ATC 100 E Series Porcelain High RF Power Multilayer Capacitors

- Case E Size (.380" x .380")
- Capacitance Range 1 pF to 5100 pF
- High Q
- Ultra-Stable Performance
- High RF Current/Voltage
- High RF Power

Low ESR/ESL

- Extended WVDC up to 7200 VDC
- High Reliability
- Available with Encapsulation Option*

ATC, the industry leader, offers new improved ESR/ESL performance for the 100 E Series RF Capacitors. This high Q multilayer capacitor is ultra-stable under high RF current and voltage applications. High density porcelain construction provides a rugged, hermetic package.

ATC offers an encapsulation option for applications requiring extended protection agains arc-over and corona.

Typical functional applications: Bypass, Coupling, Tuning, Impedance Matching and DC Blocking.

Typical circuit applications: HF/RF Power Amplifiers, Transmitters, Antenna Tuning, Plasma Chambers and Medical (MRI coils).

*For leaded styles only

ENVIRONMENTAL TESTS

ATC 100 E Series Capacitors are designed and manufactured to meet and exceed the requirements of EIA-198, MIL-PRF-55681 and MIL-PRF-123.

THERMAL SHOCK:

MIL-STD-202, Method 107, Condition A.

MOISTURE RESISTANCE:

MIL-STD-202, Method 106.

LOW VOLTAGE HUMIDITY:

MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.

LIFE TEST:

MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied.

200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

QUALITY FACTOR (Q):

Greater than 10,000 (1 pF to 1000 pF) @ 1 MHz. Greater than 10,000 (1100 pF to 5100 pF) @ 1 KHz.

TEMPERATURE COEFFICIENT OF CAPACITANCE (TCC):

+90 ±30 PPM/°C (-55°C to +125°C)

INSULATION RESISTANCE (IR):

- 1 pF to 5100 pF:
- 10^5 Megohms min. @ +25°C at 500 VDC.
- 10^4 Megohms min. @ +125°C at 500 VDC.

WORKING VOLTAGE (WVDC):

See Capacitance Values Table, page 2.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 volts DC for 5 seconds.

RETRACE: Less than ±(0.02% or 0.02 pF), whichever is greater.

AGING EFFECTS: None

PIEZOELECTRIC EFFECTS: None

(No capacitance variation with voltage or pressure).

CAPACITANCE DRIFT: $\pm (0.02\% \text{ or } 0.02 \text{ pF})$, whichever is greater.

OPERATING TEMPERATURE RANGE:

From -55°C to +125°C (No derating of working voltage).

TERMINATION STYLES:

Available in various surface mount and leaded styles. See Mechanical Configurations, page 3.

TERMINAL STRENGTH: Terminations for chips and pellets withstand a pull of 10 lbs. min., 25 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

