74HC374; 74HCT374 Octal D-type flip-flop; positive edge-trigger; 3-state Rev. 3 — 20 February 2018 Produ **Product data sheet** #### 1 **General description** The 74HC374; 74HCT374 is an octal positive-edge triggered D-type flip-flop with 3-state outputs. The device features a clock (CP) and output enable (OE) inputs. The flip-flops will store the state of their individual D-inputs that meet the set-up and hold time requirements on the LOW-to-HIGH clock (CP) transition. A HIGH on $\overline{\text{OE}}$ causes the outputs to assume a high-impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the flip-flops. Inputs also include clamp diodes, this enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}. The 74HCT374 features reduced input threshold levels to allow interfacing to TTL logic levels. #### **Features and benefits** 2 - Input levels: - For 74HC374: CMOS level For 74HCT374: TTL level - Octal bus interface - Non-inverting 3-state outputs - 8-bit positive, edge-triggered register - Common 3-state output enable input - Independent register and 3-state buffer operation - · Complies with JEDEC standard no. 7 A - ESD protection: - HBM JESD22-A114F exceeds 2000 V - MM JESD22-A115-A exceeds 200 V - Specified from -40 °C to +85 °C and -40 °C to +125 °C ## 3 Ordering information **Table 1. Ordering information** | Type number | Package | Package | | | | | | | | | | |-------------|-------------------|---------|--|----------|--|--|--|--|--|--|--| | | Temperature range | Name | Description | Version | | | | | | | | | 74HC374D | -40 °C to +125 °C | SO20 | plastic small outline package; 20 leads; | SOT163-1 | | | | | | | | | 74HCT374D | | | body width 7.5 mm | | | | | | | | | | 74HC374DB | -40 °C to +125 °C | SSOP20 | plastic shrink small outline package; 20 leads; | SOT339-1 | | | | | | | | | 74HCT374DB | | | body width 5.3 mm | | | | | | | | | | 74HC374PW | -40 °C to +125 °C | TSSOP20 | plastic thin shrink small outline package; 20 leads; | SOT360-1 | | | | | | | | | 74HCT374PW | | | body width 4.4 mm | | | | | | | | | ## 4 Functional diagram ## 5 Pinning information ## 5.1 Pinning ## 5.2 Pin description Table 2. Pin description | Symbol | Pin | Description | |--------------------------------|----------------------------|--| | D0, D1, D2, D3, D4, D5, D6, D7 | 3, 4, 7, 8, 13, 14, 17, 18 | data inputs | | Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7 | 2, 5, 6, 9, 12, 15, 16, 19 | data outputs | | ŌĒ | 1 | output enable input (active LOW) | | СР | 11 | clock pulse input (active rising edge) | | GND | 10 | ground (0 V) | | V _{CC} | 20 | supply voltage | ## 6 Functional description Table 3. Function table [1] | Operating mode | Input | | | Internal | Output | |-----------------------------------|-------|----|----|------------|--------| | | OE | СР | Dn | flip-flops | Qn | | Load and read register | L | 1 | I | L | L | | | L | 1 | h | Н | Н | | Load register and disable outputs | Н | 1 | I | L | Z | | | Н | 1 | h | Н | Z | ^[1] H = HIGH voltage level; 74HC HCT374 All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2018. All rights reserved. L = LOW voltage level; h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition; I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition; Z = high-impedance OFF-state; ^{↑ =} LOW-to-HIGH clock transition. ## 7 Limiting values ### Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|-------------------------|---|------|------|------| | V _{CC} | supply voltage | | -0.5 | +7 | V | | I _{IK} | input clamping current | $V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$ | - | ±20 | mA | | lok | output clamping current | V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V | - | ±20 | mA | | Io | output current | $-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$ | - | ±35 | mA | | I _{CC} | supply current | | - | 70 | mA | | I _{GND} | ground current | | -70 | - | mA | | T _{stg} | storage temperature | | -65 | +150 | °C | | P _{tot} | total power dissipation | SO20, SSOP20 and TSSOP20 packages [1] | - | 500 | mW | ^[1] For SO20 packages: P_{tot} derates linearly with 8 mW/K above 70 °C. For SSOP20 and TSSOP20 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C. ## 8 Recommended operating conditions Table 5. Recommended operating conditions | Symbol | Parameter | Conditions | | 74HC374 | | | 74HCT374 | | | |------------------|-------------------------------------|-------------------------|-----|---------|-----------------|-----|----------|-----------------|------| | | | | Min | Тур | Max | Min | Тур | Max | | | V _{CC} | supply voltage | | 2.0 | 5.0 | 6.0 | 4.5 | 5.0 | 5.5 | V | | VI | input voltage | | 0 | - | V_{CC} | 0 | - | V _{CC} | V | | Vo | output voltage | | 0 | - | V _{CC} | 0 | - | V _{CC} | V | | Δt/ΔV | input transition rise and fall rate | V _{CC} = 2.0 V | - | - | 625 | - | - | - | ns/V | | | | V _{CC} = 4.5 V | - | 1.67 | 139 | - | 1.67 | 139 | ns/V | | | | V _{CC} = 6.0 V | - | - | 83 | - | - | - | ns/V | | T _{amb} | ambient temperature | | -40 | +25 | +125 | -40 | +25 | +125 | °C | ## 9 Static characteristics Table 6. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | | 1 | Γ _{amb} (°C |) | | | Unit | |-----------------|--------------------------|---|------|------|------|----------------------|------|--------|------|------| | | | | | 25 | | -40 to | +85 | -40 to | +125 | | | | | | Min | Тур | Max | Min | Max | Min | Max | | | 74HC374 | | | | | | | | | | | | V _{IH} | HIGH-level | V _{CC} = 2.0 V | 1.5 | 1.2 | - | 1.5 | - | 1.5 | - | V | | | input voltage | V _{CC} = 4.5 V | 3.15 | 2.4 | - | 3.15 | - | 3.15 | - | V | | | | V _{CC} = 6.0 V | 4.2 | 3.2 | - | 4.2 | - | 4.2 | - | V | | V _{IL} | LOW-level | V _{CC} = 2.0 V | - | 8.0 | 0.5 | - | 0.5 | - | 0.5 | ٧ | | | input voltage | V _{CC} = 4.5 V | - | 2.1 | 1.35 | - | 1.35 | - | 1.35 | ٧ | | | | V _{CC} = 6.0 V | - | 2.8 | 1.8 | - | 1.8 | - | 1.8 | V | | V _{OH} | HIGH-level | V _I = V _{IH} or V _{IL} | | | | | | | | | | | output voltage | I _O = -20 μA; V _{CC} = 2.0 V | 1.9 | 2.0 | - | 1.9 | - | 1.9 | - | V | | | | I _O = -20 μA; V _{CC} = 4.5 V | 4.4 | 4.5 | - | 4.4 | - | 4.4 | - | ٧ | | | | I _O = -20 μA; V _{CC} = 6.0 V | 5.9 | 6.0 | - | 5.9 | - | 5.9 | - | V | | | | I_{O} = -6.0 mA; V_{CC} = 4.5 V | 3.98 | 4.32 | - | 3.84 | - | 3.7 | - | V | | | | I_{O} = -7.8 mA; V_{CC} = 6.0 V | 5.48 | 5.81 | - | 5.34 | - | 5.2 | - | V | | V _{OL} | LOW-level | $V_I = V_{IH}$ or V_{IL} | | | | | | | | | | | output voltage | I_{O} = 20 μ A; V_{CC} = 2.0 V | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | I _O = 20 μA; V _{CC} = 4.5 V | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | I _O = 20 μA; V _{CC} = 6.0 V | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | I _O = 6.0 mA; V _{CC} = 4.5 V | - | 0.15 | 0.26 | - | 0.33 | - | 0.4 | V | | | | I _O = 7.8 mA; V _{CC} = 6.0 V | - | 0.16 | 0.26 | - | 0.33 | - | 0.4 | ٧ | | I _I | input leakage current | $V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$ | - | - | ±0.1 | - | ±1.0 | - | ±1.0 | μΑ | | l _{oz} | OFF-state output current | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 6.0 \text{ V}$; $V_O = V_{CC}$ or GND | - | - | ±0.5 | - | ±5.0 | - | ±10 | μΑ | | I _{CC} | supply current | $V_I = V_{CC}$ or GND; $I_O = 0$ A;
