

Automotive DDR3L-RS SDRAM

MT41K512M8 – 64 Meg x 8 x 8 banks MT41K256M16 – 32 Meg x 16 x 8 banks

Description

The 1.35V DDR3L-RS SDRAM device is a low-current self refresh version of the 1.35V DDR3L SDRAM device via the TCSR feature. Unless stated otherwise, the DDR3L-RS SDRAM device meets the functional and timing specifications listed in the equivalent density standard or automotive DDR3L SDRAM data sheet located on www.micron.com.

Features

- $V_{DD} = V_{DDQ} = 1.35V (1.283 1.45V)$
- Backward-compatible to $V_{DD} = V_{DDQ} = 1.5V \pm 0.075V$
- Differential bidirectional data strobe
- 8*n*-bit prefetch architecture
- Differential clock inputs (CK, CK#)
- 8 internal banks
- Nominal and dynamic on-die termination (ODT) for data, strobe, and mask signals
- Programmable CAS (READ) latency (CL)
- Programmable posted CAS additive latency (AL)
- Programmable CAS (WRITE) latency (CWL)
- Fixed burst length (BL) of 8 and burst chop (BC) of 4 (via the mode register set [MRS])
- Selectable BC4 or BL8 on-the-fly (OTF)
- Write leveling
- Output driver calibration
- Multipurpose register
- $T_C of -40^{\circ}C to +95^{\circ}C$
- 64ms, 8192-cycle refresh at -40°C to +85°C
- 32ms at +85°C to +95°C

Table 1: Key Timing Parameters

Features

- Self refresh temperature (SRT)
- Automatic self refresh (ASR)
- Temperature-compensated self refresh (TCSR) mode
- Very low current self refresh mode when room temperature

Options

Marking

Configuration	-
- 512 Meg x 8	512M8
– 256 Meg x 16	256M16
• FBGA package (Pb-free) – x8	
– 78-ball (9mm x 10.5mm) Rev. E	RH
• FBGA package (Pb-free) – x16	
– 96-ball FBGA (9mm x 14mm) Rev. E	HA
• Timing – Cycle time	
-1.071 m $^{\circ}$ CL $= 13$ (DDR3-1866)	-107
- 1.25ns @ CL = 11 (DDR3-1600)	-125
- 1.5ns @ CL = 9 (DDR3-1333)	-15E
- 1.875ns @ CL = 7 (DDR3-1066)	-187E
 Product certification 	
– Automotive	А
Temperature	
– Industrial (–40°C \leq T _C \leq +95°C)	IT
- Automotive ($-40^{\circ}C \le T_C \le +105^{\circ}C$)	AT
 Power savings 	
– TCSR	Μ
Revision	:E

Speed Grade	Data Rate (MT/s)	Target ^t RCD- ^t RP-CL	^t RCD (ns)	^t RP (ns)	CL (ns)
-107 ^{1, 2, 3}	1866	13-13-13	13.91	13.91	13.91
-125 ^{1, 2}	1600	11-11-11	13.75	13.75	13.75
-15E ¹	1333	9-9-9	13.5	13.5	13.5
-187E	1066	7-7-7	13.1	13.1	13.1

Notes: 1. Backward compatible to 1066, CL = 7 (-187E).

- 2. Backward compatible to 1333, CL = 9 (-15E).
- 3. Backward compatible to 1600, CL =11 (-125).

PDF: 09005aef85bd2a38 4Gb_auto_1_35v_ddr3l_rs.pdf - Rev. A 6/14 EN 1

Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved.

Table 2: Addressing

Parameter	512 Meg x 8	256 Meg x 16
Configuration	64 Meg x 8 x 8 banks	32 Meg x 16 x 8 banks
Refresh count	8К	8K
Row address	64K (A[15:0])	32K (A[14:0])
Bank address	8 (BA[2:0])	8 (BA[2:0])
Column address	1K (A[9:0])	1K (A[9:0])
Page size	1KB	2КВ

Figure 1: DDR3L-RS Part Numbers

Note: 1. Not all options listed can be combined to define an offered product. Use the part catalog search on http://www.micron.com for available offerings.

FBGA Part Marking Decoder

Due to space limitations, FBGA-packaged components have an abbreviated part marking that is different from the part number. Micron's FBGA part marking decoder is available at www.micron.com/decoder.

Ball Assignments and Descriptions

Figure 2: 78-Ball FBGA – x8 (Top View)

Note: 1. A slash defines a selectable function.

Figure 3: 96-Ball FBGA – x16 (Top View)

Note: 1. A slash defines a selectable function.

Table 3: 78-Ball FBGA – x8 Ball Descriptions

Symbol	Туре	Description
[15:13], A12/BC#, A11, A10/AP, A[9:0]	Input	Address inputs: Provide the row address for ACTIVATE commands, and the column address and auto precharge bit (A10) for READ/WRITE commands, to select one location out of the memory array in the respective bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one bank (A10 LOW, bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs also provide the op-code during a LOAD MODE command. Address inputs are referenced to V _{REFCA} . A12/BC#: When enabled in the mode register (MR), A12 is sampled during READ and WRITE commands to determine whether burst chop (on-the-fly) will be performed (HIGH = BL8 or no burst chop, LOW = BC4). See Truth Table - Command in the DDR3 SDRAM data sheet.
BA[2:0]	Input	Bank address inputs: BA[2:0] define the bank to which an ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. BA[2:0] define which mode register (MR0, MR1, MR2, or MR3) is loaded during the LOAD MODE command. BA[2:0] are referenced to V _{REFCA} .
СК, СК#	Input	Clock: CK and CK# are differential clock inputs. All control and address input signals are sampled on the crossing of the positive edge of CK and the negative edge of CK#. Output data strobe (DQS, DQS#) is referenced to the crossings of CK and CK#.
CKE	Input	Clock enable: CKE enables (registered HIGH) and disables (registered LOW) internal circuitry and clocks on the DRAM. The specific circuitry that is enabled/ disabled is dependent upon the DDR3 SDRAM configuration and operating mode. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operations (all banks idle), or active power-down (row active in any bank). CKE is synchronous for power-down entry and exit and for self refresh entry. CKE is asynchronous for self refresh exit. Input buffers (excluding CK, CK#, CKE, RESET#, and ODT) are disabled during POWER-DOWN. Input buffers (excluding CKE and RESET#) are disabled during SELF REFRESH. CKE is referenced to V _{REFCA} .
CS#	Input	Chip select: CS# enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when CS# is registered HIGH. CS# provides for external rank selection on systems with multiple ranks. CS# is considered part of the command code. CS# is referenced to V _{REFCA} .
DM	Input	Input data mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH along with the input data during a write access. Although the DM ball is input-only, the DM loading is designed to match that of the DQ and DQS balls. DM is referenced to V _{REFDQ} . DM has an optional use as TDQS on the x8.
ODT	Input	On-die termination: ODT enables (registered HIGH) and disables (registered LOW) termination resistance internal to the DDR3 SDRAM. When enabled in normal operation, ODT is only applied to each of the following balls: DQ[7:0], DQS, DQS#, and DM for the x8. The ODT input is ignored if disabled via the LOAD MODE command. ODT is referenced to _{REFCA} .
RAS#, CAS#, WE#	Input	Command inputs: RAS#, CAS#, and WE# (along with CS#) define the command being entered and are referenced to V_{REFCA} .
RESET#	Input	Reset: RESET# is an active LOW CMOS input referenced to V_{SS} . The RESET# input receiver is a CMOS input defined as a rail-to-rail signal with DC HIGH $\ge 0.8 \times V_{DD}$ and DC LOW $\le 0.2 \times V_{DDQ}$. RESET# assertion and desertion are asynchronous.

