be = 1B),
and/or

• Use one of the standard compare modes, and emulate single event operation for a
channel CCs by disabling further compare events in bit field MODs (in register
CCn_Mz) in the corresponding interrupt service routine. Writing to register CCn_Mz is
uncritical, as this register is not modified by hardware.

CC6_X.H001 Modifications of Bit MODEN in Register CCU6x_KSCFG

For each module, setting bit MODEN = 0 immediately switches off the module clock.
Care must be taken that the module clock is only switched off when the module is in a
defined state (e.g. stop mode) in order to avoid undesired effects in an application.
In addition, for a CCU6 module in particular, if bit MODEN is changed to 0 while the
internal functional blocks have not reached their defined stop conditions, and later
MODEN is set to 1 and the mode is not set to run mode, this leads to a lock situation
where the module clock is not switched on again.
Errata Sheet 46 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
GPT12_AI.H001 Modification of Block Prescalers BPS1 and BPS2

The block prescalers BPS1 and BPS2, controlled via bit fields T3CON.BSP1 and
T6CON.BPS2, determine the basic clock for the GPT1 and GPT2 block, respectively.
After reset, when initializing a block prescaler BPSx to a value different from its default
value (00B), it must be initialized first before any mode involving external trigger signals
is configured for the associated GPTx block. These modes include counter, incremental
interface, capture, and reload mode. Otherwise, unintended count/capture/reload events
may occur.
In case a block prescaler BPSx needs to be modified during operation of the GPTx block,
disable related interrupts before modification of BPSx, and afterwards clear the
corresponding service request flags and re-initialize those registers (T2, T3, T4 in block
GPT1, and T5, T6, CAPREL in block GPT2) that might be affected by an unintended
count/capture/reload event.

GPT12E_X.H002 Reading of Concatenated Timers

For measuring longer time periods, a core timer (T3 or T6) may be concatenated with an
auxiliary timer (T2/T4 or T5) of the same timer block. In this case, the core timer contains
the low part, and the auxiliary timer contains the high part of the extended timer value.
When reading the low and high parts of concatenated timers, care must be taken to
obtain consistent values in particular after a timer overflow/underflow (e.g. one part may
already have considered an overflow, while the other has not). This is a general issue
when reading multi-word results with consecutive instructions, and not necessarily
unique to the GPT module microarchitecture.
The following algorithm may be used to read concatenated GPT timers, represented by
Timer_high (for auxiliary timer, here: T2) and Timer_low (for core timer, here: T3). In this
example, the high part is read twice, and reading of the low part is repeated if two
different values were read for the high part.
• read Timer_high_temp = T2
• read Timer_low = T3
• wait two basic clock cycles (to allow increment/decrement of auxiliary timer in case

of core timer overflow/underflow) - see Table 7 below
• read Timer_high = T2

– if Timer_high is not equal to Timer_high_temp: read Timer_low = T3
Errata Sheet 47 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
After execution of this algorithm, Timer_high and Timer_low represent a consistent time
stamp of the concatenated timers.
The equivalent number of system clock cycles corresponding to two basic clock cycles
is shown in the following Table 7:

In case the required timer resolution can be achieved with different combinations of the
Block Prescaler BPS1/BPS2 and the Individual Prescalers TxI, the variant with the
smallest value for the Block Prescaler may be chosen to minimize the waiting time. E.g.
in order to run T6 at fSYS/512, select BPS2 = 00B, T6I = 111B, and insert 8 NOPs (or other
instructions) to ensure the required waiting time before reading Timer_high the second
time.

INT_X.H002 Increased Latency for Hardware Traps

When a condition for a HW trap occurs (i.e. one of the bits in register TFR is set to 1B),
the next valid instruction that reaches the Memory stage is replaced with the
corresponding TRAP instruction. In some special situations described in the following, a
valid instruction may not immediately be available at the Memory stage, resulting in an
increased delay in the reaction to the trap request:
1. When the CPU is in break mode, e.g. single-stepping over such instructions as SBRK

or BSET TFR.x (where x = one of the trap flags in register TFR) will have no
(immediate) effect until the next instruction enters the Memory stage of the pipeline
(i.e. until a further single-step is performed).