$V_{CC} = 6.0 \text{ V}$ | - | - | 8.0 | - | 80 | - | 160 | μΑ | | Cı | input capacitance | | - | 3.5 | - | - | - | - | - | pF | | Symbol | Parameter | Conditions | | | • | T _{amb} (°C |) | | | Unit | |------------------|---------------------------|---|------|------|------|----------------------|-------|--------|------|------| | | | | 25 | | | -40 t | o +85 | -40 to | +125 | 1 | | | | | Min | Тур | Max | Min | Max | Min | Max | | | 74HCT37 | 74 | | | | 1 | | | | | | | V _{IH} | HIGH-level input voltage | V _{CC} = 4.5 V to 5.5 V | 2.0 | 1.6 | - | 2.0 | - | 2.0 | - | V | | V _{IL} | LOW-level input voltage | V _{CC} = 4.5 V to 5.5 V | - | 1.2 | 0.8 | - | 0.8 | - | 0.8 | V | | V _{OH} | HIGH-level | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$ | | | | | | | | | | | output voltage | Ι _Ο = -20 μΑ | 4.4 | 4.5 | - | 4.4 | - | 4.4 | - | V | | | | I _O = -6 mA | 3.98 | 4.32 | - | 3.84 | - | 3.7 | - | V | | V _{OL} | LOW-level | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$ | | | | | | | | | | | output voltage | Ι _Ο = 20 μΑ | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | I _O = 6.0 mA | - | 0.16 | 0.26 | - | 0.33 | - | 0.4 | V | | I _I | input leakage current | $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$ | - | - | ±0.1 | - | ±1.0 | - | ±1.0 | μΑ | | l _{OZ} | OFF-state output current | $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 5.5 V$;
$V_O = V_{CC}$ or GND | - | - | ±0.5 | - | ±5.0 | - | ±10 | μΑ | | I _{CC} | supply current | $V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$; $I_O = 0 \text{ A}$ | - | - | 8.0 | - | 80 | - | 160 | μΑ | | ΔI _{CC} | additional supply current | per input pin; $V_I = V_{CC} - 2.1 \text{ V}$;
other inputs at V_{CC} or GND;
$V_{CC} = 4.5 \text{ V}$ to 5.5 V; $I_O = 0 \text{ A}$ | | | | | | | | | | | | OE input | - | 125 | 450 | - | 563 | - | 613 | μΑ | | | | CP input | - | 90 | 324 | - | 405 | - | 441 | μA | | | | Dn inputs | - | 35 | 126 | - | 158 | - | 172 | μA | | Cı | input
capacitance | | - | 3.5 | - | - | - | - | - | pF | ## 10 Dynamic characteristics ## **Table 7. Dynamic characteristics** Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9. | Symbol | Parameter | Conditions | | | - | Γ _{amb} (°C | ;) | | | Unit | |------------------|-----------------|---------------------------------|-----|-----|-----|----------------------|-------|--------|------|------| | | | | | 25 | | -40 t | o +85 | -40 to | +125 | | | | | | Min | Тур | Max | Min | Max | Min | Max | | | 74HC374 | ŀ | | | | | | | | | | | t _{pd} | propagation | CP to Qn; see Figure 7 | | | | | | | | | | | delay | V _{CC} = 2.0 V | - | 50 | 165 | - | 205 | - | 250 | ns | | | | V _{CC} = 4.5 V | - | 18 | 33 | - | 41 | - | 50 | ns | | | | V_{CC} = 5.0 V; C_L = 15 pF | - | 15 | - | - | - | - | - | ns | | | | V _{CC} = 6.0 V | - | 14 | 28 | - | 35 | - | 43 | ns | | t _{en} | enable time | OE to Qn; see Figure 8 [2] | | | | | | | | | | | | V _{CC} = 2.0 V | - | 41 | 150 | - | 190 | - | 225 | ns | | | | V _{CC} = 4.5 V | - | 15 | 30 | - | 38 | - | 45 | ns | | | | V _{CC} = 6.0 V | - | 12 | 26 | - | 33 | - | 38 | ns | | t _{dis} | disable time | OE to Qn; see Figure 8 [3] | | | | | | | | | | | | V _{CC} = 2.0 V | - | 50 | 150 | - | 190 | - | 225 | ns | | | | V _{CC} = 4.5 V | - | 18 | 30 | - | 38 | - | 45 | ns | | | | V _{CC} = 6.0 V | - | 14 | 26 | - | 33 | - | 38 | ns | | t _t | transition time | Qn; see Figure 7 | | | | | | | | | | | | V _{CC} = 2.0 V | - | 14 | 60 | - | 75 | - | 90 | ns | | | | V _{CC} = 4.5 V | - | 5 | 12 | - | 15 | - | 18 | ns | | | | V _{CC} = 6.0 V | - | 4 | 10 | - | 13 | - | 15 | ns | | t _W | pulse width | CP; HIGH or LOW; see Figure 7 | | | | | | | | | | | | V _{CC} = 2.0 V | 80 | 19 | - | 100 | - | 120 | - | ns | | | | V _{CC} = 4.5 V | 16 | 7 | - | 20 | - | 24 | - | ns | | | | V _{CC} = 6.0 V | 14 | 6 | - | 17 | - | 20 | - | ns | | t _{su} | set-up time | Dn to CP; see Figure 7 | | | | | | | | | | | | V _{CC} = 2.0 V | 60 | 14 | - | 75 | - | 90 | - | ns | | | | V _{CC} = 4.5 V | 12 | 5 | - | 15 | - | 18 | - | ns | | | | V _{CC} = 6.0 V | 10 | 4 | - | 13 | - | 15 | - | ns | | t _h | hold time | Dn to CP; see Figure 7 | | | | | | | | | | | | V _{CC} = 2.0 V | 5 | -6 | - | 5 | - | 5 | - | ns | | | | V _{CC} = 4.5 V | 5 | -2 | - | 5 | - | 5 | - | ns | | | | V _{CC} = 6.0 V | 5 | -2 | - | 5 | - | 5 | - | ns | | Symbol | Parameter | Conditions | | | • | Γ _{amb} (°C | ;) | | | Unit | |------------------|-------------------------------------|---|------|-----|-----|----------------------|-------|--------|------|------| | | | | 25 - | | | -40 t | o +85 | -40 to | +125 | | | | | | Min | Тур | Max | Min | Max | Min | Max | | | f _{max} | maximum | CP; see Figure 7 | | | | | | | | | | | frequency | V _{CC} = 2.0 V | 6.0 | 23 | - | 4.8 | - | 4.0 | - | MHz | | | | V _{CC} = 4.5 V | 30 | 70 | - | 24 | - | 20 | - | MHz | | | | V _{CC} = 5 V; C _L = 15 pF | - | 77 | - | - | - | - | - | MHz | | | | V _{CC} = 6.0 V | 35 | 83 | - | 28 | - | 24 | - | MHz | | C _{PD} | power
dissipation
capacitance | per flip-flop; $V_I = GND$ to V_{CC} [5] | | 17 | - | | | - | - | pF | | 74HCT37 | ' 4 | | | | | | | | | | | t _{pd} | propagation | CP to Qn; see Figure 7 [1] | | | | | | | | | | | delay | V _{CC} = 4.5 V | - | 16 | 32 | - | 40 | - | 48 | ns | | | | V _{CC} = 5.0 V; C _L = 15 pF | - | 13 | - | - | - | - | - | ns | | t _{en} | enable time | OE to Qn; V _{CC} = 4.5 V; see Figure 8 | - | 16 | 30 | - | 38 | - | 45 | ns | | t _{dis} | disable time | OE to Qn; V _{CC} = 4.5 V; see Figure 8 | - | 18 | 28 | - | 35 | - | 42 | ns | | t _t | transition time | Qn; V _{CC} = 4.5 V; see <u>Figure 7</u> [4] | - | 5 | 12 | - | 15 | - | 18 | ns | | t _W | pulse width | CP; HIGH or LOW;
V _{CC} = 4.5 V; see <u>Figure 7</u> | 19 | 11 | - | 24 | - | 29 | - | ns | | t _{su} | set-up time | Dn to CP; V _{CC} = 4.5 V;
see <u>Figure 7</u> | 12 | 7 | - | 15 | - | 18 | - | ns | | t _h | hold time | Dn to CP; V _{CC} = 4.5 V;
see <u>Figure 7</u> | 5 | -3 | - | 5 | - | 5 | - | ns | | f _{max} | maximum | CP; V _{CC} = 4.5 V; see <u>Figure 7</u> | 26 | 44 | - | 21 | - | 17 | - | MHz | | | frequency | CP; V _{CC} = 5 V; C _L = 15 pF | - | 48 | - | - | - | - | - | MHz | | C _{PD} | power
dissipation
capacitance | per flip-flop; [5] $V_I = GND \text{ to } V_{CC} - 1.5 \text{ V}$ | - | 17 | - | | | - | - | pF | $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum_i (C_L \times V_{CC}^2 \times f_o)$ where: $f_i = \text{input frequency in MHz}$; f_o = output frequency in MHz; C_L = output load capacitance in pF; V_{CC} = supply voltage in V; N = number of inputs switching; $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$ ⁽a) t is the same as t_{THL} and t_{TLH}. (b) C_{PD} is used to determine the dynamic power dissipation (P_D in μW): ### 10.1 Waveforms and test circuit Measurement points are given in Table 8. V_{OL} and V_{OH} are typical voltage output levels that occur with the output load. Figure 7. Clock input (CP) to output (Qn) propagation delay, clock pulse width, data (Dn) to clock (CP) set-up and hold times, output transition times (Qn) and maximum clock frequency Measurement points are given in Table 8. V_{OL} and V_{OH} are typical voltage output levels that occur with the output load. Figure 8. 3-state enable and disable times Table 8. Measurement points | Tubio o. Modo | aromont pointo | | | | | | | | |---------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|--|--| | Туре | Input | | Output | Output | | | | | | | VI | V_{M} | | V _X | V _Y | | | | | 74HC374 | GND to V _{CC} | 0.5 x V _{CC} | 0.5 x V _{CC} | 0.1 x V _{CC} | 0.9 x V _{CC} | | | | | 74HCT374 | GND to 3 V | 1.3 V | 1.3 V | 0.1 x V _{CC} | 0.9 x V _{CC} | | | | 74HC_HCT374 All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2018. All rights reserved. Test data is given in Table 9. Definitions: R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator C_L = Load capacitance including jig and probe capacitance R_L = Load