æ

AMERICAN

ATC North America sales@atceramics.com sal

ATC Europe saleseur@atceramics.com

TECHNICAL

CERAMICS ATC Asia sales@atceramics-asia.com

THE ENGINEERS' CHOICE™

www.atceramics.com

ATC # 001-809 Rev. M, 9/14

ATC 100 E Capacitance Values

CAP.	CAP.	TOL.	RATED	WVDC		CAP.	TOL.	RATED	WVDC		CAP.	TOL.	RATED	WVDC	·····	CAP.	TOL.	RATED	WVDC														
CODE	(pF)	TUL.	STD.	EXT.	CODE	(pF)	TUL.	STD.	EXT.	CODE	(pF)	TUL.	STD.	EXT.	CODE	(pF)	TUL.	STD.	EXT.														
1R0	1.0				5R6	5.6				470	47				391	390		3600															
1R1	1.1				6R2	6.2				510	51			GE	431	430																	
1R2	1.2			1GE	6R8	6.8	B, C		I GE	560	56			VOLTAGE	471	470																	
1R3	1.3			VOLTAGE	7R5	7.5	D		VOLTAGE	620	62				511	510																	
1R4	1.4			VO	8R2	8.2			VO	680	68			7200	561	560		2500															
1R5	1.5			ED	9R1	9.1			ED	750	75			DED	621	620																	
1R6	1.6			EXTENDED	100	10			EXTENDED	820	82			EXTENDED	681	680																	
1R7	1.7			XTE	110	11			ΧTE	910	91			LX	751	750																	
1R8	1.8			E	120	12			Ē	101	100			I	821		F, G, J,																
1R9	1.9				130	13				111	110				911	910	К, М	M															
2R0	2.0	B, C	3600	7200	150	15		3600	7200	121		F, G, J,	3600	ΛΟΓΤ.	102	1000			N/A														
2R1	2.1	D	0000	1200	160	16			1200	131	130	К, М			112	1100			14/71														
2R2	2.2				180	18				151	150			5000	122	1200		1000															
2R4	2.4			3E	200	20	F, G, J		3E	161	160			EXT.	152	1500																	
2R7	2.7			VOLTAGE	220	22	К, М		TA(181	180			E	182	1800																	
3R0	3.0																	ΝΟΙ	240	24			VOLTAGE	201	200	-			222	2200	+ +		
3R3	3.3															0	270	27				221	220				272	2700					
3R6	3.6				DE	300		30		DEI	241	240				302	3000																
3R9	3.9					1					EXTENDED	330	33			EXTENDED	271	270			N/A	332	3300	G, J,									
4R3	4.3			ΕX	360	36			EX	301	300				392	3900	K, M	500															
4R7	4.7				390	39				331	330				472	4700																	
5R1	5.1				430	43				361	360				512	5100																	

VRMS = 0.707 X WVDC

• SPECIAL VALUES, TOLERANCES, MATCHING, AND CAPACITOR ASSEMBLIES ARE AVAILABLE. • ATC'S CUSTOM POWER CAPACITOR ASSEMBLY CATALOG, ATC # 001-900 LISTS ASSEMBLY OPTIONS. • EXTENDED WORKING VOLTAGES ARE AVAILABLE FOR COMMERCIAL ORDERS ONLY. • ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.