2. When the pipeline is running empty due to (mispredicted) branches and a relatively
slow program memory (with many wait states), servicing of the trap is delayed by the
time for the next access to this program memory, even if vector table and trap handler
are located in a faster memory. However, the situation when the pipeline/prefetcher
are completely empty is quite rare due to the advanced prefetch mechanism of the
C166S V2 core.

Table 7 Equivalent Number of System Clock Cycles Required to Wait for Two
Basic Clock Cycles

Setting of BPS1 BPS1 = 01 BPS1 = 00 BPS1 = 11 BPS1 = 10
Required Number of System
Clocks

8 16 32 64

Setting of BPS2 BPS2 = 01 BPS2 = 00 BPS2 = 11 BPS2 = 10
Required Number of System
Clocks

4 8 16 32
Errata Sheet 48 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
INT_X.H004 SCU Interrupts Enabled After Reset

Following a reset, the SCU interrupts are enabled by default (register SCU_INTDIS =
0000H). This may lead to interrupt requests being triggered in the SCU immediately,
even before user software has begun to execute. In the SCU, multiple interrupt sources
are `ORed` to a common interrupt node of the CPU interrupt controller. Due to the
“ORing” of multiple interrupt sources, only one interrupt request to the interrupt controller
will be generated if multiple sources at the input of this OR gate are active at the same
time. If user software enables an interrupt in the interrupt controller (SCU_xIC) which
shares the same node as the SCU interrupt request active after reset, it may lead to the
effect of suppressing the intended interrupt source. So, for all SCU interrupt sources
which will not be used, make sure to disable the interrupt source (SCU_INTDIS) and
clear any pending request flags (SCU_xIC.IR) before enabling interrupts in interrupt
controller.

JTAG_X.H001 JTAG Pin Routing

In the current device, the pins connected to the JTAG interface can be selected by
software (write to register DBGPRR). After a reset, the JTAG interface is connected to
position A (see Table 8). If connected to these pins, the debugger will work without any
restrictions.

To use other pins for the JTAG interface, the following sequence of steps must be
executed:
• TRST must be high at the rising edge of PORST. Usually debuggers provide that.
• Debuggers must be set to do a so called `hot attach`. This is connecting the

microcontroller without executing a reset.
• Execute a write to DBGPRR register with the desired selection of pins to be used with

one of the first instructions out of Flash.

Table 8 JTAG Position A
Pin
LQFP-100

Pin
LQFP-144

Symbol Signal

23 34 P5.2 TDI_A
6 8 P7.0 TDO_A
57 82 P2.9 TCK_A
28 39 P5.4 TMS_A
5 6 TRST TRST
Errata Sheet 49 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
• TCK_A must be stable on a valid low or high level until the change of the JTAG
interface was executed.

• A Halt after reset can be achieved by a program loop that is left by control through
the debugger.

Verify the correct operation of the sequence within the actual application.

LXBUS_X.H001 Do Not Access Reserved Locations on the LXBus

Some of the on-chip peripherals are connected via the LXBus. The EBC controls this
access by using CS7 to define the LXBus area.
The memory map lists several sections occupied by the on-chip LXBus peripherals
MultiCAN and the USIC modules.
The reserved sections within the address range 20’0000H ... 20’FFFFH shown in the
memory map are designated to additional peripherals for future derivatives. The sizes of
the reserved sections depend on the chosen device type.
These reserved sections must not be accessed by user software nor by debuggers.
Access to these sections may lead to a CPU lock situation caused by a bus lock and also
makes the software incompatible with other derivatives. The error mode can only be left
by a reset.

