Signal generator for RF energy solutions

Rev. 2 — 26 January 2018

1. General description

The product provides an all-in-one solution for the small signal generation in the RF energy solutions such as cooking and lighting markets.

The product facilitates RF energy design by:

- Allowing on-board integration
- · Providing flexibility in system solution development

2. Features and benefits

- Support from 2400 MHz to 2483.5 MHz, from 902 MHz to 928 MHz and from 433 MHz to 434.8 MHz ISM bands
- Single 3.3 V supply voltage
- SPI-bus interface up to 20 MHz
- Fully integrated LC-VCO operating in the range from 6.6 GHz to 10 GHz and used with a $\Sigma\Delta$ PLL to generate the frequency
- Very fast tuning and hopping time PLL
- High frequency daisy chaining allowing coherent excitation of multiple RF amplifier chains
- 360° phase shifter with 1.4° steps
- Medium Power Amplifier (MPA) delivering an output up to +27 dBm peak power (max. +24 dBm for continuous use)
- Low Power Amplifier (PPA) delivering an output up to +7 dBm
- Integrated 20 dB gain control
- Integrated RF switch allowing PWM control
- Temperature sensor indicates the junction temperature of the die
- RoHS compliant

3. Applications

- Solid-state cooking
- Solid-state lighting

4. Ordering information

Table 1. Ordering information								
Type number Package								
	Name	Description	Version					
BLP25RFE001	HVQFN28	plastic thermal enhanced very thin quad flat package; no leads; 28 terminals; body $5 \times 5 \times 0.85$ mm	SOT993-3					

5. Marking

Table 2.	Marking	codes
----------	---------	-------

Type number	Marking code
BLP25RFE001	E2501

6. **Block diagram**

AMPLEON

3 of 38

BLP25RFE001

Signal generator for RF energy solutions

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3. BLP25RFE001 pin description

Symbol	Pin	Description
SSN	1	SPI-bus: Slave Select Not (from master)
n.c.	2	not connected
CAPREG_VCO	3	VCO internal regulator filtering input
V _{DD(PLL)}	4	PLL supply voltage; 3.3 V
GND(PLL)	5	PLL ground
LO_IN_P	6	high frequency daisy chaining positive input
LO_IN_N	7	high frequency daisy chaining negative input
VT	8	VCO input voltage
СР	9	charge pump output
LO_OUT_P	10	high frequency daisy chaining positive output
LO_OUT_N	11	high frequency daisy chaining negative output
REF_CLK_IN	12	external reference clock input
i.c.	13	internally connected
i.c.	14	internally connected
n.c.	15	not connected
n.c.	16	not connected

Iable 3. BLP25RFE001 pin descriptioncontinued						
Symbol	Pin	Description				
V _{DD(RF)}	17	RF power supply; 3.3 V				
PPA_OUT_P	18	RF low-power positive output				
PPA_OUT_N	19	RF low-power negative output				
MPA_LP_OUT_P	20	RF Intermediate supply for high-power first stage MPA positive path				
MPA_LP_OUT_N	21	RF Intermediate supply for high-power first stage MPA negative path				
MPA_HP_OUT_P	22	medium-power RF amplifier positive output				
MPA_HP_OUT_N	23	medium-power RF amplifier negative output				
SWITCH	24	RF switch control				
GND(DIG)	25	digital ground				
MISO	26	SPI-bus: Master Input Slave Output				
MOSI	27	SPI-bus: Master Output Slave Input				
SCLK	28	SPI-bus: Serial Clock (from master)				
Exposed die pad	-	connect to RF ground				

Table 3. BLP25RFE001 pin description ...continued

8. Functional description

General purpose 4 wires SPI-bus with a dedicated integrated oscillator for the digital clock, enabling high-speed SPI-bus.

Very high frequency LC oscillator running at 4 × Fout for lowest pulling sensitivity.

Fractional-N PLL enabling 10 kHz steps at Fout with a very low PLL settling time.

ADC on Vtune for an easy estimation via SPI-bus of the PLL locking point.

High frequency daisy chaining operation enabling coherent frequencies to all the circuits in the application.

360° phase shifter with small and accurately controlled steps (1.4° typical).

Medium RF power output: up to +27 dBm peak power (max. +24 dBm for continuous use).

Low RF power output up to 7 dBm adjustable.

Integrated RF switch (dedicated control pin SWITCH) allowing PWM control of the RF outputs (MPA/PPA).

8.1 Medium Power Amplifier (MPA)

The medium power amplifier (MPA) consists of 3 cascaded gain stages. The last 2 stages have open collector which must be DC supplied through adequate reactive circuitry to optimize power and efficiency. The third stage is able to drive up to +27 dBm peak power (max. +24 dBm for continuous use) into 50 Ω . The output matching network is for impedance transformation (from 40 Ω to 50 Ω) and also acts as a low pass filter that attenuates harmonics.

