2,

12C_LCD
USER MANUAL

English Version 1.2

-«

2014-9-8
Sparking Work Space

Shenzhen, China

Release Note

Version Note Date
v10 Inifial version 20150620
vi1.1 Add bitmap converter illustration 20150712
V1.2 1. Update bitmap converter illustration 20150827

2. Modify the description of bitmap display function

Chapter 1.Introduction

I2C_LCD12864 is an easy-to-use display module, Hereinafter
referred to as 12C_LCD.

The resolution of 1I2C_LCD is 128*64, support black and white
display. Maximum 168 characters and maximum 128*64 pixel black &
white picture can be displayed.

I2C_LCD has an independent controller, most of the complex
operations run in the independent conftroller, it can reduce the user
controller (MCU, Arduino) of the computing burden.

We provide users with full-featured Arduino library, in the case of
using the library, simply a few lines of the program, you can achieve
the characters, graphics and other display functions.

1.1 How to use this manual

In this manual, describes the use of APl functions in the Arduino
library, and provides the relevant sample code to help users use
12C_LCD.

Firstly, the user can learn to use the 1I2C_LCD by demo code of
each chapter. Demo code already contains the detailed annotation
and illustration. When using the demo code encountered difficulties,
please referring to the second section of each chapter to understand
the use of API function.

When you get problems, you can search through this manual with
keywords to find the solution of the problem:s.

1.2 Parameters of 12C LCD

1.2.1 Features

I2C_LCD is an easy-to-use display module. Provide a highly efficient
dual color Ul interface design approach.

1. Only 2 Arduino pins are occupied (Use 12C interface).

2. Supports standard 12C mode (100Kbit/s) and fast I2C mode
(400Kbit/s).

3. Compatible with multiple communication logic levels:
2.8~5VDC.

4. Arduino library supported, use a line of code to complete the
display.

5. Integrate 7 sizes of ASCIl fonts, 5 graphics functions.

6. Provide dedicated picture data convert software (Bitmap
Converter).

7. Most of the complex operation is processed by 12C_LCD
independent conftroller, saving user confroller resources.

8. Supports cursor function, can set up 16 cursor flicker frequency.
9. Supports 128 level backlight brightness adjustment.

10. Support 64 level screen contrast adjustment.

11. Support device address modification.

12. Supports 127 12C_LCD work in parallel.

13. When debugging code, it can take the place of the serial
monitor to monitor the program running state.

14. Two abnormal recovery methods are provided: reset and
restore the factory settings.

15. Compatible with Grove interface and 4Pin-100mil interface
(under the Grove socket).

16. 4 symmetrical fixed hole design for easy user installation.

17. China style unique appearance.

1.2.2 Electrical Characteristics

Symbol Description Minimum | Typical | Maximum Unit
5V Power in 4.5 5 55 \Y
SCL\SDA 12C bus 2.8 5 55 \Y
lin Current 13 20 371 mA

1.3 Resource Requirements

Hardware requirements: Any Arduino compatible board, any
controller with 12C communication function;

Voltage requirement: Power supply voltage is 5V, communication
logic voltage is 2.8~5V;

ROM requirements: Biger than 4Kb;
RAM requirements: Biger than 512Byte;

1.4 Screen & Coordinates

The screen is made up of many points that can be individually
controlled, which are called pixels. Users can draw on any specified
pixel by the program.

The horizontal scale is called the X-axis, and the vertical scale is
called the Y-axis. X-axis and Y-axis coordinate representation of a two-
dimensional coordinate (X, Y). In the program need to use both X and
Y coordinates, X coordinates always in the front. The upper left corner
of the I2C_LCD screen is the default coordinate (0, 0). The positive X
direction is always right and the positive Y direction is always down.

Figure 1.4.1 shows the positive direction of the 12C_LCD coordinate
system. All the coordinates passed to the API function are always
specified at 1 pixels for 1.

(0,0)
(127,0)

(0,63)

Figure 1.4.1 Coordinate system

Chapter 2. Character Display

12C_LCD integrated 7 ASCII fonts: Font_éx8, Font_éx12, Font_8x16_1,
Font_8x16_2, Font_10x20, Font_12x24, Font_16x32, to meet your
personalized needs.

With the support of the Arduino 1I2C_LCD library, the realization of
the character display function will become very simple, just a line of
program needed.

This chapter will show how to display different sizes, different colors
of characters.

Notes: Font 10x20 represents a font, its width is 10 pixels, 20 pixels
high.