MultiCAN_AI.H005 TxD Pulse upon short disable request

If a CAN disable request is set and then canceled in a very short time (one bit time or
less) then a dominant transmit pulse may be generated by MultiCAN module, even if the
CAN bus is in the idle state.
Example for setup of the CAN disable request:
MCAN_KSCCFG.MODEN = 0 and then MCAN_KSCCFG.MODEN = 1
CAN_CLC.DISR = 1 and then CAN_CLC.DISR = 0
PMCON1.CAN_DIS = 1 and then PMCON1.CAN_DIS = 0

Workaround
Set all INIT bits to 1 before requesting module disable.
Errata Sheet 50 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
MultiCAN_AI.H006 Time stamp influenced by resynchronization

The time stamp measurement feature is not based on an absolute time measurement,
but on actual CAN bit times which are subject to the CAN resynchronization during CAN
bus operation.The time stamp value merely indicates the number of elapsed actual bit
times. Those actual bit times can be shorter or longer than nominal bit time length due
to the CAN resynchronization events.

Workaround
None.

MultiCAN_AI.H007 Alert Interrupt Behavior in case of Bus-Off

The MultiCAN module shows the following behavior in case of a bus-off status:

Figure 5 Alert Interrupt Behavior in case of Bus-Off

When the threshold for error warning (EWRN) is reached (default value of Error Warning
Level EWRN = 0x60), then the EWRN interrupt is issued. The bus-off (BOFF) status is
reached if TEC > 255 according to CAN specification, changing the MultiCAN module
with REC and TEC to the same value 0x1, setting the INIT bit to 1B, and issuing the
BOFF interrupt. The bus-off recovery phase starts automatically. Every time an idle time
is seen, REC is incremented. If REC = 0x60, a combined status EWRN+BOFF is
reached. The corresponding interrupt can also be seen as a pre-warning interrupt, that
the bus-off recovery phase will be finished soon. When the bus-off recovery phase has
finished (128 times idle time have been seen on the bus), EWRN and BOFF are cleared,
the ALERT interrupt bit is set and the INIT bit is still set.

MultiCAN_AI.H008 Effect of CANDIS on SUSACK

When a CAN node is disabled by setting bit NCR.CANDIS = 1B, the node waits for the
bus idle state and then sets bit NSR.SUSACK = 1B.

TEC=0x60 or
REC=0x60

EWRN

REC=0x1,
 TEC=0x1

BOFF
INIT

REC=0x60,
 TEC=0x1

EWRN+BOFF
INIT

REC=0x0,
 TEC=0x0

ALERT
INIT
Errata Sheet 51 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
However, SUSACK has no effect on applications, as its original intention is to have an
indication that the suspend mode of the node is reached during debugging.

MultiCAN_TC.H002 Double Synchronization of receive input

The MultiCAN module has a double synchronization stage on the CAN receive inputs.
This double synchronization delays the receive data by 2 module clock cycles. If the
MultiCAN is operating at a low module clock frequency and high CAN baudrate, this
delay may become significant and has to be taken into account when calculating the
overall physical delay on the CAN bus (transceiver delay etc.).

MultiCAN_TC.H003 Message may be discarded before transmission in
STT mode

If MOFCRn.STT=1 (Single Transmit Trial enabled), bit TXRQ is cleared (TXRQ=0) as
soon as the message object has been selected for transmission and, in case of error, no
retransmission takes places.
Therefore, if the error occurs between the selection for transmission and the real start of
frame transmission, the message is actually never sent.

Workaround
In case the transmission shall be guaranteed, it is not suitable to use the STT mode. In
this case, MOFCRn.STT shall be 0.

MultiCAN_TC.H004 Double remote request

Assume the following scenario: A first remote frame (dedicated to a message object) has
been received. It performs a transmit setup (TXRQ is set) with clearing NEWDAT.
MultiCAN starts to send the receiver message object (data frame), but loses arbitration
against a second remote request received by the same message object as the first one
(NEWDAT will be set).
When the appropriate message object (data frame) triggered by the first remote frame
wins the arbitration, it will be sent out and NEWDAT is not reset. This leads to an additional
data frame, that will be sent by this message object (clearing NEWDAT).
There will, however, not be more data frames than there are corresponding remote
requests.
Errata Sheet 52 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Figure 6 Loss of Arbitration

OCDS_X.H002 Suspend Mode Behavior for MultiCAN

The MultiCAN module basically provides two mechanisms to stop participation in CAN
bus communication when a suspend request is issued by the OCDS:
Suspend operation of selected CAN nodes
The sensitivity to a suspend request can be individually enabled/disabled for each CAN
node via bit SUSEN in its associated Node Control Register NCRx. With SUSEN = 1B,
upon a suspend request bit INIT is internally forced to 1B to disable the CAN node as
soon as it becomes BUS IDLE or BUS OFF. This way, a CAN node correctly finishes a
running CAN frame, but does not start a new one. The network is not blocked due to the
suspend state of one communication partner. All CAN registers can be read and written
in this state since the module clock is not switched off.