Table 3: 78-Ball FBGA – x8 Ball Descriptions (Continued)

Symbol	Туре	Description
DQ[7:0]	I/O	Data input/output: Bidirectional data bus for the x8 configuration. DQ[7:0] are referenced to V_{REFDQ} .
DQS, DQS#	I/O	Data strobe: Output with read data. Edge-aligned with read data. Input with write data. Center-aligned to write data.
TDQS, TDQS#	Output	Termination data strobe: Applies to the x8 configuration only. When TDQS is enabled, DM is disabled, and the TDQS and TDQS# balls provide termination resistance.
V _{DD}	Supply	Power supply: 1.35V, 1.283–1.45V operational; compatible to 1.5V operation.
V _{DDQ}	Supply	DQ power supply: 1.35V, 1.283–1.45V operational; compatible to 1.5V operation.
V _{REFCA}	Supply	Reference voltage for control, command, and address: V _{REFCA} must be maintained at all times (including self refresh) for proper device operation.
V _{REFDQ}	Supply	Reference voltage for data: _{REFDQ} must be maintained at all times (excluding self refresh) for proper device operation.
V _{SS}	Supply	Ground.
V _{SSQ}	Supply	DQ ground: Isolated on the device for improved noise immunity.
ZQ	Reference	External reference ball for output drive calibration: This ball is tied to an external 240Ω resistor (RZQ), which is tied to V _{SSQ} .
NC	-	No connect: These balls should be left unconnected (the ball has no connection to the DRAM or to other balls).

Table 4: 96-Ball FBGA – x16 Ball Descriptions

Symbol	Туре	Description
[14:13], A12/BC#, A11, A10/AP, A[9:0]	Input	Address inputs: Provide the row address for ACTIVATE commands, and the column address and auto precharge bit (A10) for READ/WRITE commands, to select one location out of the memory array in the respective bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one bank (A10 LOW, bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs also provide the op-code during a LOAD MODE command. Address inputs are referenced to V _{REFCA} . A12/BC#: When enabled in the mode register (MR), A12 is sampled during READ and WRITE commands to determine whether burst chop (on-the-fly) will be performed (HIGH = BL8 or no burst chop, LOW = BC4). See Truth Table - Command in the DDR3 SDRAM data sheet.
BA[2:0]	Input	Bank address inputs: BA[2:0] define the bank to which an ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. BA[2:0] define which mode register (MR0, MR1, MR2, or MR3) is loaded during the LOAD MODE command. BA[2:0] are referenced to V _{REFCA} .
СК, СК#	Input	Clock: CK and CK# are differential clock inputs. All control and address input signals are sampled on the crossing of the positive edge of CK and the negative edge of CK#. Output data strobe (DQS, DQS#) is referenced to the crossings of CK and CK#.
CKE	Input	Clock enable: CKE enables (registered HIGH) and disables (registered LOW) internal circuitry and clocks on the DRAM. The specific circuitry that is enabled/disabled is dependent upon the DDR3 SDRAM configuration and operating mode. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operations (all banks idle), or active power-down (row active in any bank). CKE is synchronous for power-down entry and exit and for self refresh entry. CKE is asynchronous for self refresh exit. Input buffers (excluding CK, CK#, CKE, RESET#, and ODT) are disabled during POWER-DOWN. Input buffers (excluding CKE and RESET#) are disabled during SELF REFRESH. CKE is referenced to V _{REFCA} .
CS#	Input	Chip select: CS# enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when CS# is registered HIGH. CS# provides for external rank selection on systems with multiple ranks. CS# is considered part of the command code. CS# is referenced to V _{REFCA} .
LDM	Input	Input data mask: LDM is a lower-byte, input mask signal for write data. Lower-byte input data is masked when LDM is sampled HIGH along with the input data during a write access. Although the LDM ball is input-only, the LDM loading is designed to match that of the DQ and DQS balls. LDM is referenced to V _{REFDQ} .
ODT	Input	On-die termination: ODT enables (registered HIGH) and disables (registered LOW) termination resistance internal to the DDR3 SDRAM. When enabled in normal operation, ODT is only applied to each of the following balls: DQ[15:0], LDQS, LDQS#, UDQS, UDQS#, LDM, and UDM for the x16. The ODT input is ignored if disabled via the LOAD MODE command. ODT is referenced to V _{REFCA} .
RAS#, CAS#, WE#	Input	Command inputs: RAS#, CAS#, and WE# (along with CS#) define the command being entered and are referenced to V_{REFCA} .
RESET#	Input	Reset: RESET# is an active LOW CMOS input referenced to V_{SS} . The RESET# input receiver is a CMOS input defined as a rail-to-rail signal with DC HIGH $\ge 0.8 \times V_{DD}$ and DC LOW $\le 0.2 \times V_{DDQ}$. RESET# assertion and desertion are asynchronous.

