FAIRCHILD

SEMICONDUCTOR IM

DM74164 8-Bit Serial In/Parallel Out Shift Registers

General Description

These 8-bit shift registers feature gated serial inputs and an asynchronous clear. A low logic level at either serial input inhibits entry of the new data, and resets the first flip-flop to the low level at the next clock pulse, thus providing complete control over incoming data. A high logic level on either input enables the other input, which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup and hold time requirements will be entered. Clock-ing occurs on the low-to-high level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

Connection Diagram

Order Number 54164DMQB, 54164FMQB or DM74164N See Package Number J14A, N14A or W14B

Features

- Gated (enable/disable) serial inputs
- Fully buffered clock and serial inputs
- Asynchronous clear
- Typical clock frequency 36 MHz
- Typical power dissipation 185 mW

Function Table

Inputs				Outputs				
Clear	Clock	Α	в	Q _A	\mathbf{Q}_{B}		QH	
L	X	X	Х	L	L		L	
Н	L	X	х	Q _{A0}	Q_{BO}		Q _{H0}	
Н	1	н	Н	н	Q _{An}		Q_{Gn}	
Н	1	L	Х	L	Q _{An}		Q _{Gn}	
Н	\uparrow	X	L	L	Q _{An}		Q _{Gn}	

H = High Level (steady state), L = Low Level (steady state)

X = Don't Care (any input, including transitions) $\uparrow = Transition from low to high level$

 Q_{An} , Q_{Gn} = The level of Q_A or Q_G before the most recent T transition of the clock; indicates a one-bit shift.

March 1998

© 1998 Fairchild Semiconductor Corporation DS006552

www.fairchildsemi.com

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	

54	–55°C to +125°C
DM74	0°C to +70°C
Storage Temperature Range	−65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter			54164			DM74164		
			Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage		2			2			V
VIL	Low Level Input Voltage				0.8			0.8	V
I _{OH}	High Level Output Current				-0.4			-0.4	mA
I _{OL}	Low Level Output Current				8			8	mA
f _{CLK}	Clock Frequency (Note 5)				25	0		25	MHz
tw	Pulse Width	Clock	20			20			ns
	(Note 5)	Clear	20			20			
t _{su}	Data Setup Time (Note 5)		15			15			ns
t _H	Data Hold Time (Note 5)		0			5			ns
T _A	Free Air Operating Temperature		-55		125	0		70	°C

Note 1: Ine Absolute Maximum Hatings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating" Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Con	Conditions		Тур	Max	Units
					(Note 2)		
VI	Input Clamp Voltage	V _{CC} = Min, I _I =	= –14 mA			-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OF}	V _{CC} = Min, I _{OH} = Max		3.2		V
	Voltage	V _{IL} = Max, V _{IH}	= Min				
Vol	Low Level Output	V _{CC} = Min, I _{OL}	V _{CC} = Min, I _{OL} = Max		0.2	0.4	V
	Voltage	$V_{IH} = Min, V_{IL}$	= Max				
l _l	Input Current @ Max	V _{CC} = Max, V _I	$V_{CC} = Max, V_1 = 5.5V$			1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V _{CC} = Max, V _I	$V_{CC} = Max, V_1 = 2.4V$			40	μA
I _{IL}	Low Level Input Current	V _{CC} = Max, V _I	$V_{\rm CC} = Max, V_{\rm I} = 0.4V$			-1.6	mA
los	Short Circuit	V _{CC} = Max	54	-10		-27.5	mA
	Output Current	(Note 3)	DM74	-9		-27.5	
I _{cc}	Supply Current	V _{CC} = Max (No	V _{CC} = Max (Note 4)		37	54	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time.

Note 4: I_{CC} is measured with all outputs open, SERIAL inputs grounded, the CLOCK input at 2.4V, and a momentary ground, then 4.5V, applied to the CLEAR input. Note 5: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

www.fairchildsemi.com

www.fairchildsemi.com

