

L4902A

HEPTAWATT (Vertical)

ORDERING NUMBER : L4902A

DUAL 5V REGULATOR WITH RESET AND DISABLE

- DOUBLE BATTERY OPERATING
- OUTPUT CURRENTS : I₀₁ = 300 mA
 I₀₂ = 300 mA
- FIXED PRECISION OUTPUT VOLTAGE 5 V ± 2 %
- RESET FUNCTION CONTROLLED BY INPUT VOLTAGE AND OUTPUT 1 VOLTAGE
- RESET FUNCTION EXTERNALLY PRO-GRAMMABLE TIMING
- RESET OUTPUT LEVEL RELATED TO OUT-PUT 2
- OUTPUT 2 INTERNALLY SWITCHED WITH ACTIVE DISCHARGING
- OUTPUT 2 DISABLE LOGICAL INPUT
- LOW LEAKAGE CURRENT, LESS THAN 1μA AT OUTPUT 1
- RESET OUTPUT NORMALLY HIGH
- INPUT OVERVOLTAGE PROTECTION UP TO 60V
- OUTPUT TRANSISTORS SOA PROTECTION
- SHORT CIRCUIT AND THERMAL OVER-LOAD PROTECTION

DESCRIPTION

The L4902A is a monolithic low drop dual 5V regulator designed mainly for supplying microprocessor systems.

Reset and data save functions and remote switch on/off control can be realized.

PIN CONNECTION

June 2000

PIN FUNCTIONS

N°	Name	Function				
1	Input 1	Regulators Common Input				
2	Timing Capacitor	If Reg. 2 is switched-ON the delay capacitor is charged with a 5μ A constant current. When Reg. 2 is switched-OFF the delay capacitor is discharged.				
3	Disable Input	A high level (> V _{DT}) disable output Reg. 2.				
4	GND	Common Ground				
5	Reset Output	When pin 2 reaches 5V the reset output is switched high.				
		Therefore $t_{RD} = C_t \left(\frac{5V}{10\mu A}\right)$; $t_{RD} (ms) = C_t (nF)$				
6	Output 2	5V – 300mA Regulator Output. Enabled if $V_0 1 > V_{RT}$. DISABLE INPUT < V_{DT} and $V_{IN} > V_{IT}$. If Reg. 2 is switched-OFF the C_{02} capacitor is discharged.				
7	Output 1	5V – 300mA. Low leakage (in switch-OFF condition) output				

BLOCK DIAGRAM

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{IN}	DC Input Voltage Transient Input Overvoltage (t = 40ms)	28 60	V V
Ιo	Output Current	Internally Limited	
T _{stg} , T _j	Storage and Junction Temperature	– 40 to 150	°C

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal Resistance Junction-case Max	4	°C/W

ELECTRICAL CHARACTERISTICS ($V_{IN} = 14.4V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified))

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vi	DC Operating Input Voltage				24	V
V ₀₁	Output Voltage 1	R Load 1kΩ	4.95	5.05	5.15	V
V _{02 H}	Output Voltage 2 HIGH	R Load 1kΩ	V ₀₁ –0.1	5	V ₀₁	V
V _{02 L}	Output Voltage 2 LOW	$I_{02} = -5mA$		0.1		V
I ₀₁	Output Current 1 max.	$\Delta V_{01} = -100 mV$	300			mA
I _{L01}	Leakage Output 1 Current	$V_{IN} = 0, V_{01} \le 3V$			1	μA
I ₀₂	Output Current 2 max.	$\Delta V_{02} = -100 \text{mV}$	300			mA
V _{i01}	Output 1 Dropout Voltage (*)	$I_{01} = 10mA$ $I_{01} = 100mA$ $I_{01} = 300mA$		0.7 0.8 1.1	0.8 1 1.4	V V V
VIT	Input Threshold Voltage		V ₀₁ + 1.2	6.4	V ₀₁ + 1.7	V
V _{iTH}	Input Threshold Voltage Hyst.			250		mV
ΔV_{01}	Line Regulation 1	$7V < V_{IN} < 24V, I_{01} = 5mA$		5	50	mV
ΔV_{02}	Line Regulation 2	$7V < V_{IN} < 24V, I_{02} = 5mA$		5	50	mV
ΔV_{01}	Load Regulation 1	5mA < I ₀₁ < 300mA		40	80	mV
ΔV_{02}	Load Regulation 2	5mA < I ₀₂ < 300mA		50	80	mV
ΙQ	Quiescent Current	$\begin{array}{l} I_{01} = I_{02} \leq 5mA \\ 0 < V_{IN} < 13V \\ 7V < V_{IN} < 13V \\ 7V < V_{IN} < 13V \\ V_{02} \ LOW \\ 7V < V_{IN} < 13V \\ V_{02} \ HIGH \end{array}$		4.5 2.7 1.6	6.5 4.5 3.5	mA
V _{RT}	Reset Threshold Voltage		$V_{02} - 0.15$	4.9	$V_{02} - 0.05$	V
V _{RTH}	Reset Threshold Hysteresis		30	50	80	mV
V_{RH}	Reset Output Voltage HIGH	I _R = 500μA	V ₀₂ – 1	4.12	V ₀₂	V
V_{RL}	Reset Output Voltage LOW	$I_R = -1mA$		0.25	0.4	V
t _{RD}	Reset Pulse Delay	$C_t = 10nF$	3	5	11	ms
t _d	Timing Capacitor Discharge Time	$C_t = 10nF$			20	μs
Vdt	V ₀₂ Disable Threshold Voltage			1.25	2.4	V
ID	V ₀₂ Disable Input Current	$\begin{array}{l} V_D \leq 0.4 V \\ V_D \geq 2.4 V \end{array}$		- 150 - 30		μΑ μΑ
$\frac{\Delta V_{01}}{\Delta T}$	Thermal Drift	$-20^{\circ}C \leq T_{amb} \leq 125^{\circ}C$		0.3 - 0.8		mV/°C
$\frac{\Delta V_{02}}{\Delta T}$	Thermal Drift	$-20^{\circ}C \leq T_{amb} \leq 125^{\circ}C$		0.3 - 0.8		mV/°C
SVR1	Supply Voltage Rejection	$f = 100Hz V_R = 0.5V$ Io = 100mA	50	84		dB
SVR2	Supply Voltage Rejection		50	80		dB