Table 4: 96-Ball FBGA – x16 Ball Descriptions (Continued)

Symbol	Туре	Description
UDM	Input	Input data mask: UDM is an upper-byte, input mask signal for write data. Upper- byte input data is masked when UDM is sampled HIGH along with that input data during a WRITE access. Although the UDM ball is input-only, the UDM loading is designed to match that of the DQ and DQS balls. UDM is referenced to V _{REFDQ} .
DQ[7:0]	I/O	Data input/output: Lower byte of bidirectional data bus for the x16 configuration. $DQ[7:0]$ are referenced to V_{REFDQ} .
DQ[15:8]	I/O	Data input/output: Upper byte of bidirectional data bus for the x16 configuration. DQ[15:8] are referenced to V _{REFDQ} .
LDQS, LDQS#	I/O	Lower byte data strobe: Output with read data. Edge-aligned with read data. Input with write data. Center-aligned to write data.
UDQS, UDQS#	I/O	Upper byte data strobe: Output with read data. Edge-aligned with read data. Input with write data. DQS is center-aligned to write data.
V _{DD}	Supply	Power supply: 1.35V, 1.283–1.45V operational; compatible to 1.5V operation.
V _{DDQ}	Supply	DQ power supply: 1.35V, 1.283–1.45V operational; compatible to 1.5V operation.
V _{REFCA}	Supply	Reference voltage for control, command, and address: V _{REFCA} must be maintained at all times (including self refresh) for proper device operation.
V _{REFDQ}	Supply	Reference voltage for data: V_{REFDQ} must be maintained at all times (excluding self refresh) for proper device operation.
V _{SS}	Supply	Ground.
V _{SSQ}	Supply	DQ ground: Isolated on the device for improved noise immunity.
ZQ	Reference	External reference ball for output drive calibration: This ball is tied to an external 240Ω resistor (RZQ), which is tied to V _{SSQ} .
NC	-	No connect: These balls should be left unconnected (the ball has no connection to the DRAM or to other balls).

Package Dimensions

Figure 4: 78-Ball FBGA - x8 (RH)

Notes: 1. All dimensions are in millimeters.2. Solder ball material: SAC305 (96.5% Sn, 3% Ag, 0.5% Cu).

Figure 5: 96-Ball FBGA - x16 (HA)

Electrical Characteristics – I_{DD} Specifications

Table 5: I_{DD} Maximum Limits – Die Rev. E

Speed Bin			DDR3L-RS	DDR3L-RS	DDR3L-RS	DDR3L-RS		
Parameter	Symbol	Width	-1066	-1333	-1600	-1866	Unit	Notes
Operating current 0: One bank	I _{DD0}	x4,x8	44	47	55	58	mA	1
ACTIVATE-to-PRECHARGE		x16	55	58	66	69	mA	1
Operating current 1: One bank	I _{DD1}	x4	53	57	61	65	mA	1
ACTIVATE-to-READ-to-PRE-		x8	59	62	66	70	mA	1
CHARGE		x16	80	84	87	91	mA	1
Precharge power-down current: Slow exit	I _{DD2P0}	All	12	12	12	12	mA	1
Precharge power-down current: Fast exit	I _{DD2P1}	All	24	26	30	35	mA	1
Precharge quiet standby current	I _{DD2Q}	All	22	24	27	30	mA	1
Precharge standby current	I _{DD2N}	All	22	24	26	29	mA	1
Precharge standby ODT current	I _{DD2NT}	x4, x8	27	30	34	37	mA	1
		x16	30	34	37	40	mA	1
Active power-down current	I _{DD3P}	All	27	30	33	36	mA	1
Active standby current	I _{DD3N}	x4, x8	29	32	35	38	mA	1
		x16	37	40	43	46	mA	1
Burst read operating current	I _{DD4R}	x4	105	122	139	160	mA	1
		x8	115	132	149	170	mA	1
		x16	176	193	227	244	mA	1
Burst write operating current	I _{DD4W}	x4	80	95	110	125	mA	1
		x8	87	103	118	133	mA	1
		x16	129	144	163	186	mA	1
Burst refresh current	I _{DD5B}	All	221	224	231	238	mA	1
Room temperature self refresh	I _{DD6}	All	3.5	3.5	3.5	3.5	mA	2
+45°C temperature self refresh	I _{DD6} A	All	3.7	3.7	3.7	3.7	mA	3
Elevated temperature self re-	I _{DD6}	All	7	7	7	7	mA	4
fresh		All	8.5	8.5	8.5	8.5	mA	5
Extended temperature self re-	I _{DD6ET}	All	14	14	14	14	mA	6
fresh		All	18	18	18	18	mA	7
All banks interleaved read cur-	I _{DD7}	x8	152	182	213	243	mA	1
rent		x16	194	213	239	266	mA	1
Reset current	I _{DD8}	all	I _{DD2P0} + 2mA	mA	1			

Notes: 1. $T_C = +85^{\circ}C$; SRT is disabled, ASR is disable. Value is maximum.

2. Room Temperature; SRT is disabled, ASR is enabled. Value is typical.

3. $T_C \leq +45^{\circ}C$; SRT is disabled, ASR is enabled). Value is typical.

4. $T_C = +80^{\circ}C$; SRT is disabled, ASR is enabled). Value is typical.

5. $+45^{\circ}C < T_C \leq +80^{\circ}C$; SRT is disabled, ASR is enabled. Value is maximum.

4Gb: x8, x16 Automotive DDR3L-RS SDRAM Electrical Characteristics – I_{DD} Specifications

- 6. $T_C = +95^{\circ}C$; SRT is disabled, ASR is enabled. Value is typical.
- 7. $+85^{\circ}C < T_{C} \le +95^{\circ}C$; SRT is disabled, ASR is enabled. Value is maximum.

Temperature-Compensated Self Refresh (TCSR)

The temperature-compensated self refresh (TCSR) feature substantially reduces the self refresh current (I_{DD6}). TCSR takes effect when T_C is less than 45°C and the auto self refresh (ASR) function is enabled. ASR is required to utilize the TCSR feature and is enabled manually via mode register 2 (MR2[6]). See Figure 6 (page 13).

Enabling ASR also automatically changes the DRAM self refresh rate from 1x to 2x when the case temperature exceeds 85°C. This allows the user to operate the DRAM beyond the standard 85°C limit, up to the optional extended temperature range of 95°C while in self refresh mode.

When ASR is disabled and T_C is 0°C to 85°C, the self refresh mode refresh rate is assumed to be at the normal rate (sometimes referred to as 1x refresh rate). Also, if ASR is disabled and T_C is 85°C to 95°C, the user must select the SRT extended temperature self refresh rate (sometimes referred to as 2x refresh rate). SRT is selected via mode register 2 (MR2[7]) register. See Figure 6 (page 13).

SPD settings should always support 05h (101 binary) in byte 31.

Mode Register 2 (MRS)

Mode register 2 (MR2) controls additional functions and features not available in the other mode registers. The ASR function is of particular interest for the DDR3L-RS SDRAM because the Micron DDR3L-RS SDRAM goes into TCSR mode when ASR has been enabled. This function is controlled via the bits shown in the figure below.

Figure 6: Mode Register 2 Definition

Note: 1. MR2[17, 14:11, 8, and 2:0] are reserved for future use and must all be programmed to 0.