Notes
1. Depending on CAN activity and bus speed, the contents of some MultiCAN registers

may still change if the debugger immediately reads them before the CAN node has
reached BUS IDLE or BUS OFF state, i.e. before bit SUSACK = 1B.

2. Bit field SUMCFG in register KSCCFG for the MultiCAN module must be set to 00B
to avoid an immediate stop (see below).

Immediately stop operation of MultiCAN module
When bit field SUMCFG in register KSCCFG for the MultiCAN module is set to 1XB, the
clock for the MultiCAN module is switched off as soon as the suspend request from the
OCDS becomes active. As a consequence, the module immediately stops all CAN
activity (even within a running frame) and sets all transmit outputs to 1B (recessive state).
In this state, write accesses to the module in general, and read accesses to the CAN

re m o te
re q u e s t

d a ta
o b je c t

C A N B u s

M u ltiC A N s e tu p

c le a r
N E W D A T

d a ta
o b je c t

lo ss o f
a rb itra tio n

se tu p

s e t
N E W D A T

s e tu p d a ta
o b je c t

c le a r
N E W D A T

re m o te
re q u e s t

b y H W b y H W b y H W

d a ta d a ta

c le a r
Errata Sheet 53 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
RAM and most of the MultiCAN registers are no longer supported. A normal continuation
when the suspend mode is left may not always be possible and may require a reset (e.g.
depending on error counters).

PVC_X.H001 PVC Threshold Level 2

The Power Validation Circuits (PVCM, PVC1) compare the supply voltage of the
respective domain (DMP_M, DMP_1) with programmable levels (LEV1V and LEV2V in
register SCU_PVCMCON0 or SCU_PVC1CON0).
The default value of LEV1V is used to generate a reset request in the case of low core
voltage.
LEV2V can generate an interrupt request at a higher voltage, to be used as a warning.
Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and
the PVC levels, this interrupt can be triggered inadvertently, even though the core
voltage is within the normal range. It is, therefore, recommended not to use this warning
level.
LEV2V can be disabled by executing the following sequence:
1. Disable the PVC level threshold 2 interrupt request SCU_PVCMCON0.L2INTEN and

SCU_ PVC1CON0.L2INTEN.
2. Disable the PVC interrupt request flag source SCU_INTDIS.PVCMI2 and

SCU_INTDIS.PVC1I2.
3. Clear the PVC interrupt request flag source SCU_DMPMITCLR.PVCMI2 and SCU_

DMPMITCLR.PVC1I2.
4. Clear the PVC interrupt request flag by writing to SCU_INTCLR.PVCMI2 and

SCU_INTCLR.PVC1I2.
5. Clear the selected SCU request flag (default is SCU_1IC.IR).
The Power Validation Circuits (PVCM) compare the supply voltage of the respective
domain (DMP_M) with programmable levels (LEV1V and LEV2V in register
SCU_PVCMCON0).
The default value of LEV1V is used to generate a reset request in the case of low core
voltage.
LEV2V can generate an interrupt request at a higher voltage, to be used as a warning.
Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and
the PVC levels, this interrupt can be triggered inadvertently, even though the core
voltage is within the normal range. It is, therefore, recommended not to use this warning
level.
LEV2V can be disabled by executing the following sequence:
1. Disable the PVC level threshold 2 interrupt request SCU_PVCMCON0.L2INTEN.
2. Disable the PVC interrupt request flag source SCU_INTDIS.PVCMI2.
Errata Sheet 54 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
3. Clear the PVC interrupt request flag source SCU_DMPMITCLR.PVCMI2.
4. Clear the PVC interrupt request flag by writing to SCU_INTCLR.PVCMI2.
5. Clear the selected SCU request flag (default is SCU_1IC.IR).