2.1 12C_LCD Supported Characters

12C_LCD supports American Standard Code for information

interchange (ASCIl). Compiled as 8-bit format characters, allowing for
the maximum of 126 different character code. For the convenience of

users, in 12C_LCD the 28~31 is defined as 4 direction arrow "<—t | ".

The ASCII characters and extended characters which 12C_LCD

supported are shown in the following table:

Character set for 12C_LCD:

DEC HEX Char | DEC HEX Char | DEC HEX Char | DEC HEX Char
28 0x1C = 53 0x35 5 78 0x4E N 103 | 0x67 g
29 0x1D = 54 0x36 6 79 0x4F 0 104 | 0x68 h
30 Ox1E t 55 0x37 7 80 0x50 P 105 | 0x69 [
31 Ox1F | 56 0x38 8 81 0x51 Q 106 | O0x6A J
3 0x20 o7 0x39 9 82 0x52 R 107 | 0x6B k
S0 0x21 ! o8 0x3A 83 0x53 S 108 | 0x6C I
34 0x22 ! 59 0x3B ; 84 0x54 T 109 | 0x6D m
35 0x23 # 60 0x3C < 85 0x55 u 110 | Ox6E n
36 0x24 $ 61 0x3D = 86 0x56 vV 111 | Ox6F o
37 0x25 % 62 0x3E > 87 0x57 W 112 | 0x70 o
38 0x26 & 63 0x3F ? 88 0x58 X 113 | 0x71 q
39 0x27 ' 64 0x40 @ 89 0x59 Y 114 | 0x72 r
40 0x28 (65 0x41 A 90 0x5A VA 115 | 0x73 s
41 0x29) 66 0x42 B 91 0x5B [116 | 0x74 t
42 0x2A * 67 0x43 C 92 0x5C \ 117 | 0x75 u
43 0x2B + 68 0x44 D 93 0x5D] 118 | 0x76 v
44 0x2C 69 0x45 E 94 0x5E B 119 | 0x77 w
45 0x2D - 70 0x46 F 95 0x5F _ 120 | 0x78 X
46 0x2E : 71 0x47 G 96 0x60 121 | 0x79 y
47 0x2F / 72 0x48 H 97 0x61 a 122 | 0x7A z
48 0x30 0 73 0x49 I 98 0x62 b 123 | 0x7B {
49 0x31 1 74 0x4A J 99 0x63 c 124 | 0x7C |
50 0x32 2 75 0x4B K 100 | Ox64 d 125 | 0x7D }
51 0x33 3 76 0x4C L 101 | 0x65 e 126 | Ox7E "
52 0x34 4 7 0x4D M 102 | 0x66 f

2.2 Sample Project Of Character Display

2.2.1 Display character and string

2.2.1.1 Sample 1
Objective: Demonstrate how to display character and string.
Path: UserManual\DemoCode\Sec_2211_Text
Steps:
Erase full screen with white background color;
Delay for T1s;

Set the font to Font_6x8, the character address update mode is set
to FM_ANL_AAA mode, the character display mode is set to
BLACK_BAC;

Display character ‘A’ at (0, 0);

Display the string "Sparking" at (0, 10);

Set the start coordinate as (0, 20);

Print “Hello, World!” on 12C_LCD at the start coordinate;
Circulating print the number of seconds since reset at (0 ,30);

Code:

#include <Wire.h>

#include <I2C LCD. h>

12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)

{
Wire. begin() ; //12C controler init

}

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s

//8%16 font size, auto new line, black character on white back ground
LCD. FontModeConf (Font 6x8, FM ANL AAA, BLACK BAC);

LCD. DispCharAt CA”, 0, 0); //Display character.
LCD. DispStringAt (“Sparking...”, 0, 10); //Display string.

//Set the start coordinate.

LCD. CharGotoXY (0, 20) :

//Print string on 12C_LCD at the start coordinate
LCD. print ("Hello, World!”);

while (1)
{
//Set the start coordinate
LCD. CharGotoXY (0, 30) ;
//Print the number of seconds since reset.
LCD. print(millis () /1000, DEC) ;
delay (1000) ; //Delay for 1s

}
Operating Results:

2.2.2 Font and color settings

2.2.2.1 Sample 1

Objective: Demonstrate how to display different fonts, different

colors.
Path: UserManual\DemoCode\Sec_2221_Text
Steps:
Erase full screen with white background color;

Delay for Ts;

Set the font to Font_8x16_1, the character address update mode is
set to FM_ANL_AAA mode, the character display mode is set to
BLACK_BAC;

Display the string "Sparking" at (0, 10);
Delay for 2s;

To change the font to Font_10x20, change the character display
mode to WHITE_BAC, then display the string "Sparking" at (0, 30).