Electrical Specifications

Table 6: Input/Output Capacitance

Capacitance		DDR3	L-800	DDR3	L-1066	DDR3	L-1333	DDR3	L-1600	DDR3	L-1866	
Parameters	Symbol	Min	Max	Min	Мах	Min	Max	Min	Max	Min	Max	Units
Single-end I/O: DQ, DM	C _{IO}	1.5	2.5	1.5	2.5	1.5	2.3	1.5	2.2	1.5	2.1	pF
Differential I/O: DQS, DQS#, TDQS, TDQS#	C _{IO}	1.5	2.5	1.5	2.5	1.5	2.3	1.5	2.2	1.5	2.1	pF
Inputs (CTRL, CMD,ADDR)	C _I	0.75	1.3	0.75	1.3	0.75	1.3	0.75	1.2	0.75	1.2	pF

Table 7: DC Electrical Characteristics and Operating Conditions – 1.35V Operation

All voltages are referenced to V_{SS}

Parameter/Condition	Symbol	Min	Nom	Max	Units	Notes
Supply voltage	V _{DD}	1.283	1.35	1.45	V	1, 2, 3, 4
I/O supply voltage	V _{DDQ}	1.283	1.35	1.45	V	1, 2, 3, 4

Notes: 1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of $V_{DD}/V_{DDQ}(t)$ over a very long period of time (for example, 1 sec).

2. If the maximum limit is exceeded, input levels shall be governed by DDR3 specifications.

- 3. Under these supply voltages, the device operates to this DDR3L specification.
- 4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while V_{DD} and V_{DDQ} are changed for DDR3 operation (see Figure 7 (page 27)).

Table 8: DC Electrical Characteristics and Operating Conditions – 1.5V Operation

All voltages are referenced to V_{SS}

Parameter/Condition	Symbol	Min	Nom	Max	Units	Notes
Supply voltage	V _{DD}	1.425	1.5	1.575	V	1, 2, 3
I/O supply voltage	V _{DDQ}	1.425	1.5	1.575	V	1, 2, 3

Notes: 1. If the minimum limit is exceeded, input levels shall be governed by DDR3L specifications.

2. Under 1.5V operation, this DDR3L device operates in accordance with the DDR3 specifications under the same speed timings as defined for this device.

3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while V_{DD} and V_{DDQ} are changed for DDR3L operation (see Figure 7 (page 27)).

Parameter/Condition	Symbol	DDR3L-800/1066	DDR3L-1333/1600	DDR3L-1866	Units
Input high AC voltage: Logic 1	V _{IH(AC160)min} 1	160	160	-	mV
Input high AC voltage: Logic 1	V _{IH(AC135)min} 1	135	135	135	mV
Input high AC voltage: Logic 1	V _{IH(AC125)min} 1	-	-	125	mV
Input high DC voltage: Logic 1	V _{IH(DC90)min}	90	90	90	mV
Input low DC voltage: Logic 0	V _{IL(DC90)min}	-90	-90	-90	mV
Input low AC voltage: Logic 0	V _{IL(AC125)min} 1	-	-	-125	mV
Input low AC voltage: Logic 0	V _{IL(AC135)min} 1	–135	–135	–135	mV
Input low AC voltage: Logic 0	V _{IL(AC160)min} 1	-160	-160	-	mV

Table 9: Input Switching Conditions – Command and Address

When two V_{IH(AC)} values (and two corresponding V_{IL(AC)} values) are listed for a specific speed bin, the user may choose either value for the input AC level. Whichever value is used, the associated setup time for that AC level must also be used. Additionally, one V_{IH(AC)} value may be used for address/command inputs and the other V_{IH(AC)} value may be used for data inputs.

For example, for DDR3L-800, two input AC levels are defined: $V_{IH(AC160),min}$ and $V_{IH(AC135),min}$ (corresponding $V_{IL(AC160),min}$ and $V_{IL(AC135),min}$). For DDRL-800, the address/ command inputs must use either $V_{IH(AC160),min}$ with $^tIS(AC160)$ of 215ps or $V_{IH(AC135),min}$ with $^tIS(AC135)$ of 365ps; independently, the data inputs may use either $V_{IH(AC160),min}$ or $V_{IH(AC135),min}$.

Table 10: Input Switching Conditions – DQ and DM

Parameter/Condition	Symbol	DDR3L-800/1066	DDR3L-1333/1600	DDR3L-1866	Units
Input high AC voltage: Logic 1	V _{IH(AC160)min} 1	160	160	-	mV
Input high AC voltage: Logic 1	V _{IH(AC135)min} 1	135	135	135	mV
Input high AC voltage: Logic 1	V _{IH(AC130)min} 1	-	-	130	mV
Input high DC voltage: Logic 1	V _{IH(DC90)min}	90	90	90	mV
Input low DC voltage: Logic 0	V _{IL(DC90)min}	-90	-90	-90	mV
Input low AC voltage: Logic 0	V _{IL(AC130)min} 1	-	-	-130	mV
Input low AC voltage: Logic 0	V _{IL(AC135)min} 1	–135	–135	-135	mV
Input low AC voltage: Logic 0	V _{IL(AC160)min} 1	–160	–160	_	mV

Note: 1. When two $V_{IH(AC)}$ values (and two corresponding $V_{IL(AC)}$ values) are listed for a specific speed bin, the user may choose either value for the input AC level. Whichever value is used, the associated setup time for that AC level must also be used. Additionally, one $V_{IH(AC)}$ value may be used for address/command inputs and the other $V_{IH(AC)}$ value may be used for data inputs.

For example, for DDR3L-800, two input AC levels are defined: $V_{IH(AC160),min}$ and $V_{IH(AC135),min}$ (corresponding $V_{IL(AC160),min}$ and $V_{IL(AC135),min}$). For DDRL-800, the data inputs must use either $V_{IH(AC160),min}$ with ^tIS(AC160) of 90ps or $V_{IH(AC135),min}$ with ^tIS(AC135) of 140ps; independently, the address/command inputs may use either $V_{IH(AC160),min}$ or $V_{IH(AC135),min}$.

