NFC Ferrite Antenna (13.56MHz)

ANFCA-4040-A02

Moisture Sensitivity Level (MSL) – MSL 1

FEATURES:

- \bullet Ultra thin flexible antenna structure ($220\text{+/-}46~\mu\text{m})$
- Peel and Stick antenna designs
- Ferrite sheet backing optimizes magnetic fields
- Wide operating temperature range -40°C to +85°C
- Matched to leading NFC controller IC's
- Customized solutions available

RoHS/RoHS II compliant

40 x 40 mm

> **APPLICATIONS:**

- Mobiles
- NFC Payment readers
- Electronic wallets
- Health care ID scanners
- NFC data loggers transport
- Ticketing systems
- Museum information systems
- Electronic Parking Payments
- Industrial data collection.

STANDARD SPECIFICATIONS:

Maximum Ratings			
Item	Value		
Operating Temperature Range	-40° C to $+85^{\circ}$ C	C	
Storage Temperature Range	-40° C to $+85^{\circ}$ C		
Item		s	pec
Operating Frequency (M	(Hz)	1	3.56
Inductance (µH)		1,7:	±10%
RAC (Ω)		1.2	±20%
Test Condition		1 MHz	z/ <mark>500m</mark> V
ast aquinment: TU20200			

Test equipment: TH28288

Connection to the PCB

While soldering thin wires to the pads on the antenna is possible, great care must be taken, (see manual soldering Section 10.1). However it is recommended to make contact to the antenna pads via Pogo Pins. These are soldered onto the product PCB, and interface mechanically via a pressure contact to the pads on the NFC antenna. Volume applications using the NFC antenna should always use Pogo Pins to make the connections.

Product Customization

ABRACON IS

ISO9001:2008 CERTIFIED

Products can be customized according to customer requirements. Features such as the dimensions or shape of the coil or its inductance can be customized. Please contact ABRACON or authorized distributor / agent for further details.

ANFCA-4040-A02

40 x 40 mm

No	Material Name	Thickness (µm)	Thickness (in)
1	PET Tape	10+/-3	0.000393±0.000118
2	Ferrite Sheet	100+/-5	0.00393±0.000196
3	Adhesive Tape	10+/-3	0.000393±0.000118
4	FCP	70+/-30	0.00275±0.000118
5	Adhesive Tape	30+/-5	0.00118±0.000196
6	Release Paper	/	/
Total	Thickness	220+/-46	0.00866±0.00181

Pb RoHS/RoHS II compliant

40 x 40 mm

ANFCA-4040-A02

MATCHING CIRCUIT AND REFERENCE VALUES

Component	Value for reference only ⁽¹⁾	Notes		
ΙO	560 / 330nH	EMC filter resonance at 15.4MHz (NXP) and 20.6MHz		
LO	(NXP / Broadcom)	(Broadcom).		
C0	180pF	EMC filter resonance at 15.4MHz (NXP) and 20.6MHz (Broadcom).		
C1	39pF	Antenna matching component, to achieve series resonance at 13.56MHz. (Note: Antenna matching component value may need optimization depending upon antenna environment) Antenna matching component, to achieve parallel resonance at 15MHz. (Note: Antenna matching component value may need optimization depending upon antenna environment).		
C2 (Includes C2a and C2b values)	82pF			
Rq	0 Ohm	Damping resistor, the Rq resistor used to lower Q-value if above 35 Ohm, if needed.		
Note (1) Values can chan	ge depending upon drive	e circuits, design of the antenna and environment.		
тх	TX1	Antenna model CI Resistors CI Resistors CI Rant/2 Cant Cant Rant/2 Cant Rant/2 Cant Rant/2 Cant Rant/2 Cant Rant/2 Cant		

Reflow Profile. Not recommended for reflow soldering

Manual Soldering: Recommended Soldering iron temperature setting: 330°C, 3 seconds max, 3 times max.

ANT2

Packaging: 100pcs per polyphene bag / box

ATTENTION: Abracon Corporation's products are COTS – Commercial-Off-The-Shelf products; suitable for Commercial, Industrial and, where designated, Automotive Applications. Abracon's products are not specifically designed for Military, Aviation, Aerospace, Life-dependant Medical applications or any application requiring high reliability where component failure could result in loss of life and/or property. For applications requiring high reliability and/or presenting an extreme operating environment, written consent and authorization from Abracon Corporation is required. Please contact Abracon Corporation for more information.

