Octal inverting buffer with 30 Ω series termination resistors; 3-state

Rev. 04 — 17 January 2005

Product data sheet

1. General description

The 74ABT2240 high performance BiCMOS device combines low static and dynamic power dissipation with high speed.

The 74ABT2240 device is an octal inverting buffer that is ideal for driving bus lines. The device features two output enable inputs ($1\overline{OE}$ and $2\overline{OE}$), each controlling four of the 3-state outputs.

The 74ABT2240 is designed with 30 Ω series resistance in both the HIGH and LOW states of the output. This design reduces line noise in applications such as memory address drivers, clock drivers and bus receivers/transmitters.

The 74ABT2240 is the same as the 74ABT240. The part number has been changed to reflect industry standards.

2. Features

- Octal bus interface
- 3-state buffers
- Live insertion and extraction permitted
- Outputs include series resistance of 30 Ω, making external termination resistors unnecessary
- Output capability: +12 mA and –32 mA
- Latch-up protection:
 - JESD78: exceeds 500 mA
- ESD protection:
 - MIL STD 883 method 3015: exceeds 2000 V
 - Machine model: exceeds 200 V
- Power-up 3-state
- Same part as 74ABT240

Octal inverting buffer with 30 Ω series termination resistors; 3-state

3. Quick reference data

Table 1: <i>GND = 0</i>	Quick reference data <i>V;</i> $T_{amb} = 25 ^{\circ}C$.					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PLH}	propagation delay nAn to $n\overline{Y}n$	C_L = 50 pF; V_{CC} = 5 V	-	2.8	-	ns
t _{PHL}	propagation delay nAn to $n\overline{Y}n$	$C_L = 50 \text{ pF}; V_{CC} = 5 \text{ V}$	-	4.3	-	ns
CI	input capacitance	$V_I = 0 V \text{ or } V_{CC}$	-	3	-	pF
Co	output capacitance	outputs disabled; $V_O = 0 V \text{ or } V_{CC}$	-	7	-	рF
I _{CC}	quiescent supply current	outputs 3-state; V _{CC} = 5 V	-	50	-	μA

4. Ordering information

Table 2: **Ordering information** Type number Package Temperature range Description Name Version -40 °C to +85 °C 74ABT2240N DIP20 plastic dual in-line package; 20 leads (300 mil) SOT146-1 74ABT2240D -40 °C to +85 °C S020 plastic small outline package; 20 leads; body width SOT163-1 7.5 mm 74ABT2240PW -40 °C to +85 °C TSSOP20 plastic thin shrink small outline package; 20 leads; SOT360-1 body width 4.4 mm

Octal inverting buffer with 30 Ω series termination resistors; 3-state

5. Functional diagram

Octal inverting buffer with 30 Ω series termination resistors; 3-state

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3:	Pin description	
Symbol	Pin	Description
1 0E	1	outputs 1 enable control input
1A0	2	data input
2 <u>7</u> 0	3	data output
1A1	4	data input
2 <u>7</u> 1	5	data output
1A2	6	data input
2¥2	7	data output
1A3	8	data input
2 7 3	9	data output
GND	10	ground (0 V)
2A3	11	data input
1 7 3	12	data output
2A2	13	data input
1 <u>7</u> 2	14	data output
2A1	15	data input
1 <u></u> ₹1	16	data output
2A0	17	data input

Philips Semiconductors

Octal inverting buffer with 30 Ω series termination resistors; 3-state

Table 3:	Pin descriptioncontinued		
Symbol	Pin	Description	
1 <u>7</u> 0	18	data output	
2 <mark>0E</mark>	19	outputs 2 enable control input	
V _{CC}	20	supply voltage	

7. Functional description

7.1 Function table

Table 4: Function table [1]

Control input	Input	Output
nOE	nAn	nYn
L	L	Н
L	Н	L
Н	Х	Z

[1] H = HIGH voltage;

L = LOW voltage;

X = don't care;

Z = high-impedance OFF-state.