RESET_X.H003 How to Trigger a PORST after an Internal Failure

There is no internal User Reset that restores the complete device including the power
system like a Power-On Reset. In some applications it is possible to connect ESR1 or
ESR2 with the PORST pin and set the used ESR pin as Reset output. With this a WDT
or Software Reset can trigger a Power-On Reset.
A detailed description is in the Application Note AP16103.

RTC_X.H003 Changing the RTC Configuration

The count input clock fRTC for the Real Time Clock module (RTC) can be selected via bit
field RTCCLKSEL in register RTCCLKCON. Whenever the system clock is less than 4
times faster than the RTC count input clock (fSYS < fRTC × 4), Asynchronous Mode must
be selected (bit RTCCM = 1B in register RTCCLKCON).
To assure data consistency in the count registers T14, RTCL, RTCH, the RTC module
must be temporarily switched off by setting bit MODEN = 0B in register RTC_KSCCFG
before register RTCCLKCON is modified, i.e. whenever
• changing the operating mode (Synchronous/Asynchronous) Mode in bit RTCCM, or
• changing the RTC count source in bit field RTCCLKSEL.
In case power domain DMP_1 is switched off, it is not required to switch the RTC to
Asynchronous Mode, since it will receive a reset in any case.

StartUp_X.H002 FCONCS0..FCONCS4 Registers are Always Configured in
External Start-Up Mode

The Start-Up procedure in External Start Mode writes all the FCONCSx (x=0..4) registers,
independently on the number of CS-outputs selected.This has no effect for the user
because for unused CS lines the Start-Up procedure configures only the external bus
type into the registers but does not enable the output(s) for CS-functionality and they are
free available.
Errata Sheet 55 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
USIC_AI.H001 FIFO RAM Parity Error Handling

A false RAM parity error may be signalled by the USIC module, which may optionally
lead to a trap request (if enabled) for the USIC RAM, under the following conditions:
• a receive FIFO buffer is configured for the USIC module, and
• after the last power-up, less data elements than configured in bit field SIZE have

been received in the FIFO buffer, and
• the last data element is read from the receiver buffer output register OUTRL (i.e. the

buffer is empty after this read access).
Once the number of received data elements is greater than or equal to the receive buffer
size configured in bit field SIZE, the effect described above can no longer occur.
To avoid false parity errors, it is recommended to initialize the USIC RAM before using
the receive buffer FIFO. This can be achieved by configuring a 64-entry transmit FIFO
and writing 64 times the value 0x0 to the FIFO input register IN00 to fill the whole FIFO
RAM with 0x0.

USIC_AI.H002 Configuration of USIC Port Pins

Setting up alternate output functions of USIC port pins through Pn.IOCRy registers
before enabling the USIC protocol (CCR.MODE = 0001B, 0010B, 0011B or 0100B) might
lead to unintended spikes on these port pins. To avoid the unintended spikes, either of
the following two sequences can be used to enable the protocol:
• Sequence 1:

– Write the initial output value to the port pin through Pn_OMR
– Enable the output driver for the general purpose output through Pn_IOCRx
– Enable USIC protocol through CCR.MODE
– Select the USIC alternate output function through Pn_IOCRx

• Sequence 2:
– Enable USIC protocol through CCR.MODE
– Enable the output driver for the USIC alternate output function through Pn_IOCRx

Similarly, after the protocol is established, switching off the USIC channel by reseting
CCR.MODE directly might cause undesired transitions on the output pin. The following
sequence is recommended:
• Write the passive output value to the port pin through Pn_OMR
• Enable the output driver for the general purpose output through Pn_IOCRx
• Disable USIC protocol through CCR.MODE
Errata Sheet 56 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
USIC_AI.H003 PSR.RXIDLE Cleared by Software