8.2 Low-Power Amplifier (PPA)

The low power amplifier (PPA) consists of 2 cascaded gain stages. The last stage have open collector which must be DC supplied through adequate reactive circuitry to optimize power and efficiency. The third stage is able to drive up to 7 dBm into 50 Ω . The output matching network is for impedance transformation (from 200 Ω to 50 Ω) and also acts as a low pass filter that attenuates harmonics.

8.3 SPI-bus interface

- The SPI-bus protocol used on BLP25RFE001 IC is composed of:
 - 2 operand code bits (00: write, 01: read, 1x: reserved)
 - 6 address bits
 - 8 data bits
- A burst mode, in write and read mode, is implemented (an auto-increment of the address is used to manage this mode)
- The SPI-bus frequency up to 20 MHz
- MISO output pin is not tri-state and cannot be connected with an other BLP25RFE001 IC

8.3.1 SPI-bus write protocol burst mode

AMPLEON

Signal generator for RF energy solutions BLP25RFE001

8.3.2 SPI-bus read protocol burst mode

AMPLEON

Signal generator for RF energy solutions

Signal generator for RF energy solutions

8.3.3 SPI-bus write protocol 16 bits frame

8.3.4 SPI-bus read protocol 16 bits mode

8.3.5 SPI-bus timings

Table 4. SPI-bus timings specification

	.				
Symbol	Parameter	Conditions	Min	Max	Unit
T _{clk(SCLK)}	clock period on pin SCLK		50	-	ns
t _{su(MOSI)}	MOSI set-up time		12	-	ns
t _{h(MOSI)}	MOSI hold time		0	-	ns
t _{h(MISO)}	MISO hold time		-	0	ns
t _{h(SSN)}	SSN hold time		0	-	ns
t _{su(SSN)}	SSN set-up time		12	-	ns

8.4 Temperature sensor

The temperature sensor indicates the junction temperature of the die via SPI-bus interface. This feature has been implemented to provide an indicator for the soldering process. If the exposed die pad is not properly soldered, the thermal dissipation is affected, leading to a junction temperature increase.

The sensor provides the junction temperature in the range from 22 °C to 127 °C.

9. Control interface

9.1 Register table description

Table 5.Register table description

Table 5.	Register table description								
Address	Name		Bit						
(h)		7	6	5	4	3	2	1	0
00	ID_1		MAJOR_R	EV[3:0]			MIN	NOR_REV[3:0]	
01	POWER_STATUS_1	LO_Lock	LO_forced_lock			-			POR
02	VCO_LOG	-	ac	dc_vtune[2:0]				-	
04	LO_CALIB_1		-			LO_calib_	counter_1[5:0]	
05	LO_CALIB_2			l	_O_calib_cou	Inter_2[7:0]			
07	THERMO_1	-				TM_D [6:0]			
08	IRQ_status			-				VCO_Freq_End	-
09	IRQ_enable			-				VCO_Freq_Enable	-
0A	IRQ_clear		- VCO_Freq_Clear						-
0B	IRQ_set		- VCO_Freq_Set -						-
0C	THERMO_2		- TM_C						
0D	XT_OUT		- 0						
0E	XT_CAL_2	XT_In_Force	XT_Cal_Bypass	XT_cal_tin	ner [1:0]		XT_	Dac_Force [3:0]	
0F	POWER_DOWN_1	pd_lotest	pd_Synthe	pd_adc_vtune	pd_rf_mpa	pd_rf_ppa	1	pd_rf_tx	pd_lochain
10	POWER_DOWN_2			-			0	pd_daisy_out	pd_daisy_in
11	POWER_SAVING_MODE_1			-				1	0
12	RF_LO_DRIVER			-				0	1
13	DAISY_CHAIN_1		- lomux_to_ 0 1 1 daisy						0
14	RF_PHASE_SHIFTER_1	rf_load_capa[3:0] 0 1 1						0	
15	RF_PHASE_SHIFTER_2	rf_phase_selector[7:0]							
16	RF_PHASE_SHIFTER_3	-						0	1
19	RF_PPA_MPA_1		-			rf_mpa_	_power[5:0]	
1A	RF_PPA_MPA_2	-		0		rf_mpa_bias	_ctrl[1:0]	1	0
1B	LO_CHAIN	ckdiv2_reset	ckdiv2_start	ckdiv2_invert	PLL_Div2_ Highfreq		LoC	Chain_ratio[3:0]	