Octal inverting buffer with 30 Ω series termination resistors; 3-state

8. Limiting values

Table 5: In accorda	ble 5: Limiting values accordance with the Absolute Maximum Rating System (IEC 60134).							
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CC}	supply voltage		-0.5	+7.0	V			
VI	input voltage		[<u>1]</u> –1.2	+7.0	V			
Vo	output voltage	output in OFF-state or HIGH-state	<u>[1]</u> –0.5	+5.5	V			
I _{IK}	input diode current	V ₁ < 0 V	-18	-	mA			
I _{OK}	output diode current	V _O < 0 V	-50	-	mA			
lo	output current	output in LOW-state	-	128	mA			
Tj	junction temperature		[2] _	150	°C			
T _{stg}	storage temperature		-65	+150	°C			

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

9. Recommended operating conditions

Table 6:	Recommended operating conditions					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		4.5	-	5.5	V
VI	input voltage		0	-	V _{CC}	V
V _{IH}	HIGH-level input voltage		2.0	-	-	V
V _{IL}	LOW-level input voltage		-	-	0.8	V
I _{OH}	HIGH-level output current		-	-	-32	mA
I _{OL}	LOW-level output current		-	-	12	mA
$\Delta t / \Delta V$	input transition rise or fall rate		0	-	10	ns/V
T _{amb}	ambient temperature	in free air	-40	-	+85	°C

9397 750 14414 Product data sheet

Octal inverting buffer with 30 Ω series termination resistors; 3-state

10. Static characteristics

Table 7: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					
V _{IK}	input diode voltage	$V_{CC} = 4.5 \text{ V}; I_{IK} = -18 \text{ mA}$	-	-0.9	-1.2	V
V _{OH}	HIGH-level output voltage	V_{CC} = 4.5 V; V_{I} = V_{IL} or V_{IH}				
		$I_{OH} = -3 \text{ mA}$	2.5	2.9	-	V
		$I_{OH} = -32 \text{ mA}$	2.0	2.4	-	V
		V_{CC} = 5.0 V; V_{I} = V_{IL} or V_{IH}				
		$I_{OH} = -3 \text{ mA}$	3.0	3.4	-	V
V _{OL}	LOW-level output voltage	V_{CC} = 4.5 V; V_{I} = V_{IL} or V_{IH}				
		I _{OL} = 5 mA	-	0.32	0.55	V
		I _{OL} = 12 mA	-	-	0.8	V
LI	input leakage current	V_{CC} = 5.5 V; V_{I} = GND or 5.5 V	-	±0.01	±1.0	μA
I _{OFF}	power-off leakage current	$V_{CC} = 0 \text{ V}; \text{ V}_{O} \text{ or } \text{ V}_{I} \text{ 4.5 V}$	-	±5.0	±100	μA
I _{PU} , I _{PD}	power-up or power-down down 3-state output current	V_{CC} = 2.1 V; V_{O} = 0.5 V; V_{I} = GND or $V_{CC};$ V_{nOE} = don't care	<u>[1]</u> -	±5.0	±50	μA
I _{OZ}	3-state output current	V_{CC} = 5.5 V; V_{I} = V_{IL} or V_{IH}				
		output HIGH-state at $V_0 = 2.7 V$	-	0.01	50	μΑ
		output LOW-state at $V_0 = 0.5 V$	-	-0.01	-50	μΑ
I _{CEX}	output HIGH-state leakage current	V_{CC} = 5.5 V; V_{O} = 5.5 V; V_{I} = GND or V_{CC}	-	5.0	50	μA
lo	output current	$V_{CC} = 5.5 \text{ V}; V_{O} = 2.5 \text{ V}$	<u>[2]</u> –50	-100	-180	mA
lcc	quiescent supply current	V_{CC} = 5.5 V; V_I = GND or V_{CC}				
		outputs HIGH-state	-	50	250	μA
		outputs LOW-state	-	24	30	mA
		outputs 3-state	-	50	250	μA
Δl _{CC}	additional supply current					
	per data input pin	one data input at 3.4 V and other inputs at V_{CC} or GND; V_{CC} = 5.5 V	<u>[3]</u>			
		outputs enabled	-	0.5	1.5	mA
		outputs 3-state	-	0.5	1.5	mA
	per enable input pin	one enable input at 3.4 V and other inputs at V_{CC} or GND; V_{CC} = 5.5 V	<u>[3]</u>			
		outputs 3-state	-	0.5	1.5	mΑ
Cı	input capacitance	$V_I = 0 V \text{ or } V_{CC}$	-	3	-	pF
Co	output capacitance	outputs disabled; $V_O = 0 V \text{ or } V_{CC}$	-	7	-	pF