Parameter/Condition	Symbol	Min	Max	Units
Differential input logic high – slew	V _{IH,diff(AC)slew}	180	N/A	mV
Differential input logic low – slew	V _{IL,diff(AC)slew}	N/A	-180	mV
Differential input logic high	V _{IH,diff(AC)}	2 × (V _{IH(AC)} - V _{REF})	V _{DD} /V _{DDQ}	mV
Differential input logic low	V _{IL,diff(AC)}	V _{SS} /V _{SSQ}	2 × (V _{IL(AC)} - V _{REF})	mV
Single-ended high level for strobes	V _{SEH}	V _{DDQ} /2 + 160	V _{DDQ}	mV
Single-ended high level for CK, CK#		V _{DD} /2 + 160	V _{DD}	mV
Single-ended low level for strobes	V _{SEL}	V _{SSQ}	V _{DDQ} /2 - 160	mV
Single-ended low level for CK, CK#		V _{SS}	V _{DD} /2 - 160	mV

Table 11: Differential Input Operating Conditions (CK, CK# and DQS, DQS#)

Table 12: Minimum Required Time ^tDVAC for CK/CK#, DQS/DQS# Differential for AC Ringback

	DDR3L-800/10	066/1333/1600		DDR3L-1866	
Slew Rate (V/ns)	^t DVAC at 320mV (ps)	^t DVAC at 270mV (ps)	^t DVAC at 270mV (ps)	^t DVAC at 250mV (ps)	^t DVAC at 260mV (ps)
>4.0	189	201	163	168	176
4.0	189	201	163	168	176
3.0	162	179	140	147	154
2.0	109	134	95	105	111
1.8	91	119	80	91	97
1.6	69	100	62	74	78
1.4	40	76	37	52	55
1.2	Note1	44	5	22	24
1.0	Note1 Note1		Note1	Note1	Note1
<1.0	Note1	Note1	Note1	Note1	Note1

Note: 1. Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.

Table 13: R_{TT} Effective Impedance

Grav-	shaded o	ells ha	ave the	same va	lues as	those ii	n the	1.5V	DDR3 data sheet
- Ci Ci y	sinaaca (same va	iacs as				BBRS data sheet

MR1 [9, 6, 2]	R _{TT}	Resistor	V _{out}	Min	Nom	Мах	Units
0, 1, 0	120Ω	R _{TT,120PD240}	$0.2 \times V_{DDQ}$	0.6	1.0	1.15	RZQ/1
		11,1201 0240	0.5 × V _{DDQ}	0.9	1.0	1.15	RZQ/1
			0.8 × V _{DDQ}	0.9	1.0	1.45	RZQ/1
		R _{TT,120PU240}	0.2 × V _{DDQ}	0.9	1.0	1.45	RZQ/1
			0.5 × V _{DDQ}	0.9	1.0	1.15	RZQ/1
			$0.8 \times V_{DDQ}$	0.6	1.0	1.15	RZQ/1
		120Ω	V _{IL(AC)} to V _{IH(AC)}	0.9	1.0	1.65	RZQ/2
0, 0, 1	60Ω	R _{TT,60PD120}	$0.2 \times V_{DDQ}$	0.6	1.0	1.15	RZQ/2
			$0.5 \times V_{DDQ}$	0.9	1.0	1.15	RZQ/2
			$0.8 \times V_{DDQ}$	0.9	1.0	1.45	RZQ/2
		R _{TT,60PU120}	$0.2 \times V_{DDQ}$	0.9	1.0	1.45	RZQ/2
			$0.5 \times V_{DDQ}$	0.9	1.0	1.15	RZQ/2
			$0.8 \times V_{DDQ}$	0.6	1.0	1.15	RZQ/2
		60Ω	V _{IL(AC)} to V _{IH(AC)}	0.9	1.0	1.65	RZQ/4
0, 1, 1	40Ω	R _{TT,40PD80}	$0.2 \times V_{DDQ}$	0.6	1.0	1.15	RZQ/3
			$0.5 \times V_{DDQ}$	0.9	1.0	1.15	RZQ/3
			$0.8 \times V_{DDQ}$	0.9	1.0	1.45	RZQ/3
		R _{TT,40PU80}	$0.2 \times V_{DDQ}$	0.9	1.0	1.45	RZQ/3
			$0.5 \times V_{DDQ}$	0.9	1.0	1.15	RZQ/3
			$0.8 \times V_{DDQ}$	0.6	1.0	1.15	RZQ/3
		40Ω	$V_{IL(AC)}$ to $V_{IH(AC)}$	0.9	1.0	1.65	RZQ/6
1, 0, 1	30Ω	R _{TT,30PD60}	$0.2 \times V_{DDQ}$	0.6	1.0	1.15	RZQ/4
			$0.5 \times V_{DDQ}$	0.9	1.0	1.15	RZQ/4
			$0.8 \times V_{DDQ}$	0.9	1.0	1.45	RZQ/4
		R _{TT,30PU60}	$0.2 \times V_{DDQ}$	0.9	1.0	1.45	RZQ/4
			$0.5 \times V_{DDQ}$	0.9	1.0	1.15	RZQ/4
			$0.8 \times V_{DDQ}$	0.6	1.0	1.15	RZQ/4
		30Ω	$V_{IL(AC)}$ to $V_{IH(AC)}$	0.9	1.0	1.65	RZQ/8
1, 0, 0	20Ω	R _{TT,20PD40}	$0.2 \times V_{DDQ}$	0.6	1.0	1.15	RZQ/6
			$0.5 \times V_{DDQ}$	0.9	1.0	1.15	RZQ/6
			$0.8 \times V_{DDQ}$	0.9	1.0	1.45	RZQ/6
		R _{TT,20PU40}	$0.2 \times V_{DDQ}$	0.9	1.0	1.45	RZQ/6
			$0.5 \times V_{DDQ}$	0.9	1.0	1.15	RZQ/6
			$0.8 \times V_{DDQ}$	0.6	1.0	1.15	RZQ/6
		20Ω	$V_{IL(AC)}$ to $V_{IH(AC)}$	0.9	1.0	1.65	RZQ/12

Table 14: Reference Settings for ODT Timing Measurements

Measured	D. Catting	D. Catting	N N	, v
Parameter	R _{TT,nom} Setting	R _{TT(WR)} Setting	V _{SW1}	V _{SW2}
^t AON	RZQ/4 (60Ω)	N/A	50mV	100mv
	RZQ/12 (20Ω)	N/A	100mV	200mV
^t AOF	RZQ/4 (60Ω)	N/A	50mV	100mv
	RZQ/12 (20Ω)	N/A	100mV	200mV
^t AONPD	RZQ/4 (60Ω)	N/A	50mV	100mv
	RZQ/12 (20Ω)	N/A	100mV	200mV
^t AOFPD	RZQ/4 (60Ω)	N/A	50mV	100mv
	RZQ/12 (20Ω)	N/A	100mV	200mV
^t ADC	RZQ/12 (20Ω)	RZQ/2 (20Ω)	200mV	250mV

Gray-shaded cells have the same values as those in the 1.5V DDR3 data sheet

Table 15: 34 Ω Driver Impedance Characteristics

MR1 [5, 1]	R _{ON}	Resistor	V _{out}	Min	Nom	Max ¹	Units
0, 1	34.3Ω	R _{ON,34PD}	$0.2 \times V_{DDQ}$	0.6	1.0	1.15	RZQ/7
			$0.5 \times V_{DDQ}$	0.9	1.0	1.15	RZQ/7
			0.8 × V _{DDQ}	0.9	1.0	1.45	RZQ/7
		R _{ON,34PU}	0.2 × V _{DDQ}	0.9	1.0	1.45	RZQ/7
			0.5 × V _{DDQ}	0.9	1.0	1.15	RZQ/7
			0.8 × V _{DDQ}	0.6	1.0	1.15	RZQ/7
Pull-up/pull-	down mismate	ch (MM _{PUPD})	V _{IL(AC)} to V _{IH(AC)}	-10	N/A	10	%

Gray-shaded cells have the same values as those in the 1.5V DDR3 data sheet

Note: 1. A larger maximum limit will result in slightly lower minimum currents.