AMPLEON

BLP25RFE001 Signal generator for RF energy solutions

BLP25RFE001 Product data sheet

AMPLEON

Signal generator for RF energy solutions **BLP25RFE001**

Address	Name		Bit						
(h)		7	6	5	4	3	2	1	0
1C	SD_1				LO_Int	[7:0]			
1D	SD_2	-	- LO_Frac_2[6:0]						
1E	SD_3		LO_Frac_1[7:0]						
1F	СР	-	0 1 1				1	1	
20	SD_TEST	-	1		0			1	0
21	VCO	-	1	0	1	0	1	VCO_Selec	ct[1:0]
23	REG		-	0	1	0	1	0	1
28	POWERDOWN			-				force_soft_reset	Soft_reset
2B	PROGR_REG				-				Update_pro
2C	LAUNCH			-				fvco_max_Launch	-
3E	RESERVED_0						reserve	ed_0 [4:0]	
3F	RESERVED_1							reserved_1	I [1:0]

Signal generator for RF energy solutions

Table 6.ID_1 bit descriptions

Address	Register	Bit	Symbol	Access	Value (b)	Description
00	ID_1	7 to 4	MAJOR_REV[3:0]	R	0001	major revision of the IC
		3 to 0	MINOR_REV[3:0]	R	0000	minor revision of the IC

Table 7. POWER_STATUS_1 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
01	POWER_STATUS_1 7 LO_Lock R			PLL lock status indicator		
					0	PLL unlocked
					1	PLL locked
		6	LO_forced_lock	R		forces PLL Lock bit if not present after 5 ms
					0	LO_lock_force not triggered (LO_lock was present before 5 ms)
					1	LO_lock_force triggered (LO_lock was not present before 5 ms)
		0	POR	R		Power-On Reset
				0	the chip supply voltage did not fall below the POR threshold voltage since the previous read operation of this bit	
					1	the chip supply voltage felt below the POR threshold voltage (an HW reset has occurred). So the IC must be initialized before any further action. Reading this bit resets it

Table 8. VCO_LOG bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
02	VCO_LOG	6 to 4	adc_vtune[2:0]	R		output value of ADC connected to Vtune
					0	0 V to 0.33 V
					1	0.33 V to 0.45 V
					2	0.45 V to 0.58 V
					3	0.58 V to 1.05 V
					4	1.05 V to 1.62 V
					5	1.62 V to 1.84 V
					6	1.84 V to 2.1 V
					7	> 2.1 V

Table 9. LO_CALIB_1 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
04	LO_CALIB_1	5 to 0	LO_calib_counter_1[5:0]	R	[1]	current VCO frequency measurement result (MSB)

[1] VCO frequency measurement result (kHz) = $125 / 16 \times \text{decimal}(\text{LO}_\text{calib}_\text{counter}[13:0])$, with LO_calib_counter[13:0] = $2^8 \times \text{LO}_\text{calib}_\text{counter}_1[5:0] + \text{LO}_\text{calib}_\text{counter}_2[7:0]$.

Signal generator for RF energy solutions

Table 10. LO_CALIB_2 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
05	LO_CALIB_2	7 to 0	LO_calib_counter_2[7:0]	R	<u>[1]</u>	current VCO frequency measurement result (LSB)

[1] VCO frequency measurement result (kHz) = 125 / 16 × decimal(LO_calib_counter[13:0]), with LO_calib_counter[13:0] = 2⁸ × LO_calib_counter_1[5:0] + LO_calib_counter_2[7:0].

Table 11. THERMO_1 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
07	THERMO_1	6 to 0	TM_D[6:0]	R		junction temperature measurement
					[000 0000: 001 0101]	junction temperature < 22 °C
					[001 0110: 111 1110]	22 °C ≤ junction temperature = decimal(TM_DA[6:0]) < 127 °C
					111 1111	junction temperature \geq 127 °C

Table 12. IRQ_status bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
08	IRQ_status	1	VCO_Freq_End	R		VCO frequency measurement end IRQ

Table 13. IRQ_enable bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
09	IRQ_enable	1	VCO_Freq_Enable	RW		VCO frequency measurement IRQ enable

Table 14. IRQ_clear bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
0A	IRQ_clear	1	VCO_Freq_Clear	RW		VCO frequency measurement IRQ clear

Table 15. IRQ_set bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
0B	IRQ_set	1	VCO_Freq_Set	RW		VCO frequency measurement IRQ set

Table 16. THERMO_2 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
0C	THERMO_2	0	TM_ON	RW		temperature sensor ON or OFF
					0	disable the temperature sensor
					1	enable the temperature sensor