74ABT2240

Octal inverting buffer with 30 Ω series termination resistors; 3-state

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C						
V _{IK}	input diode voltage	$V_{CC} = 4.5 \text{ V}; \text{ I}_{IK} = -18 \text{ mA}$		-	-	-1.2	V
V _{он}	HIGH-level output voltage	V_{CC} = 4.5 V; V_{I} = V_{IL} or V_{IH}					
		$I_{OH} = -3 \text{ mA}$		2.5	-	-	V
		I _{OH} = -32 mA		2.0	-	-	V
		$V_{CC} = 5.0 \text{ V}; \text{ V}_{I} = V_{IL} \text{ or } V_{IH}$					
		$I_{OH} = -3 \text{ mA}$		3.0	-	-	V
/ _{OL}	LOW-level output voltage	V_{CC} = 4.5 V; V_{I} = V_{IL} or V_{IH}					
		I _{OL} = 5 mA		-	-	0.55	V
		I _{OL} = 12 mA		-	-	0.8	V
LI	input leakage current	V_{CC} = 5.5 V; V _I = GND or 5.5 V		-	-	±1.0	μΑ
OFF	power-off leakage current	V_{CC} = 0.0 V; V_{O} or $V_{I} \le 4.5$ V		-	-	±100	μΑ
_{PU} , I _{PD}	power-up or power-down down 3-state output current	V_{CC} = 2.1 V; V_{O} = 0.5 V; V_{I} = GND or $V_{CC};$ V_{nOE} = don't care	<u>[1]</u>	-	-	±50	μA
I _{OZ}	3-state output current	V_{CC} = 5.5 V; V_I = V_{IL} or V_{IH}					
		output HIGH-state at $V_0 = 2.7 V$		-	-	50	μΑ
		output LOW-state at $V_0 = 0.5 V$		-	-	-50	μΑ
CEX	output HIGH-state leakage current	V_{CC} = 5.5 V; V_{O} = 5.5 V; V_{I} = GND or V_{CC}		-	-	50	μA
0	output current	$V_{CC} = 5.5 \text{ V}; V_{O} = 2.5 \text{ V}$	[2]	-50	-	-180	mΑ
CC	quiescent supply current	V_{CC} = 5.5 V; V_{I} = GND or V_{CC}					
		outputs HIGH-state		-	-	250	μΑ
		outputs LOW-state		-	-	30	mΑ
		outputs 3-state		-	-	250	μΑ
VI _{CC}	additional supply current						
	per data input pin	one data input at 3.4 V and other inputs at V_{CC} or GND; V_{CC} = 5.5 V	[3]				
		outputs enabled		-	-	1.5	mA
		outputs 3-state		-	-	1.5	mA
	per enable input pin one enable input at 3.4 V and other inputs at V_{CC} or GND; $V_{CC} = 5.5$ V						
		outputs 3-state		-	-	1.5	mA

Static characteristics ... continued Table 7:

[1] This parameter is valid for any V_{CC} between 0 V and 2.1 V, with a transition time of up to 10 ms. From V_{CC} = 2.1 V to V_{CC} = 5 V \pm 10 % a transition time of up to 100 µs is permitted.

[2] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[3] This is the increase in supply current for each input at 3.4 V.

Octal inverting buffer with 30 Ω series termination resistors; 3-state

11. Dynamic characteristics

Table 8: Dynamic characteristics

GND = 0 V; $t_r = t_f = 2.5 \text{ ns}$; $C_L = 50 \text{ pF}$, $R_L = 500 \Omega$; for test circuit see Figure 7.