Table 16: 40Ω Driver Impedance Characteristics

Gray-shaded cells have the same values as those in the 1.5V DDR3 data sheet

MR1 [5, 1]	R _{ON}	Resistor	V _{OUT}	Min	Nom	Max ¹	Units
0, 0	40Ω	R _{ON,40PD}	$0.2 \times V_{DDQ}$	0.6	1.0	1.15	RZQ/6
			$0.5 \times V_{DDQ}$	0.9	1.0	1.15	RZQ/6
			$0.8 \times V_{DDQ}$	0.9	1.0	1.45	RZQ/6
		R _{ON,40PU}	$0.2 \times V_{DDQ}$	0.9	1.0	1.45	RZQ/6
			$0.5 \times V_{DDQ}$	0.9	1.0	1.15	RZQ/6
			$0.8 \times V_{DDQ}$	0.6	1.0	1.15	RZQ/6
Pull-up/pull-	down mismat	ch (MM _{PUPD})	$V_{IL(AC)}$ to $V_{IH(AC)}$	-10	N/A	10	%

Note: 1. A larger maximum limit will result in slightly lower minimum currents.

Table 17: Single-Ended Output Driver Characteristics

Parameter/Condition	Symbol	Min	Мах	Units
Output slew rate: Single-ended; For rising and falling edges, measure between $V_{OL(AC)} = V_{REF} - 0.09 \times V_{DDQ}$ and $V_{OH(AC)} = V_{REF} + 0.09 \times V_{DDQ}$	SRQ _{se}	1.75	6	V/ns

Table 18: Differential Output Driver Characteristics

Gray-shaded cells have the same values as those in the 1.5V DDR3 data sheet

Parameter/Condition	Symbol	Min	Мах	Units
Output slew rate: Differential; For rising and falling edges, measure between $V_{OL,diff(AC)} = -0.18 \times V_{DDQ}$ and $V_{OH,diff(AC)} = 0.18 \times V_{DDQ}$	SRQ _{diff}	3.5	12	V/ns
Output differential crosspoint voltage	V _{OX(AC)}	V _{REF} - 135	V _{REF} + 135	mV

Table 19: Electrical Characteristics and AC Operating Conditions

Note 1 applies to base timing specifications

			DDR3	L-800	DDR3	L-1066	DDR3L-1333 DDR3L-1600			DDR3			
Parameter		Symbol	Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max	Units
				DQI	nput T	iming		L					
Data setup time to DQS, DQS#	Base (specification)	^t DS (AC160)	90	-	40	-	N/A	-	N/A	-	N/A	-	ps
	V _{REF} @ 1 V/ns		250	-	200	_	N/A	_	N/A	_	N/A	-	ps
Data setup time to DQS,	Base (specification)	^t DS (AC135)	140	-	90	-	45	_	25	_	N/A	-	ps
DQS#	V _{REF} @ 1 V/ns		275	-	225	-	180	-	160	-	N/A	-	ps
Data hold time from	Base (specification)	^t DH (DC90)	160	-	110	-	75	-	55	-	N/A	-	ps
DQS, DQS#	V _{REF} @ 1 V/ns		250	-	200	-	165	_	145	_	N/A	-	ps
Data setup time to DQS,	Base (specification)	^t DS (AC130)	N/A	-	N/A	-	N/A	-	N/A	-	70	-	ps
DQS#	V _{REF} @ 2 V/ns		N/A	-	N/A	_	N/A	_	N/A	_	135	-	ps
Data hold time from	Base (specification)	^t DH (DC90)	N/A	-	N/A	-	N/A	-	N/A	-	75	-	ps
DQS, DQS#	V _{REF} @ 2 V/ns		N/A	-	N/A	-	N/A	_	N/A	_	110	-	ps
			Com	mand	and Ad	dress 1	iming	<u> </u>			•	•	
CTRL, CMD, ADDR setup	Base (specification)	^t IS (AC160)	215	-	140	-	80	-	60	-	N/A	-	ps
to CK, CK#	V _{REF} @ 1 V/ns		375	-	300	-	240	_	220	_	N/A	-	ps
CTRL, CMD,	Base (specification)	^t IS (AC135)	365	-	290	_	205	_	185	_	65	-	ps
to CK, CK#	V _{REF} @ 1 V/ns		500	-	425	-	340	-	320	_	200	-	ps

Table 19: Electrical Characteristics and AC Operating Conditions (Continued)

			DDR3	DDR3L-800		DDR3L-1066		DDR3L-1333		DDR3L-1600		DDR3L-1866	
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Min	Мах	Min	Мах	Units
CTRL, CMD, ADDR setup	Base (specification)	^t IS (AC125)	N/A	-	N/A	-	N/A	-	N/A	_	150	-	ps
to CK, CK#	V _{REF} @ 1 V/ns		N/A	-	N/A	-	N/A	-	N/A	-	275	-	ps
CTRL, CMD, ADDR hold	Base (specification)	^t IH (DC90)	285	-	210	-	150	-	130	_	110	-	ps
from CK, CK#	V _{REF} @ 1 V/ns		375	-	300	-	240	_	220	_	200	-	ps

Note 1 applies to base timing specifications

Notes: 1. When two $V_{IH(AC)}$ values (and two corresponding $V_{IL(AC)}$ values) are listed for a specific speed bin, the user may choose either value for the input AC level. Whichever value is used, the associated setup time for that AC level must also be used. Additionally, one $V_{IH(AC)}$ value may be used for address/command inputs and the other $V_{IH(AC)}$ value may be used for data inputs.