Signal generator for RF energy solutions

Xtal oscillator calibration timer selection

Xtal Osc Amplitude Control value

5.12 ms

10.24 ms

20.48 ms

40.96 ms

Address	Register	Bit	Symbol	Access	Value	Description
0E	XT_CAL_2	7	XT_In_Force	RW		Xtal oscillator Master/Slave mode
					0	Xtal Osc Master mode (forbidden)
					1	Xtal Osc Slave mode (External 16MHz signal to be provided)
		6	XT_Cal_Bypass	RW		allow bypass of the Xtal calibration value with XT_Dac_Force[3:0] from SPI-bus
					0	XT_Cal_Bypass OFF
					1	XT_Cal bypassed with XT_Dac_Force value

XT cal timer[1:0]

XT_Dac_Force[3:0]

Table 17. XT_CAL_2 bit descriptions

Table 18. POWER_DOWN_1 bit descriptions

5 to 4

3 to 0

Table 18.								
Address	Register	Bit	Symbol	Access	Value	Description		
0F	POWER_DOWN_1	7	pd_lotest	RW		LO test input buffer enable/disable		
					0	LO test buffer disabled		
					1	LO test buffer enabled		
		6	pd_Synthe	RW		PLL enable/disable (excluding LO Chain)		
					0	PLL disabled		
					1	PLL enabled		
	5	pd_adc_vtune	RW		enables/disables the ADC connected on Vtune			
					0	ADC Vtune disabled		
				1	ADC Vtune enabled			
	4	pd_rf_mpa	RW		MPA ON/OFF			
					0	MPA disabled		
					1	MPA enabled		
		3	pd_rf_ppa	RW		Pre PA ON/OFF		
					0	Pre PA disabled		
					1	Pre PA enabled		
		1	pd_rf_tx	RW		phase shifter ON/OFF		
					0	phase shifter disabled		
					1	phase shifter enabled		
		0	pd_lochain	RW		LOCHAIN ON/OFF		
					0	LO Chain disabled		
					1	LO Chain enabled		

RW

RW

0

1

2

3

[0:15]

Signal generator for RF energy solutions

Table 19. POWER_DOWN_2 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
10	POWER_DOWN_2	1	pd_daisy_out	RW		daisy chaining output buffer enable/disable
					0	daisy output buffer disabled
					1	daisy output buffer enabled
		0	pd_daisy_in	RW		daisy chaining input buffer enable/disable
					0	daisy input buffer disabled
					1	daisy input buffer enabled

Table 20. DAISY_CHAIN_1 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
13	DAISY_CHAIN_1	4	lomux_to_daisy	RW		allow LO signal to Daisy output buffer
					0	no signal to daisy output buffer
					1	allow LO to daisy output buffer

Table 21. RF_PHASE_SHIFTER_1 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
14	RF_PHASE_SHIFTER_1	7 to 4	rf_load_capa[7:4]	RW		RF phase shifter filtering capacitor
					1	ISM band from 2.4 GHz to 2.483 GHz
					5	ISM band from 902 MHz to 928 MHz
					10	ISM band from 433 MHz to 435 MHz

Table 22. RF_PHASE_SHIFTER_2 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
15	RF_PHASE_SHIFTER_2	7 to 0	rf_phase_selector[7:0]	RW		RF phase shifter control; from 0° to 360° with 1.4° step

[1] Do not set the values 0, 64, 128 and 192.

Table 23. RF_PPA_MPA_1 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
19	RF_PPA_MPA_1	5 to 0	rf_mpa_power[5:0]	RW		MPA/PPA output power control
					0	do not use
					from 1 to 62	[1]
					63	[2]/[3]

[1] See Figure 8.

[2] See <u>Table 37</u> for $P_{o(max)}$ in MPA.

[3] See <u>Table 37</u> for $P_{o(max)}$ in PPA.

Signal generator for RF energy solutions

Signal generator for RF energy solutions

Table 24. RF_PPA_MPA_2 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
1A	RF_PPA_MPA_2	3 to 2	rf_mpa_bias_ctrl[1:0]	RW		MPA first and second stage bias current control
					0	+27 dBm / 150 μA / 300 μA
					1	+27 dBm / 200 μA / 400 μA
					2	+27 dBm / 250 μA / 500 μA
					3	+21 dBm / 150 μA / 300 μA