Code:

#include <Wire.h>

#include <I2C LCD. h>

12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)

{

Wire. begin() ; //12C controler init

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s.

//Set the font, character address update mode, display mode
LCD. FontModeConf (Font 8x16 1, FM ANL AAA, BLACK BAC) ;

LCD. DispStringAt (“Sparking”, 0, 10); //Display string
delay (2000) ; //Delay for 2s.

//Set the font, character address update mode, display mode
LCD. FontModeConf (Font 10x20, FM ANL AAA, WHITE BAC) ;
LCD. DispStringAt (“Sparking”, 0, 30); //Display string

while (1) ; //Wait for ever
}

Operating Results:

2.2.3 Setting Character Background Color

2.2.3.1 Sample 1

Objective: Demonstrate how to set the background colors of the

characters.

Path: UserManual\DemoCode\Sec_2231_Text
Steps:

Erase full screen with white background color;
Delay for Ts;

Set the font to Font_10x20, the character address update mode is
set to FM_ANL_AAA mode, the character display mode is set fo
BLACK_BAC;

Display the string "Sparking" at (0, 10);

Delay for 2s;

Display the string " YES_BAC " at (0, 20);

Delay for 2s;

Change the character display mode to BLACK_NO_BAC;
Display the string " NO_BAC " at (0, 27);

Code:

#tinclude <Wire.h>
#include <I2C _LCD. h>

I12C_LCD LCD;

uint8 t I2C LCD ADDRESS = 0xb5l; //Device address setting, default: 0x51

void setup(void)

{

Wire. begin() ; //12C controler init

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s

//Set the font, character address update mode, display mode
LCD. FontModeConf (Font 10x20, FM_ANL AAA, BLACK BAC) ;

LCD. DispStringAt (“Sparking”, 0, 10); //Display string
delay (2000) ; //Delay for 2s

LCD. DispStringAt ("YES BAC”, 0, 20); //Display string
delay (2000) ; //Delay for 2s

//Set the font, character address update mode, display mode.
LCD. FontModeConf (Font 10x20, FM ANL AAA, BLACK NO BAC) ;
LCD. DispStringAt ("NO BAC”, 0, 27); //Display string

while(l); //Wait for ever.

}
Operating Results:

2.2.4 Character Address Accumulation Mode

2.2.4.1 Simple 1

Objective: Demonstrate the difference between auto new line
mode (FM_ANL_AAA) and manual new line mode (FM_MNL_AAA).

Path: UserManual\DemoCode\Sec_2241 Text

Steps:
Erase full screen with white background color;

Delay for Ts;

The fontis set to Font_éx8, the character address update mode is

set to FM_ANL_AAA mode, the character display mode is set to
BLACK_BAC;

In (108, 10) display the string "Sparking™;

’

Delay for 3s;

The character address update mode is set to FM_MNL_AAA, and
display “Sparking” at (108, 40) ".

Code:

#tinclude <Wire.h>
#include <I2C LCD. h>
I12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)
{
Wire. begin() ; //12C controler init

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s.

//Set the font, character address update mode, display mode
//FM_ANL_AAA: FM AutoNewLine AutoAddrAdd

LCD. FontModeConf (Font 6x8, FM_ANL AAA, BLACK BAC) ;

LCD. DispStringAt (“Sparking”, 108, 10); //Display string.
delay (3000) ; //Delay for 3s.

//Set the font, character address update mode, display mode
//FM_MNL_AAA: FM ManualNewL ine AutoAddrAdd

LCD. FontModeConf (Font 6x8, FM MNL AAA, BLACK BAC) ;

LCD. DispStringAt (“Sparking”, 108, 40); //Display string.

while(1): //Wait for ever.

Operating Results:

2.3 Character Display API Instruction

By reading this section the user can fully understand the details of
the API function, and knows how to use it.

The following table lists the API functions associated with the text
processing in the Arduino 12C_LCD library.

Function Instruction

. Display data or character at current
print() .
position.

Display a single character at the
specified position.

DispCharAt()

DispStrinaAt Display multiple characters at a
27 L) specified position.

FontModeConf() Font mode configuration.