If PSR.RXIDLE is cleared by software, the USIC is not able to receive until the receive
line is detected IDLE again (see User’s Manual chapter Idle Time).
For UART based busses with higher traffic e.g. LIN it is possible that sometimes the next
frame starts sending before PSR.RXIDLE is set 1B by hardware again. This generates
an error.
A solution is, that the PSR.RXIDLE bit is not cleared in software.
Errata Sheet 57 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
5.4 Documentation Updates

EBC_X.D001 Visibility of Internal LXBus Cycles on External Address Bus

EBC chapter “Access Control to LXBus Modules” receives the following correction:
In the first paragraph the term “read mode” is replaced by “tri-state mode”.
The following is added:
Despite the above mentioned measures, accesses to internal LXBus modules are to
some extent reflected on the non-multiplexed address pins A[23:0] of the external bus.
1. During an internal LXBus access, the external address bus is tri-stated. The switch

to tri-state mode occurs in the same cycle as the internal LXBus access. This may
induce residual voltage which can lead to undefined logic levels on the address bus
pins. Those in turn can cause unwanted switching activity on attached device input
stages. Therefore attached devices should be equipped with an input hysteresis filter
to avoid unwanted switching activity.

2. After an internal LXBus access is completed the address of the location accessed
last on the LXBus becomes visible on the external address bus, unless an external
bus cycle immediately follows the LXBus cycle. Due to this behavior, switching
activity on the address bus can be observed even if no external access is active.

Note: A functional impact due to this behavior is not expected because external bus
control signals are held inactive during the internal LXBus access.

ID_X.D001 Identification Register

Additional “Identification Registers” chapter for the Data Sheet.

Table 9 Identification Registers
Short Name Value Address Notes
SCU_IDMANUF 1820H 00’F07EH

SCU_IDCHIP 2601H 00’F07CH

SCU_IDMEM 30BFH 00’F07AH

SCU_IDPROG 1313H 00’F078H

JTAG_ID 0010’A083H --- marking EES-AA
1010’A083H --- marking EES-AB, ES-AB, AB,

EES-AC, ES-AC or AC
Errata Sheet 58 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
RESET_X.D001 Reset Types of Trap Registers

The reset type of SCU registers TRAPDIS, TRAPSET and TRAPNP is an Application
Reset.
In the next revision of the user’s manual the reset type of this registers will be changed
from a Power-on Reset to an Application Reset.

SCU_X.D007 SCU Interrupts Enabled After Reset

Additional information to the “SCU Interrupt Generation” chapter of the User's Manual:
Following a reset, the SCU interrupts are enabled by default (register SCU_INTDIS =
0000H). This may lead to interrupt requests being triggered in the SCU immediately,
even before user software has begun to execute. In the SCU, multiple interrupt sources
are `ORed` to a common interrupt node of the CPU interrupt controller. Due to the
“ORing” of multiple interrupt sources, only one interrupt request to the interrupt controller
will be generated if multiple sources at the input of this OR gate are active at the same
time. If user software enables an interrupt in the interrupt controller (SCU_xIC) which
shares the same node as the SCU interrupt request active after reset, it may lead to the
effect of suppressing the intended interrupt source. So, for all SCU interrupt sources
which will not be used, make sure to disable the interrupt source (SCU_INTDIS) and
clear any pending request flags (SCU_xIC.IR) before enabling interrupts in interrupt
controller.

StartUp_X.D002 External Start-Up Mode Selection by Configuration Pins

In “Start-Up Mode Selection” section of chapter 10.1 of the user manual version 2.0 the
following table should updated (changes are marked red).

Table 10 Start-Up Mode Configuration
Start-Up Mode STSTAT.HWCFG Value1)

1) Bitfield HWCFG can be loaded from Port 10 or from bitfield SWCFG in register SWRSTCON.

Configuration Pins P10.[4:0]2)

2) x means that the level on the corresponding pin is irrelevant.

External Start 0000’0000B 0 x 0 0 0
Errata Sheet 59 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
USIC_X.D003 USIC0 Channel 1 Connection DX0D and DOUT

The connection for USIC0 channel 1 U0C1_DX0D to P2.3 and USIC0 channel 1
U0C1_DOUT to P2.4 are not available. These connections are erroneously listed in the
User’s Manual V2.1 and Data Sheet V2.1 tables “Pin Definitions and Functions”.