Signal generator for RF energy solutions

Address	Register	Bit	Symbol	Access	Value	Description
1B	LO_CHAIN	7	ckdiv2_reset	RW		force reset of phase shifter div2 (used to synchronize Generator and Daisy)
					0	div2 running
					1	div2 output frozen
		6	ckdiv2_start	RW		allow clock to IQ div2. Used to synchronize Generator and Daisy
					0	no clock to IQ div2
					1	clock to IQ div2 allowed
		5	ckdiv2_invert	RW		phase selection of clock to IQ div2 (0°/180°). Used to synchronize Generator and Daisy.
					0	clock phase = 0°
					1	clock phase = 180°
		4	PLL_Div2_Highfreq	RW		PLL Div 2 HIGH frequency biasing current
					0	biasing to be used for ISM bands 433 MHz and 915 MHz
					1	biasing to be used for ISM band 2450 MHz
		3 to 0	LoChain_ratio[3:0]	RW		Lo divider ratio
					0	2 used for ISM band 2450 MHz
					1	do not use
					2	4 used for ISM band 915 MHz
					3	do not use
					4	do not use
					5	do not use
					6	do not use
					7	do not use
					8	8 used for ISM band 433 MHz
					9	do not use
					10	do not use
					11	do not use
					12	do not use
					13	do not use
					14	do not use
					15	daisy in

Table 25. LO_CHAIN bit descriptions

Table 26. SD_1 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
1C	SD_1	6 to 0	LO_Int[7:0]	RW	[0:255]	PLL integer part N

Signal generator for RF energy solutions

Table 27. SD_2 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
1D	SD_2	7 to 0	LO_Frac_2[7:0]	RW	[0:127]	PLL $\Sigma\Delta$ modulator byte 2 corresponds to K[15:8]

Table 28. SD_3 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
1E	SD_3	7 to 0	LO_Frac_1[7:0]	RW	[0:255]	PLL $\Sigma\Delta$ modulator byte 1 corresponds to K[22:9]

Table 29. CP bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
1F	СР	6	ICP_Force_Sink	RW		enable/disable charge-pump forced sinking current
					0	no action
					1	charge pump forced to sink current
	5	ICP_Force_Src	RW		enable/disable charge-pump forced sourcing current	
				0	no action	
					1	charge pump forced to source current
		4	cpleak0	RW		charge-pump offset current ON/OFF
					0	charge-pump offset current enabled
					1	charge-pump offset current disabled
		3	cpleak05	RW		proportional CP offset current
					0	10 % offset current
					1	5 % offset current

Table 30. VCO bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
21	VCO	1 to 0	VCO_Select[1:0]	RW		VCO selection
					0	all OFF
					1	forbidden
					2	VCO MID
					3	VCO HIGH

Table 31. RESERVED_0 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
3E	RESERVED_0	4 to 0	reserved_0[4:0]	RW	-	POR bit control

Table 32. RESERVED_1 bit descriptions

Address	Register	Bit	Symbol	Access	Value	Description
3E	RESERVED_1	4 to 0	reserved_1[1:0]	RW	-	page selection; default page = 0; page 1 used only for debug

10. Limiting values

Table 33. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.3	+3.6	V
VI	input voltage	V _{CC} < 3.3 V	-0.3	V _{CC} + 0.3	V
		V _{CC} > 3.3 V	-0.3	+3.6	V
T _{stg}	storage temperature		-40	+150	°C
Tj	junction temperature		-	105	°C
T _{amb}	ambient temperature		-20	+85 <mark>[1]</mark>	°C
V _{ESD}	electrostatic discharge voltage	EIA/JESD22-A114 (HBM)	-2	+2	kV
		EIA/JESD22-C101-C (FCDM) class III2	500	-	V

[1] The maximum allowed ambient temperature $T_{amb(max)}$ depends on the assembly conditions of the package and especially on the design of the Printed-Circuit Board (PCB) and die connection. The application mounting must be done in such a way that the maximum junction temperature is never exceeded. The junction temperature can be obtained by reading the temperature sensor bit via SPI-bus. The junction temperature: $T_j = T_{amb} + \Delta T_{j-c}$ where $\Delta T_{j-c} = power \times R_{th}$.

[2] Class III: > 500 V to 1000 V.

11. Thermal characteristics

Table 34. Thermal characteristics								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
R _{th(j-a)}	thermal resistance from junction to ambient		-	-	32.6	K/W		

12. Characteristics

Table 35. General characteristics								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{CC}	supply voltage		3.13	3.30	3.47	V		
I _{CC} supply current	supply current	at 27 dBm output power; daisy chaining output buffer ON	-	450	-	mA		
		with power amplifier OFF; V _{SWITCH} = 0 V	-	120	-	mA		
		in Standby mode	-	2.5	-	mA		

Table 36.Characteristics

 T_{amb} = 25 °C; V_{dd} = 3.3 V; for ISM bands: 433 MHz, 915 MHz and 2450 MHz; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
Digital levels	Digital levels (SPI-bus)							
f _{SPI_CLK(SCLK)}	SPI_CLK frequency on pin SCLK		-	-	20	MHz		
VIL	LOW-level input voltage		-	-	0.3V _{CC}	V		
V _{IH}	HIGH-level input voltage		0.7V _{CC}	-	-	V		