	CAPACITANCE TOLERANCE										
Code	B	C	D	F	G	J	K	Μ			
Tol.	±0.1 pF	±0.25 pF	±0.5 pF	±1%	±2%	±5%	±10%	±20%			

www.atceramics.com

ATC 100 E Capacitors: Mechanical Configurations

ATC SERIES	ATC Term.	CASE SIZE	OUTLINES		DY DIMENSIO INCHES (mm)		LEAD AND TERMINATION DIMENSIONS AND MATERIALS			
& CASE Size	CODE	& TYPECASE SIZE & TYPE	W/T IS A Termination Surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS		
100E	W	E Solder Plate	$\begin{array}{c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & \rightarrow \parallel & L & \\ & \downarrow \\ & & \\ & \\ & &$.380 +.015010 (9.65 +0.38 -0.25)				Tin /Lead, Solder Plated over Nickel Barrier Termination		
100E	Р	E Pellet	$\begin{array}{c c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & \rightarrow \mid L \mid \leftarrow \uparrow \rightarrow \mid \top \mid \leftarrow \end{array}$.380 +.040010 (9.65 +1.02 -0.25)			.040 (1.02)	Heavy Tin/Lead Coated, over Nickel Barrier Termination		
100E	Т	E Solderable Nickel Barrier	$\begin{array}{c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & \rightarrow \parallel & L & \leftarrow \uparrow \rightarrow \parallel \top \mid \leftarrow \end{array}$.380 +.015010 (9.65 +0.38 -0.25)			max.	RoHS Compliant Tin Plated over Nickel Barrier Termination		
100E	CA	E Gold Chip	$\begin{array}{c} Y \rightarrow \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & \rightarrow \ \ L \ \ \leftarrow \uparrow \rightarrow \ \top \ \leftarrow \end{array}$.380 +.015010 (9.65 +0.38 -0.25)	.380 ±.010	.170 (4.32)		RoHS Compliant Gold Plated over Nickel Barrier Termination		
100E	MS	E Microstrip	$\begin{array}{c c} \downarrow & & & T_L \\ \hline \psi_L & & & \downarrow \\ \hline \psi_L & & & \downarrow \\ \hline \uparrow & & & \downarrow \\ \hline \uparrow & & \downarrow \\ \hline \end{pmatrix} \begin{array}{c} L & \leftarrow & & \downarrow \\ L & \leftarrow & & \uparrow \\ \hline \end{array} \end{array}$		(9.65 ±0.25)	max.		High Purity Silver Leads L _L = .750 (19.05) min. W _L = .350 ±.010 (8.89 ±0.25)		
100E	AR	E Axial Ribbon	$\begin{array}{ c c c c c } \hline & & & & & \\ \hline \downarrow & & & & \\ \hline \hline W_L & & & & \\ \hline W_L & & & & \\ \hline \hline \uparrow & & & \\ \hline & & & \\ \hline \end{array} \begin{array}{ c c c c } \hline & & & & & \\ \hline W_L & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \end{array} \begin{array}{ c c } \hline & & & & \\ \hline & & & \\ \hline \end{array} \begin{array}{ c c } \hline & & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline \end{array} \begin{array}{ c } \hline & & & \\ \hline & & & \\ \hline \end{array} \begin{array}{ c } \hline & & & \\ \hline \end{array} \begin{array}{ c } \hline & & & \\ \hline \end{array} \begin{array}{ c } \hline & & & \\ \hline \end{array} \begin{array}{ c } \hline & & & \\ \hline \end{array} \begin{array}{ c } \hline & & \\ \hline \end{array} \begin{array}{ c } \hline & & \\ \hline \end{array} \begin{array}{ c } \hline & & \\ \hline \end{array} \begin{array}{ c } \hline & & \\ \hline \end{array} \end{array} \begin{array}{ c } \hline \\ \hline \end{array} \begin{array}{ c } \hline \end{array} \begin{array}{ c } \hline \end{array} \end{array} \begin{array}{ c } \hline \end{array} \begin{array}{ c } \hline \end{array} \end{array} \begin{array}{ c } \hline \end{array} \end{array}$.380 +.035010 - (9.65 +0.89 -0.25)	+.035010	+.035010			N/A	$\begin{array}{c} (0.09 \pm 0.23) \\ T_L = .010 \pm .005 \\ (0.25 \pm 0.13) \\ \text{Leads are Attached with} \\ \text{High Temperature Solder.} \end{array}$
100E	AW	E Axial Wire	$ \begin{array}{c c} & \rightarrow & L_L & \leftarrow \\ \hline & & & \\ \hline & & \\ \hline & & & \\ \hline & & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \\ \hline$				N/A	Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 2.25 (57.2) min.		
100E	RW	E Radial Wire	$\rightarrow L_{L} \leftarrow $					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 1.0 (25.4) min.		