Parameter	Conditions	Min	Тур	Max	Unit				
T _{amb} = 25 °C									
propagation delay nAn to $\overline{nY}n$	V _{CC} = 5 V; see <u>Figure 5</u>	1.0	2.8	4.0	ns				
propagation delay nAn to $\overline{nY}n$	$V_{CC} = 5 V$; see <u>Figure 5</u>	3.0	4.3	5.8	ns				
output enable time to HIGH-level	V _{CC} = 5 V; see <u>Figure 6</u>	1.5	3.4	4.7	ns				
output enable time to LOW-level	V _{CC} = 5 V; see <u>Figure 6</u>	3.5	5.5	7.6	ns				
output disable time from HIGH-level	V _{CC} = 5 V; see <u>Figure 6</u>	1.9	4.1	5.0	ns				
output disable time from LOW-level	V _{CC} = 5 V; see <u>Figure 6</u>	2.5	3.4	5.8	ns				
40 °C to +85 °C									
propagation delay nAn to $n\overline{Y}n$	V_{CC} = 5 V ± 0.5 V; see Figure 5	1.0	-	4.9	ns				
propagation delay nAn to $n\overline{Y}n$	V_{CC} = 5 V ± 0.5 V; see Figure 5	3.0	-	6.0	ns				
output enable time to HIGH-level	V_{CC} = 5 V ± 0.5 V; see Figure 6	1.5	-	5.8	ns				
output enable time to LOW-level	V_{CC} = 5 V ± 0.5 V; see Figure 6	3.5	-	8.4	ns				
output disable time from HIGH-level	V_{CC} = 5 V ± 0.5 V; see Figure 6	1.9	-	5.6	ns				
output disable time from LOW-level	V_{CC} = 5 V ± 0.5 V; see Figure 6	2.5	-	6.4	ns				
	5 °C propagation delay nAn to nYn propagation delay nAn to nYn output enable time to HIGH-level output disable time from HIGH-level output disable time from LOW-level 40 °C to +85 °C propagation delay nAn to nYn propagation delay nAn to nYn output enable time to HIGH-level output disable time from HIGH-level output disable time from HIGH-level	5 °Cpropagation delay nAn to \overline{nYn} $V_{CC} = 5 V$; see Figure 5propagation delay nAn to \overline{nYn} $V_{CC} = 5 V$; see Figure 5output enable time to HIGH-level $V_{CC} = 5 V$; see Figure 6output enable time to LOW-level $V_{CC} = 5 V$; see Figure 6output disable time from HIGH-level $V_{CC} = 5 V$; see Figure 6output disable time from LOW-level $V_{CC} = 5 V$; see Figure 6 $40 °C to +85 °C$ $V_{CC} = 5 V \pm 0.5 V$; see Figure 5propagation delay nAn to $n\overline{Yn}$ $V_{CC} = 5 V \pm 0.5 V$; see Figure 5output enable time to HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 6output enable time to HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 6output disable time from HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 6output disable time from HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 6	5 °Cpropagation delay nAn to \overline{nYn} $V_{CC} = 5 V$; see Figure 51.0propagation delay nAn to \overline{nYn} $V_{CC} = 5 V$; see Figure 53.0output enable time to HIGH-level $V_{CC} = 5 V$; see Figure 61.5output enable time to LOW-level $V_{CC} = 5 V$; see Figure 63.5output disable time from HIGH-level $V_{CC} = 5 V$; see Figure 61.9output disable time from LOW-level $V_{CC} = 5 V$; see Figure 62.540 °C to +85 °C $V_{CC} = 5 V \pm 0.5 V$; see Figure 51.0propagation delay nAn to $n\overline{Yn}$ $V_{CC} = 5 V \pm 0.5 V$; see Figure 53.0output enable time to HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 61.5output enable time to HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 63.5output enable time to HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 61.5output disable time to HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 63.5output disable time to HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 61.5output disable time to LOW-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 63.5output disable time from HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 63.5	5 °Cpropagation delay nAn to \overline{nYn} $V_{CC} = 5 V$; see Figure 51.02.8propagation delay nAn to \overline{nYn} $V_{CC} = 5 V$; see Figure 53.04.3output enable time to HIGH-level $V_{CC} = 5 V$; see Figure 61.53.4output enable time to LOW-level $V_{CC} = 5 V$; see Figure 63.55.5output disable time from HIGH-level $V_{CC} = 5 V$; see Figure 61.94.1output disable time from LOW-level $V_{CC} = 5 V$; see Figure 62.53.4 40 °C to +85 °C $V_{CC} = 5 V \pm 0.5 V$; see Figure 51.0-propagation delay nAn to $n\overline{Yn}$ $V_{CC} = 5 V \pm 0.5 V$; see Figure 53.0-output enable time to HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 61.5-output enable time to LOW-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 61.5-output enable time to HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 61.5-output enable time to LOW-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 63.5-output enable time to LOW-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 63.5-output disable time from HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 63.5-output disable time from HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 63.5-	5 °Cpropagation delay nAn to \overline{nYn} $V_{CC} = 5 V$; see Figure 51.02.84.0propagation delay nAn to \overline{nYn} $V_{CC} = 5 V$; see Figure 53.04.35.8output enable time to HIGH-level $V_{CC} = 5 V$; see Figure 61.53.44.7output enable time to LOW-level $V_{CC} = 5 V$; see Figure 63.55.57.6output disable time from HIGH-level $V_{CC} = 5 V$; see Figure 61.94.15.0output disable time from LOW-level $V_{CC} = 5 V$; see Figure 62.53.45.8 40 °C to +85 °C vpropagation delay nAn to \overline{nYn} $V_{CC} = 5 V \pm 0.5 V$; see Figure 51.0-4.9propagation delay nAn to \overline{nYn} $V_{CC} = 5 V \pm 0.5 V$; see Figure 61.5-5.8output enable time to HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 61.5-5.8output enable time to HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 61.5-5.8output enable time to LOW-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 61.5-5.8output enable time to LOW-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 63.5-8.4output disable time from HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 63.5-8.4output disable time from HIGH-level $V_{CC} = 5 V \pm 0.5 V$; see Figure 61.9-5.6				