Table 36. Characteristics ...continued

T_{amb} = 25 ℃; V_{dd} = 3.3 V; for ISM bands: 433 MHz, 915 MHz and 2450 MHz; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL}	LOW-level output voltage		-	-	0.3V _{CC}	V
V _{OH}	HIGH-level output voltage		0.7V _{CC}	-	-	V
PLL						
f _{step}	step frequency		10	-	-	kHz
f _{clk(ref)}	reference clock frequency	external reference clock	-	16	-	MHz
V _{clk(ref)}	reference clock voltage	external reference clock	0.7V _{CC}	-	V _{CC}	V

Table 37. Characteristics

 T_{amb} = 25 °C; V_{dd} = 3.3 V; for ISM bands: 2450 MHz; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PLL	-					
f _{range}	frequency range		2400	-	2483.5	MHz
t _{set}	setting time		-	-	50	μs
t _{s(f)}	frequency settling time	from one frequency to another	-	5	10	μs
φ _n	phase noise	at 2483.5 MHz; at 100 kHz frequency offset	-	-87	-	dBc/Hz
Phase sh	ifter					
$\Delta \phi_{\text{step}}$	phase shift step		-	1.4	-	0
ΦRF	RF phase	[1	1 0	-	360	0
Εφ	phase error	absolute value step size error	0	0.5	1	0
		cumulative phase error	1 -	5	-	0
MPA						
P _{o(max)}	maximum output power		-	24	27	dBm
$\alpha_{sp(ob)}$	out-band spurious attenuation	consider second and third harmonics only	-	-30	-	dBc
P _{ob}	out-band power	integrated power outside the band of interest; $f_{VCO(max)} = f_{range}$ max – 1 MHz; $f_{VCO(min)} = f_{range}$ min + 1 MHz; rf mpa power[5:0] = 42	-	-45	-	dBc
P _{o(range)}	output power range			20		dB
	isolation	ON/OFF switch isolation	_	40	-	dB
t _{sw}	switching time	OFF/ON ramping transition	1 _	700	-	ns
Z _o	output impedance		-	40	-	Ω
PPA						
P _{o(max)}	maximum output power	rf_mpa_power[5:0] = 63	-	7	-	dBm
Po	output power	rf_mpa_power[5:0] = 42	-	5	-	dBm
P _{o(range)}	output power range		-	30	-	dB
Zo	output impedance		-	200	-	Ω

[1] Phase range = 360° (maximum phase φ_{RF} = 360° minus minimum phase φ_{RF} = 0°).

[2] See Figure 10.

[3] See Figure 11.

Table 38.Characteristics

 T_{amb} = 25 °C; V_{dd} = 3.3 V; for ISM bands: 915 MHz; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PLL						
f _{range}	frequency range		902	-	928	MHz
t _{set}	setting time		-	-	50	μs
t _{s(f)}	frequency settling time	from one frequency to another	-	5	10	μs
Phase sh	ifter		1			
$\Delta \phi_{step}$	phase shift step		-	1.4	-	٥
ΦRF	RF phase	[1]	0	-	360	٥
Εφ	phase error	absolute value step size error	0	0.5	1	0
		cumulative phase error [2]		5	-	0
MPA	-			I		
P _{o(max)}	maximum output power		-	24	27	dBm
P _{o(range)}	output power range		-	20	-	dB
α_{isol}	isolation	ON/OFF switch isolation	-	40	-	dB
t _{sw}	switching time	OFF/ON ramping [3] transition		700	-	ns
Zo	output impedance		-	40	-	Ω
PPA			-			
P _{o(max)}	maximum output power	rf_mpa_power[5:0] = 63	-	7	-	dBm
Po	output power	rf_mpa_power[5:0] = 42	-	5	-	dBm
P _{o(range)}	output power range		-	30	-	dB
Zo	output impedance		-	200	-	Ω

[1] Phase range = 360° (maximum phase φ_{RF} = 360° minus minimum phase φ_{RF} = 0°).

[2] See Figure 10.

[3] See Figure 11.