* The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is lowered of 25 mV under constant output current condition.

TEST CIRCUIT

APPLICATION INFORMATION

In power supplies for μ P systems it is necessary to provide power continuously to avoid loss of information in memories and in time of day clocks, or to save data when the primary supply is removed. The L4902A makes it very easy to supply such equipments ; it provides two voltage regulators (both 5V high precision) with common inputs plus a reset output for the data save function and a Reg. 2 disable input.

CIRCUIT OPERATION (see Figure 1)

After switch on Reg. 1 saturates until V_{01} rises to the nominal value.

When the input reaches V_{IT} and the output 1 is higher than V_{RT} the output 2 (V_{02}) switches on and the reset output (V_R) also goes high after a programmable time T_{RD} (timing capacitor).

 $V_{02} \mbox{ and } V_R$ are switched together at low level when one of the following conditions occurs :

- a high level (V_{DT}) is applied on pin 3;
- an input overvoltage ;
- an overload on the output 1 (V_{01} V_{RT}) ;
- a switch off (VIN VIT VITH);

and they start again as before when the condition is removed.

An overload on output 2 does not switch Reg. 2, and does not influence Reg. 1.

The V₀₁ output features :

- 5V internal reference without voltage divider between the output and the error comparator
- very low drop series regulator element utilizing current mirrors

permit high output impedance and then very low leakage current even in power down condition.

This output may therefore be used to supply circuits continuously, such as volatile RAMs, allowing the use of a back-up battery.

The V_{02} output can supply other non essential 5 V circuits which may be powered down when the system is inactive, or that must be powered down to prevent uncorrect operation for supply voltages below the minimum value.

The reset output can be used as a "POWER DOWN INTERRUPT", permitting RAM access only in correct power conditions, or as a "BACK-UP ENABLE" to transfer data into in a NV SHADOW MEMORY

Figure 2

when the supply is interrupted.

The disable function can be used for remote on/off control of circuits connected to the V_{02} output.

APPLICATION SUGGESTIONS

Figure 2 illustrate how the L4902A's disable input may be used in a CMOS μ Computer application. The V₀₁ regulator (low consumption) supply permanently a CMOS time of day clock and a CMOS μ computer chip with volatile memory. V₀₂ output, supplying non-essential circuits, is turned OFF under control of a μ P unit.

Figure 3 : P.C. Board Component Layout of Figure 2

Configurations of this type are used in products where the OFF switch is part of a keyboard scanned by a micro which operates continuously even in the OFF state.

Another application for the L4902A is supplying a shadow-ram microcomputer chip (SGS M38SH72 for example) where a fast NV memory is backed up on chip by a EEPROM when a low level on the reset output occurs.

By adding two CMOS-SCHMIDT-TRIGGER and few external components, also a watch dog func-

tion may be realized (see Figure 5). During normal operation the microsystem supplies a periodical pulse waveform; if an anomalous condition occours (in the program or in the system), the pulses will be absent and the disable input will be activated after a settling time determined by R1 C1. In this condition all the circuitry connected to V_{02} will be disabled, the system will be restarted with a new reset front.

The disable of V_{02} prevent spurious operation during microprocessor malfunctioning.

Figure 5

Quiescent Current versus Output

Figure 6 :

Figure 8 : Supply Voltage Rejection Regulators 1 and 2 versus Input Ripple Frequence

Figure 7 : Quiescent Current versus Input Voltage

DIM.	mm			inch			
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			4.8			0.189	
С			1.37			0.054	
D	2.4		2.8	0.094		0.110	
D1	1.2		1.35	0.047		0.053	
E	0.35		0.55	0.014		0.022	
E1	0.7		0.97	0.028		0.038	
F	0.6		0.8	0.024		0.031	
F1			0.9			0.035	
G	2.34	2.54	2.74	0.095	0.100	0.105	
G1	4.88	5.08	5.28	0.193	0.200	0.205	
G2	7.42	7.62	7.82	0.295	0.300	0.307	
H2			10.4			0.409	
H3	10.05		10.4	0.396		0.409	
L	16.7	16.9	17.1	0.657	0.668	0.673	
L1		14.92			0.587		
L2	21.24	21.54	21.84	0.386	0.848	0.860	
L3	22.27	22.52	22.77	0.877	0.891	0.896	
L4			1.29			0.051	
L5	2.6	2.8	3	0.102	0.110	0.118	
L6	15.1	15.5	15.8	0.594	0.610	0.622	
L7	6	6.35	6.6	0.236	0.250	0.260	
L9		0.2			0.008		
М	2.55	2.8	3.05	0.100	0.110	0.120	
M1	4.83	5.08	5.33	0.190	0.200	0.210	
V4	40° (typ.)						
Dia	3.65		3.85	0.144		0.152	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -

Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com