For example, for DDR3-800, two input AC levels are defined: $V_{IH(AC160),min}$ and $V_{IH(AC135),min}$ (corresponding $V_{IL(AC160),min}$ and $V_{IL(AC135),min}$). For DDR3-800, the address/ command inputs must use either $V_{IH(AC160),min}$ with $^{t}IS(AC160)$ of 215ps or $V_{IH(AC135),min}$ with $^{t}IS(AC135)$ of 365ps; independently, the data inputs must use either $V_{IH(AC160),min}$ with $^{t}DS(AC160)$ of 90ps or $V_{IH(AC135),min}$ with $^{t}DS(AC135)$ of 140ps.

2. When DQ single-ended slew rate is 1V/ns, the DQS differential slew rate is 2V/ns; when DQ single-ended slew rate is 2V/ns, the DQS differential slew rate is 4V/ns;

	Δ ^t IS, Δ ^t IH Derating (ps) – AC/DC-Based															
CMD/ADDR		CK, CK# Differential Slew Rate														
Slew Rate	4.0	V/ns	s 3.0 V/ns		2.0 V/ns		1.8 V/ns		1.6 V/ns		1.4 V/ns		1.2 V/ns		1.0	V/ns
V/ns	∆ ^t IS	Δ ^t IH	∆ ^t IS	Δ ^t IH	∆ ^t IS	Δ ^t IH	∆ ^t IS	Δ ^t IH	∆ ^t IS	Δ ^t IH	∆ ^t IS	∆ ^t IH	∆ ^t IS	Δ ^t IH	∆ ^t IS	∆ ^t IH
2.0	80	45	80	45	80	45	88	53	96	61	104	69	112	79	120	95
1.5	53	30	53	30	53	30	61	38	69	46	77	54	85	64	93	80
1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	34	40	50
0.9	-1	-3	-1	-3	-1	-3	7	5	15	13	23	21	31	31	39	47
0.8	-3	-8	-3	-8	-3	-8	5	1	13	9	21	17	29	27	37	43
0.7	-5	-13	-5	-13	-5	-13	3	-5	11	3	19	11	27	21	35	37
0.6	-8	-20	-8	-20	-8	-20	0	-12	8	-4	16	4	24	14	32	30
0.5	-20	-30	-20	-30	-20	-30	-12	-22	-4	-14	4	-6	12	4	20	20
0.4	-40	-45	-40	-45	-40	-45	-32	-37	-24	-29	-16	-21	-8	-11	0	5

Table 20: Derating Values for ^tIS/^tIH – AC160/DC90-Based

	Δ ^t IS, Δ ^t IH Derating (ps) – AC/DC-Based															
CMD/ADDR	CK, CK# Differential Slew Rate															
Slew Rate	4.0	V/ns	//ns 3.0 V/ns		2.0 V/ns		1.8 V/ns		1.6 V/ns		1.4 V/ns		1.2 V/ns		1.0	V/ns
V/ns	∆ ^t IS	∆ ^t IH	∆ ^t IS	Δ ^t IH												
2.0	68	45	68	45	68	45	76	53	84	61	92	69	100	79	108	95
1.5	45	30	45	30	45	30	53	38	61	46	69	54	77	64	85	80
1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	34	40	50
0.9	2	-3	2	-3	2	-3	10	5	18	13	26	21	34	31	42	47
0.8	3	-8	3	-8	3	-8	11	1	19	9	27	17	35	27	43	43
0.7	6	-13	6	-13	6	–13	14	-5	22	3	30	11	38	21	46	37
0.6	9	-20	9	-20	9	-20	17	-12	25	-4	33	4	41	14	49	30
0.5	5	-30	5	-30	5	-30	13	-22	21	-14	29	-6	37	4	45	20
0.4	-3	-45	-3	-45	-3	-45	6	-37	14	-29	22	-21	30	-11	38	5

Table 21: Derating Values for ^tIS/^tIH – AC135/DC90-Based

Table 22: Derating Values for ^tIS/^tIH – AC125/DC90-Based

	Δ^{t} IS, Δ^{t} IH Derating (ps) – AC/DC-Based															
CMD/ADDR		CK, CK# Differential Slew Rate														
Slew Rate	4.0	V/ns	3.0	V/ns	2.0 V/ns		1.8 V/ns		1.6 V/ns		1.4 V/ns		1.2 V/ns		1.0	V/ns
V/ns	∆ ^t IS	Δ ^t IH	∆ ^t IS	Δ ^t IH	∆ ^t IS	Δ ^t IH	∆ ^t IS	Δ ^t IH	∆ ^t IS	Δ ^t IH	∆ ^t IS	Δ ^t IH	∆ ^t IS	Δ ^t IH	∆ ^t IS	Δ ^t IH
2.0	63	45	63	45	63	45	71	53	79	61	87	69	95	79	103	95
1.5	42	30	42	30	42	30	50	38	58	46	66	54	74	64	82	80
1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	34	40	50
0.9	3	-3	3	-3	3	-3	11	5	19	13	27	21	35	31	43	47
0.8	6	-8	6	-8	6	-8	14	1	22	9	30	17	38	27	46	43
0.7	10	-13	10	-13	10	-13	18	-5	26	3	34	11	42	21	50	37
0.6	16	-20	16	-20	16	-20	24	-12	32	-4	40	4	48	14	56	30
0.5	15	-30	15	-30	15	-30	23	-22	31	-14	39	-6	47	4	55	20
0.4	13	-45	13	-45	13	-45	21	-37	29	-29	37	-21	45	-11	53	5

	DDR3L-800/10	66/1333/1600	DDR3L-1866					
Slew Rate (V/ns)	^t VAC at 160mV (ps)	^t VAC at 135mV (ps)	^t VAC at 135mV (ps)	^t VAC at 125mV (ps)				
>2.0	200	213	200	205				
2.0	200	213	200	205				
1.5	173	190	178	184				
1.0	120	145	133	143				
0.9	102	130	118	129				
0.8	80	111	99	111				
0.7	51	87	75	89				
0.6	13	55	43	59				
0.5	Note 1	10	Note 1	18				
<0.5	Note 1	10	Note 1	18				

Table 23: Minimum Required Time ^tVAC Above V_{IH(AC)} (Below V_{IL[AC]}) for Valid ADD/CMD Transition

Note: 1. Rising input signal shall become equal to or greater than V_{IH(AC)} level and falling input signal shall become equal to or less than V_{IL(AC)} level.