12. Waveforms

74ABT2240

Octal inverting buffer with 30 Ω series termination resistors; 3-state

Table 9: Test data

Input		Load		V _{EXT}		
VI	t _r , t _f	CL	RL	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}
3 V	2.5 ns	50 pF	500 Ω	open	7 V	open

Octal inverting buffer with 30 Ω series termination resistors; 3-state

13. Package outline

Fig 8. Package outline SOT146-1 (DIP20)

Octal inverting buffer with 30 Ω series termination resistors; 3-state

Fig 9. Package outline SOT163-1 (SO20)

Octal inverting buffer with 30 Ω series termination resistors; 3-state

Fig 10. Package outline SOT360-1 (TSSOP20)

Octal inverting buffer with 30 Ω series termination resistors; 3-state

14. Revision history

Table 10: Rev	vision histor	у				
Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes	
74ABT2240_4	20050117	Product data sheet	-	9397 750 14414	74ABT2240_3	
 Modifications: The format of this data sheet has been redesigned to comply with the new presentation and information standard of Philips Semiconductors. Section 2 "Features": modified 'JEDEC Std. 17' into 'JESD78'. Table 8 "Dynamic characteristics": changed min value of t_{PZL} from 4.2 ns into 3.5 ns for both conditions V_{CC} = 5.0 V at T_{amb} = 25 °C and V_{CC} = 5.0 V ± 0.5 V at T_{amb} = -40 °C to +85 °C. 						
74ABT2240_3	20030425	Product specification	ECN 853-1626 29854	9397 750 11431	74ABT2240_2	
74ABT2240_2	19980116	Product specification	ECN 853-1626 18865	9397 750 03463	74ABT2240_1	
74ABT2240_1	19961008	Product specification	-	-	-	

Octal inverting buffer with 30 Ω series termination resistors; 3-state

15. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

74ABT2240

Octal inverting buffer with 30 Ω series termination resistors; 3-state

19. Contents

1	General description 1
2	Features 1
3	Quick reference data 2
4	Ordering information 2
5	Functional diagram 3
6	Pinning information 4
6.1	Pinning 4
6.2	Pin description 4
7	Functional description 5
7.1	Function table
8	Limiting values 6
9	Recommended operating conditions 6
10	Static characteristics 7
11	Dynamic characteristics 9
12	Waveforms 9
13	Package outline 11
14	Revision history 14
15	Data sheet status 15
16	Definitions 15
17	Disclaimers 15
18	Contact information 15

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 17 January 2005 Document number: 9397 750 14414

Published in The Netherlands