Table 39. Characteristics

T_{amb} = 25 °C; V_{dd} = 3.3 V; for ISM bands: 433 MHz; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PLL			L			
f _{range}	frequency range		433.0	-	434.8	MHz
t _{set}	setting time		-	-	50	μs
t _{s(f)}	frequency settling time	from one frequency to another	-	5	10	μS
MPA						
P _{o(max)}	maximum output power		-	24	27	dBm
P _{o(range)}	output power range		-	20	-	dB
α_{isol}	isolation	ON/OFF switch isolation	-	40	-	dB
t _{sw}	switching time	OFF/ON ramping transition	11 -	700	-	ns

Table 39. Characteristics ... continued

 T_{amb} = 25 °C; V_{dd} = 3.3 V; for ISM bands: 433 MHz; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Zo	output impedance		-	40	-	Ω
PPA						
P _{o(max)}	maximum output power	rf_mpa_power[5:0] = 63	-	7	-	dBm
Po	output power	rf_mpa_power[5:0] = 42	-	5	-	dBm
P _{o(range)}	output power range		-	30	-	dB
Zo	output impedance		-	200	-	Ω

[1] See Figure 11.

Signal generator for RF energy solutions

13. Application information

13.1 Application

Product data sheet

© Ampleon Netherlands B.V. 2018. All rights reserved.

Signal generator for RF energy solutions

13.2 Typical cooking application

Signal generator for RF energy solutions

13.3 Typical lighting application

Signal generator for RF energy solutions

14. Package outline

Fig 19. Package outline SOT993-3 (HVQFN28)

15. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow* soldering description".

15.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

15.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

15.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

15.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 20</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 40 and 41

Package thickness (mm)	Package reflow temperature (°C)				
	Volume (mm ³)				
	< 350	≥ 350			
< 2.5	235	220			
≥ 2.5	220	220			

Table 40. SnPb eutectic process (from J-STD-020D)

Table 41. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C) Volume (mm ³)			
	< 350	350 to 2000	> 2000	
< 1.6	260	260	260	
1.6 to 2.5	260	250	245	
> 2.5	250	245	245	

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 20.

Signal generator for RF energy solutions

For further information on temperature profiles, refer to Application Note *AN10365 "Surface mount reflow soldering description"*.

16. Abbreviations

Table 42. Abbreviations					
Acronym	Description				
BOM	Bill Of Material				
FCDM	Field-induced Charge Device Model				
IC	Integrated Circuit				
ISM	Industrial Scientific Medical				
LC-VCO	Inductors and Capacitors - Voltage Controlled Oscillator				
LO	Local Oscillator				
LSB	Least Significant Bit				
MainDiv	Main Divider				
MPA	Medium Power Amplifier				
MSB	Most Significant Bit				
MSL	Moisture Sensibility Level				
PA	Power Amplifier				
PCB	Printed-Circuit Board				
PFD	Phase Frequency Detector				
PLL	Phase-Locked Loop				
PPA	Pre-Power Amplifier				
PWM	Pulse Width Modulation				
RoHS	Restriction of Hazardous Substances				

17. Revision history

Table 43. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
BLP25RFE001 v.2	20180126	Product data sheet	-	BLP25RFE001 v.1.0		
Modifications:	Section 2 on	page 1: changed text of list iter	m 8			
	Section 8 on	page <u>5</u> : changed text of paragr	raph 7			
	Section 8.1 or	<u>n page 5</u> : changed text of third	sentence			
	• Table 37 on p	age 22: changed values of ma	ximum output powe	r MPA		
	• Table 38 on p	age 23: changed values of ma	ximum output powe	r MPA		
	 <u>Table 39 on page 23</u>: changed values of maximum output power MPA 					
BLP25RFE001 v.1.0	20180109	Product data sheet	-	-		

18. Legal information

18.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.ampleon.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Ampleon sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Ampleon and its customer, unless Ampleon and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Ampleon product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Ampleon does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Ampleon takes no responsibility for the content in this document if provided by an information source outside of Ampleon.

In no event shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Ampleon.

Right to make changes — Ampleon reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Ampleon and its suppliers accept no liability for inclusion and/or use of Ampleon products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Ampleon does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer's third party customer's third party customer's application and the products or of the application or use by customer's third party customer(s). Ampleon does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Ampleon products are sold subject to the general terms and conditions of commercial sale, as published at http://www.ampleon.com/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Ampleon hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Ampleon products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Ampleon product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Ampleon accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Ampleon's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Ampleon's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Ampleon for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Ampleon's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Any reference or use of any 'NXP' trademark in this document or in or on the surface of Ampleon products does not result in any claim, liability or entitlement vis-à-vis the owner of this trademark. Ampleon is no longer part of the NXP group of companies and any reference to or use of the 'NXP' trademarks will be replaced by reference to or use of Ampleon's own trademarks.