Table 24: Derating Values for ^tDS/^tDH – AC160/DC90-Based

	Δ^{t} DS, Δ^{t} DH Derating (ps) – AC/DC-Based															
		DQS, DQS# Differential Slew Rate														
DQ Slew	4.0	V/ns	3.0	V/ns	2.0 V/ns 1.8 \			V/ns 1.6 V/ns		V/ns	/ns 1.4 V/ns		1.2	V/ns	1.0 V/ns	
Rate V/ns	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH
2.0	80	45	80	45	80	45										
1.5	53	30	53	30	53	30	61	38								
1.0	0	0	0	0	0	0	8	8	16	16						
0.9			-1	-3	-1	-3	7	5	15	13	23	21				
0.8					-3	-8	5	1	13	9	21	17	29	27		
0.7							-3	-5	11	3	19	11	27	21	35	37
0.6									8	-4	16	4	24	14	32	30
0.5											4	6	12	4	20	20
0.4													-8	-11	0	5

	Δ^{t} DS, Δ^{t} DH Derating (ps) – AC/DC-Based															
		DQS, DQS# Differential Slew Rate														
DQ Slew	4.0	V/ns	3.0	V/ns	2.0 V/ns		1.8 V/ns		1.6 V/ns		1.4 V/ns		1.2	V/ns	1.0	V/ns
Rate V/ns	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH	∆ ^t DS	∆ ^t DH
2.0	68	45	68	45	68	45										
1.5	45	30	45	30	45	30	53	38								
1.0	0	0	0	0	0	0	8	8	16	16						
0.9			2	-3	2	-3	10	5	18	13	26	21				
0.8					3	-8	11	1	19	9	27	17	35	27		
0.7							14	-5	22	3	30	11	38	21	46	37
0.6									25	-4	33	4	41	14	49	30
0.5											39	-6	37	4	45	20
0.4													30	-11	38	5

Table 25: Derating Values for ^tDS/^tDH – AC135/DC90-Based

Table 26: Derating Values for ^tDS/^tDH – AC130/DC100-Based at 2V/ns

Shaded cells indicate slew rate combinations not supported

Jilaue	u cens	muice	ate sie	wiate	e conn	Sinatio					_				_									
	Δ ^t DS, Δ ^t DH Derating (ps) – AC/DC-Based																							
V/ns	DQS, DQS# Differential Slew Rate																							
e <	8.0	V/ns	7.0	V/ns	6.0	V/ns	5.0	V/ns	4.0	V/ns	3.0	V/ns	2.0 V/ns		1.8 V/ns		1.6 V/ns		1.4 V/ns		1.2 V/ns		1.0	V/ns
DQ Slew Rate	∆ ⁺DS	۵ tDH	∆ ⁺DS	۵ tDH	∆ ¹DS	۵ tDH	∆ ^t DS	∆ tDH	∆ ⁺DS	۵ tDH	Δ ^t DS	۵ tDH	∆ ¹DS	۵ tDH	∆ ^t DS	۵ tDH	∆ ^t DS	۵ tDH	∆ ⁺DS	۵ tDH	∆ ¹DS	۵ tDH	Δ ^t DS	∆ tDH
4.0	33	23	33	23	33	23																		
3.5	28	19	28	19	28	19	28	19																
3.0	22	15	22	15	22	15	22	15	22	15														
2.5			13	9	13	9	13	9	13	9	13	9												
2.0					0	0	0	0	0	0	0	0	0	0										
1.5							-22	-15	-22	-15	-22	-15	-22	-15	-14	-7								
1.0									-65	-45	-65	-45	-65	-45	-57	-37	-49	-29						
0.9											-62	-48	-62	-48	-54	-40	-46	-32	-38	-24				
0.8													-61	-53	-53	-45	-45	-37	-37	-29	-29	-19		
0.7															-49	-50	-41	-42	-33	-34	-25	-24	-17	-8
0.6																	-37	-49	-29	-41	-21	-31	-13	–15
0.5																			-31	-51	-23	-41	-15	-25
0.4																					-28	-56	-20	-40

Micron

4Gb: x8, x16 Automotive DDR3L-RS SDRAM Electrical Specifications

PDF: 09005aef85bd2a38 4Gb_auto_1_35v_ddr3L_rs.pdf - Rev. A 6/14 EN

Slew Rate (V/ns)	^t VAC at 160mV (ps)	^t VAC at 135mV (ps)	^t VAC at 130mV (ps)
>2.0	165	113	95
2.0	165	113	95
1.5	138	90	73
1.0	85	45	30
0.9	67	30	16
0.8	45	11	Note1
0.7	16	Note1	-
0.6	Note1	Note1	-
0.5	Note1	Note1	-
<0.5	Note1	Note1	-

Table 27: Minimum Required Time ^tVAC Above V_{IH(AC)} (Below V_{IL(AC)}) for Valid DQ Transition

Note: 1. Rising input signal shall become equal to or greater than $V_{IH(AC)}$ level and falling input signal shall become equal to or less than $V_{IL(AC)}$ level.

Voltage Initialization / Change

If the SDRAM is powered up and initialized for the 1.35V operating voltage range, voltage can be increased to the 1.5V operating range provided the following conditions are met (See Figure 7 (page 27)):

- Just prior to increasing the 1.35V operating voltages, no further commands are issued, other than NOPs or COMMAND INHIBITS, and all banks are in the precharge state.
- The 1.5V operating voltages are stable prior to issuing new commands, other than NOPs or COMMAND INHIBITS.
- The DLL is reset and relocked after the 1.5V operating voltages are stable and prior to any READ command.
- The ZQ calibration is performed. ^tZQinit must be satisfied after the 1.5V operating voltages are stable and prior to any READ command.

If the SDRAM is powered up and initialized for the 1.5V operating voltage range, voltage can be reduced to the 1.35V operation range provided the following conditions are met (See Figure 7 (page 27)) :

- Just prior to reducing the 1.5V operating voltages, no further commands are issued, other than NOPs or COMMAND INHIBITs, and all banks are in the precharge state.
- The 1.35V operating voltages are stable prior to issuing new commands, other than NOPs or COMMAND INHIBITS.
- The DLL is reset and relocked after the 1.35V operating voltages are stable and prior to any READ command.
- The ZQ calibration is performed. ^tZQinit must be satisfied after the 1.35V operating voltages are stable and prior to any READ command.

V_{DD} Voltage Switching

After the DDR3L DRAM is powered up and initialized, the power supply can be altered between the DDR3L and DDR3 levels, provided the sequence in Figure 7 is maintained.

Figure 7: V_{DD} Voltage Switching

Note: 1. From time point Td until Tk, NOP or DES commands must be applied between MRS and ZQCL commands.

Revision History

Rev. A – 06/14

• Initial release; Created using Rev. I, 4/13, version of the 4Gb: x4, x8, x16 DDR3L-RS SDRAM component data sheet as reference document (09005aef8488935b)

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 www.micron.com/productsupport Customer Comment Line: 800-932-4992 Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners. This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.

Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.