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

A
M
E
R
I
C
A
N
T
E
C
H
N
I
C
A
M
I
C
S

ATC North America
sales@atceramics.com
ATC Europe
ATC Asia
Sales@atceramics.com

www.atceramics.com

ATC 100 E Capacitors: Non-Magnetic Mechanical Configurations

ATC SERIES	ATC TERM.	CASE SIZE	OUTLINES	-	DY DIMENSIO INCHES (mm)		LEAD AND TERMINATION DIMENSIONS AND MATERIALS		
& CASE SIZE	CODE	& TYPE	W/T IS A Termination Surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS	
100E	WN	E Non-Mag Solder Plate	$\begin{array}{c} Y \rightarrow \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & \rightarrow \ L \ \leftarrow \uparrow \rightarrow \ \top \ \leftarrow \end{array}$.380 +.015010 (9.65 +0.38 -0.25)				Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination	
100E	PN	E Non-Mag Pellet	$\begin{array}{c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & \rightarrow \mid \ L \mid \leftarrow \uparrow \rightarrow \mid \top \mid \leftarrow \end{array}$.380 +.040010 (9.65 +1.02 -0.25)			.040 (1.02) max.	Heavy Tin/Lead Coated, over Non-Magnetic Barrier Termination	
100E	TN	E Non-Mag Solderable Barrier	er $Y \rightarrow \leftarrow \downarrow$ $W \rightarrow \leftarrow \downarrow$ $W \rightarrow \leftarrow \uparrow \rightarrow \top \leftarrow$ $W \rightarrow \leftarrow \uparrow \rightarrow \top \leftarrow$ $W \rightarrow \leftarrow \uparrow \rightarrow \top \leftarrow$ H = 0.15010 (9.65 + 0.38 - 0.25)				RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination		
100E	MN	Non-Mag Microstrip	$\begin{array}{c c} & \rightarrow & L_{L} & \leftarrow & T_{L} \\ \hline & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline & W_{L} & & & \downarrow & \downarrow \\ \hline & & & & \downarrow & \downarrow \\ \hline & & & & & \downarrow & \downarrow \\ \hline & & & & & \downarrow & \downarrow \\ \hline & & & & & \downarrow & \downarrow \\ \hline & & & & & \downarrow & \downarrow \\ \hline & & & & & \downarrow & \downarrow \\ \hline & & & & & \downarrow & \downarrow \\ \hline & & & & \downarrow & \downarrow \\ \hline & & & & \downarrow & \downarrow \\ \hline \end{array}$.380 +.015010 (9.65 +0.38 -0.25)	.170 (4.32) max.		High Purity Silver Leads L _L = .750 (19.05) min. W _L = .350 ±.010 (8.89 ±0.25)	
100E	AN	Non-Mag Axial Ribbon	$\begin{array}{c c} \downarrow & \rightarrow \mid L_{L} \mid \leftarrow & \downarrow \\ \hline w_{L} & & & \\ \hline w_{L} & & & \\ \hline & \downarrow & \downarrow \\ \hline & \downarrow & & \downarrow & \downarrow & \\ \hline & \downarrow & \downarrow & \\ \hline & \downarrow & \downarrow & \downarrow & \\ \hline & \downarrow & \downarrow & \downarrow & \\ \hline & \downarrow & \downarrow & \downarrow & \\ \hline & \downarrow & \downarrow & \downarrow & \\ \hline & \downarrow & \downarrow & \downarrow & \\ \hline & \downarrow & \downarrow & \downarrow & \\ \hline & \downarrow & \downarrow & \downarrow & \\ \hline & \downarrow & \downarrow & \downarrow & \\ \hline & \downarrow & \downarrow & \downarrow & \downarrow & \\ \hline & \downarrow & \downarrow & \downarrow & \downarrow & \\ \hline & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\ \hline & \downarrow &$.380 +.035010 (9.65			N/A	$\begin{array}{c} \text{(0.05 \pm 0.15)}\\ \text{T}_{\text{L}} = .010 \pm .005\\ (0.25 \pm 0.13)\\ \text{Leads are Attached with}\\ \text{High Temperature Solder.} \end{array}$	
100E	BN	E Non-Mag Axial Wire	$ \begin{array}{c c} \rightarrow & L_L & \leftarrow \\ \hline \\ \hline \\ \hline \\ \rightarrow & L & \leftarrow \\ \end{array} \begin{array}{c} \downarrow \\ w \\ \hline \\ \hline$	- (9.65 +0.89 -0.25				Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 2.25 (57.2) min.	
100E	RN	E Non-Mag Radial Wire	$\rightarrow L \leftarrow \rightarrow W \leftarrow$					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 1.0 (25.4) min	

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

Suggested Mounting Pad Dimensions

ATC Europe saleseur@atceramics.com

ATC Asia sales@atceramics-asia.com

www.atceramics.com

sales@atceramics.com

ATC 100 E Performance Data

A
M
E
R
I
C
A
N
I
C
Sales
C
E
R
A
M
I
C
Sales
A
I
C
Sales
Sales
Sales</

www.atceramics.com

Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document #001-992 Rev. B; 12/05). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC's website at www.atceramics.com/productfinder/default.asp. Click on the link for Terms and Conditions of Sale.

ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product without prior notice.

© 1996 American Technical Ceramics Corp. All Rights Reserved.

ATC # 001-809 Rev. M, 9/14