resistance. S1 = Test selection switch Figure 9. Test circuit for measuring switching times Table 9. Test data | Туре | Input | | Load | | S1 position | | | |----------|------------------------|---------------------------------|----------------|----------------|-------------------------------------|-------------------------------------|-------------------------------------| | | VI | t _r , t _f | C _L | R _L | t _{PHL} , t _{PLH} | t _{PZH} , t _{PHZ} | t _{PZL} , t _{PLZ} | | 74HC374 | GND to V _{CC} | 6 ns | 15 pF, 50 pF | 1 kΩ | open | GND | V _{CC} | | 74HCT374 | GND to 3 V | 6 ns | 15 pF, 50 pF | 1 kΩ | open | GND | V _{CC} | ## 11 Package outline #### Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | |----------|--------|-------------|----------|------------|------------|---------------------------------| | VERSION | IEC | JEDEC JEITA | | | PROJECTION | ISSUE DATE | | SOT163-1 | 075E04 | MS-013 | | | | 99-12-27
03-02-19 | Figure 10. Package outline SOT163-1 (SO20) 74HC_HCT374 All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2018. All rights reserved Figure 11. Package outline SOT339-1 (SSOP20) 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. | OUTLINE | REFERENCES | | | | EUROPEAN | ISSUE DATE | |----------|------------|--------|-------|--|------------|-----------------------------------| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | SOT360-1 | | MO-153 | | | | -99-12-27-
03-02-19 | Figure 12. Package outline SOT360-1 (TSSOP20) ## 12 Abbreviations ### Table 10. Abbreviations | Acronym | Description | |---------|---| | CMOS | Complementary Metal-Oxide Semiconductor | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | НВМ | Human Body Model | | MM | Machine Model | | TTL | Transistor-Transistor Logic | ## 13 Revision history ### Table 11. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | | |-----------------|---|-----------------------|---------------|-----------------|--| | 74HC_HCT374 v.3 | 20180220 | Product data sheet | - | 74HC_HCT374 v.2 | | | Modifications: | The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. | | | | | | 74HC_HCT374 v.2 | 19901201 | Product specification | - | - | | ## 14 Legal information #### 14.1 Data sheet status | Document status ^{[1][2]} | Product status ^[3] | Definition | |-----------------------------------|-------------------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - Please consult the most recently issued document before initiating or completing a design. - The term 'short data sheet' is explained in section "Definitions". [2] [3] - The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com. #### 14.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. **Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### 14.3 Disclaimers Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia. Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2018. All rights reserved. Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications. **Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. #### 14.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. # 74HC374; 74HCT374 Octal D-type flip-flop; positive edge-trigger; 3-state ## **Contents** | 1 | General description | 1 | |------|----------------------------------|---| | 2 | Features and benefits | | | 3 | Ordering information | 2 | | 4 | Functional diagram | 2 | | 5 | Pinning information | | | 5.1 | Pinning | 3 | | 5.2 | Pin description | 3 | | 6 | Functional description | | | 7 | Limiting values | 4 | | 8 | Recommended operating conditions | 4 | | 9 | Static characteristics | | | 10 | Dynamic characteristics | 7 | | 10.1 | Waveforms and test circuit | | | 11 | Package outline | | | 12 | Abbreviations | | | 13 | Revision history | | | 14 | Legal information | | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.