19. Contact information

For more information, please visit: http://www.ampleon.com

For sales office addresses, please visit: http://www.ampleon.com/sales

Signal generator for RF energy solutions

20. Tables

Table 1.	Ordering information2
Table 2.	Marking codes
Table 3.	BLP25RFE001 pin description4
Table 4.	SPI-bus timings specification10
Table 5.	Register table description11
Table 6.	ID_1 bit descriptions13
Table 7.	POWER_STATUS_1 bit descriptions13
Table 8.	VCO_LOG bit descriptions
Table 9.	LO_CALIB_1 bit descriptions13
Table 10.	LO_CALIB_2 bit descriptions14
Table 11.	THERMO_1 bit descriptions14
	IRQ_status bit descriptions14
	IRQ_enable bit descriptions14
Table 14.	IRQ_clear bit descriptions14
	IRQ_set bit descriptions14
	THERMO_2 bit descriptions14
	XT_CAL_2 bit descriptions15
	POWER_DOWN_1 bit descriptions15
	POWER_DOWN_2 bit descriptions16
	DAISY_CHAIN_1 bit descriptions16
	RF_PHASE_SHIFTER_1 bit descriptions16
Table 22.	RF_PHASE_SHIFTER_2 bit descriptions16

21. Figures

Fig 1.	Block diagram
Fig 2.	Pin configuration4
Fig 3.	SPI-bus write protocol burst mode7
Fig 4.	SPI-bus read protocol burst mode
Fig 5.	SPI-bus write protocol 16 bits frame9
Fig 6.	SPI-bus read protocol 16 bits mode9
Fig 7.	SPI-bus timing diagram10
Fig 8.	MPA output power at 2.4 GHz (typical)17
Fig 9.	MPA output power at 915 MHz (typical) 17
Fig 10.	Phase error definition
Fig 11.	MPA power on settling
Fig 12.	Application
Fig 13.	Balun MPA 2.4 GHz ISM band26
Fig 14.	Balun MPA 915 MHz ISM band27
Fig 15.	Balun PPA 2.4 GHz ISM band27
Fig 16.	Balun PPA 915 MHz ISM band27
Fig 17.	Typical cooking application
Fig 18.	Typical lighting application
Fig 19.	Package outline SOT993-3 (HVQFN28)30
Fig 20.	Temperature profiles for large and small
-	components

	RF_PPA_MPA_1 bit descriptions	
	RF_PPA_MPA_2 bit descriptions	
Table 25.	LO_CHAIN bit descriptions	19
Table 26.	SD_1 bit descriptions	19
Table 27.	SD_2 bit descriptions	20
Table 28.	SD_3 bit descriptions	20
Table 29.	CP bit descriptions	20
	VCO bit descriptions	
	RESERVED_0 bit descriptions	
Table 32.	RESERVED_1 bit descriptions	20
Table 33.	Limiting values	21
Table 34.	Thermal characteristics	21
Table 35.	General characteristics	21
Table 36.	Characteristics	21
Table 37.	Characteristics	22
Table 38.	Characteristics	23
Table 39.	Characteristics	23
Table 40.	SnPb eutectic process (from J-STD-020D).	32
Table 41.	Lead-free process (from J-STD-020D)	32
	Abbreviations	
	Revision history	

Signal generator for RF energy solutions

22. Contents

1	General description	. 1
2	Features and benefits	. 1
3	Applications	. 1
4	Ordering information	
5	Marking	
6	Block diagram	. 3
7	Pinning information	. 4
7.1	Pinning	
7.2	Pin description	
8	Functional description	. 5
8.1	Medium Power Amplifier (MPA)	
8.2	Low-Power Amplifier (PPA).	
8.3	SPI-bus interface	
8.3.1	SPI-bus write protocol burst mode	
8.3.2 8.3.3	SPI-bus read protocol burst mode SPI-bus write protocol 16 bits frame	
8.3.4	SPI-bus read protocol 16 bits mathe	
8.3.5	SPI-bus timings	
8.4	Temperature sensor	10
9	Control interface	11
9.1	Register table description	11
10	Limiting values	21
11	Thermal characteristics	
12	Characteristics	
13	Application information.	26
13.1	Application	
13.2	Typical cooking application	
13.3	Typical lighting application	29
14	Package outline	30
15	Soldering of SMD packages	31
15.1	Introduction to soldering	31
15.2	Wave and reflow soldering	
15.3	Wave soldering	
15.4	Reflow soldering	
16	Abbreviations	
17	Revision history	
18	Legal information	
18.1	Data sheet status	35
18.2	Definitions	35
18.3 18.4	Disclaimers	35 36
	Trademarks	
19	Contact information	36
20	Tables	37
21	Figures	37

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Ampleon Netherlands B.V. 2018.

For more information, please visit: http://www.ampleon.com For sales office addresses, please visit: http://www.ampleon.com/sales

Date of release: 26 January 2018 Document identifier: BLP25RFE001

All rights reserved.