XTAL_X.D001 Input Voltage Amplitude VAX1 on XTAL1

In the Data Sheet section “External Clock Input Parameters” the following table and
figure should be updated (major changes are marked red).

Note: For crystal or ceramic resonator operation, it is strongly recommended to measure
the oscillation allowance (negative resistance) in the final target system (layout) to
determine the optimum parameters for oscillator operation.
The manufacturers of crystals and ceramic resonators offer an oscillator
evaluation service. This evaluation checks the crystal/resonator specification
limits to ensure a reliable oscillator operation.

Table 11 Start-Up Mode Configuration
Parameter Symbol Values Unit Note /

Test ConditionMin. Typ. Max.
Oscillator
frequency

fosc SR 4 - 40 MHz Input=Clock Signal
4 - 16 MHz Input=crystal or ceramic

resonator
Input voltage
amplitude on
XTAL1 1)

1) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the
operation and the resulting voltage peaks must remain within the limits defined by VIX1.

VAX1 SR 0.3 ×
VDDIM

- - V 4 to 16 MHz

0.4 ×
VDDIM

- - V 16 to 25 MHz

0.5 ×
VDDIM

- - V 25 to 40MHz
Errata Sheet 60 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Figure 7 External Clock Drive XTAL1
MC_EXTCLOCK

t1t2

tOSC = 1/fOSC

t3 t4

VOFF

VAX1

0.1 VAX1

0.9 VAX1
Errata Sheet 61 V1.6, 2014-10

w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG
03266AERRA

http://www.infineon.com

	1 History List / Change Summary
	2 General
	3 Current Documentation
	4 Short Errata Description
	4.1 Functional Deviations
	4.2 Deviations from Electrical and Timing Specification
	4.3 Application Hints
	4.4 Documentation Updates

	5 Detailed Errata Description
	5.1 Functional Deviations
	ADC_AI.001
	BROM_TC.006
	BSL_CAN_X.001
	BSL_X.004
	DPRAM_X.001
	EBC_X.007
	ESR_X.004
	FLASH_X.008
	GPT12E_X.001
	GPT12E_X.002
	GSC_X.001
	INT_X.007
	INT_X.008
	INT_X.009
	INT_X.010
	MultiCAN_AI.040
	MultiCAN_AI.041
	MultiCAN_AI.042
	MultiCAN_AI.043
	MultiCAN_AI.044
	MultiCAN_AI.045
	MultiCAN_AI.046
	MultiCAN_TC.025
	MultiCAN_TC.026
	MultiCAN_TC.027
	MultiCAN_TC.028
	MultiCAN_TC.029
	MultiCAN_TC.030
	MultiCAN_TC.031
	MultiCAN_TC.032
	MultiCAN_TC.035
	MultiCAN_TC.037
	MultiCAN_TC.038
	OCDS_X.003
	RESET_X.002
	RESET_X.003
	RESET_X.004
	RTC_X.003
	USIC_AI.003
	USIC_AI.004
	USIC_AI.005
	USIC_AI.016
	USIC_AI.018

	5.2 Deviations from Electrical- and Timing Specification
	SWD_X.P002

	5.3 Application Hints
	ADC_AI.H002
	CAPCOM12_X.H001
	CC6_X.H001
	GPT12_AI.H001
	GPT12E_X.H002
	INT_X.H002
	INT_X.H004
	JTAG_X.H001
	LXBUS_X.H001
	MultiCAN_AI.H005
	MultiCAN_AI.H006
	MultiCAN_AI.H007
	MultiCAN_AI.H008
	MultiCAN_TC.H002
	MultiCAN_TC.H003
	MultiCAN_TC.H004
	OCDS_X.H002
	PVC_X.H001
	RESET_X.H003
	RTC_X.H003
	StartUp_X.H002
	USIC_AI.H001
	USIC_AI.H002
	USIC_AI.H003

	5.4 Documentation Updates
	EBC_X.D001
	ID_X.D001
	RESET_X.D001
	SCU_X.D007
	StartUp_X.D002
	USIC_X.D003
	XTAL_X.D001