2.3.1 print ()

Instruction: Display data or character at current position.
Function description:
This function can use for display data or character.
LCD.print(78) gives "78";
LCD.print(1.23456) gives "1.23";
LCD.print('N') gives "N";
LCD.print("Hello world.") gives "Hello world.";

This function can display data in special format.
LCD.print(78, BIN) gives "1001110";

LCD.print(78, OCT) gives "116";

LCD.print(78, DEC) gives "78";

LCD.print(78, HEX) gives "4E";
LCD.printin(1.23456, 0) gives "1";
LCD.printin(1.23456, 2) gives "1.23";
LCD.printin(1.23456, 4) gives "1.2346";

Return: Null

Example: Display “Hello” at (10,0).

L.CD. CharGotoXY (10, 0) :
LCD. print (“Hello”)

2.3.2 DispCharAt ()

Instruction: Displaying a single character at the specified position.

Function Prototype:

void DispCharAt(char buf, uint8_t x, uint8_t y)

Parameter Paramet?r Acceptable Value Value Instruction
Instruction
The
buf character to ASCII characters Any ASCII character.
be written.
The total number of points on
X X—coordinate 0~127 the X-axis is 128, encoding
07127.
. The total number of points on
y Y-coordinate 0~63

the Y-axis is 64, encoding 0 63.

Return: Null

Example: Display 'A" at (0, O) coordinate.
LCD. DispCharAt(‘A’ , 0, 0);

2.3.3 DispStringAt ()

Instruction: Display mulfiple characters at specified position.

Function Prototype:

void DispStringAt(char *buf, uint8_t x, uint8_t y)

Parameter .
Parameter . Acceptable Value Value Instruction
Instruction

) An array name or
Pointer to the
*buf Null

string. ¢
address of a string.

The total number of
. points on the X-axis

X X-coordinate 0~127) .

is 128, encoding
07127.

The total number of
y Y-coordinate 0~63 points on the Y-axis

is 64, encoding 0 63.

Return: Null
Example: Display “Sparking™ at (0, 30) coordinate.
LCD. DispStringAt (”Sparking”, 0, 30);

2.3.4 FontModeConf()

Instruction: Configure font display mode.

Function Prototype:

void FontModeConf(enum LCD_FontSort font,

enum LCD_FontMode mode, enum LCD_CharMode cMode)

Parameter

Parameter Acceptable Value Value Instruction

Instruction

Font size for 6%8 pixels, the
Font_6x8
default value.
Font_6x12 Font size for 6%12 pixels.
Font_8x16_1 Font size for 8%16 pixels.
font Font type. Font_8x16_2 Font size for 8+%16 pixels.
Font_10x20 Font size for 10%20 pixels
Font_12x24 Font size for 12%24 pixels
Font_16x32 Font size for 16%32 pixels
Auto wrap, address automatic
FM_ANL_AAA accumulation, this is short for
FM AutoNewLine AutoAddrAdd.
Character Manual wrap, address automatic
address) ..
mode FM_MNL_AAA accumulation, this is short for
update
mode. FM ManualNewLine AutoAddrAdd.
Manual wrap, manual address
FM_MNL_MAA accumulation, this is short for
FM ManualNewLine ManualAddrAdd.
White character, black background,
WHITE_BAC
the default value.
Character WHITE_NO_BAC White character, no background.
cMode display
mode. BLACK_BAC Black character, white background.
BLACK_NO_BAC Black character, no background.

Return: Null

Example: Set the font to Font_6x8, set the character address
update mode to FM_ANL_AAA, set the character display mode to

BLACK_BAC.

LCD. FontModeConf (Font_6x8, FM_ANL_AAA, BLACK BAC) ;

Chapter 3.The Usage of Cursor

In many applications, the cursor is required to indicate the current
focus. In order to facilitate the user to build a fast interactive interface,
I2C_LCD integrated the cursor function. User can config the cursor's

switch, position, size, flicker frequency and other properties by the
relevant API functions.

This chapter will describe how to configure and use the cursor.

3.1 Sample Project For Cursor Usage

3.1.1 The property of the cursor

3.1.1.1 Sample 1

Objective: Demonstrate the method of setting up the cursor switch,
position and flicker frequency.

Path: UserManual\DemoCode\Sec_3111_Cusor
Steps:
Erase full screen with white background color;

Delay for Ts;

The font is set to Font_8x16_1, the character address update mode
is set to FM_ANL_AAA mode, the character display mode is set to
BLACK_BAC;

Display time string "12:00:00" at (0, 30);
Delay for 2s;
Set the cursor position to the second;

Open the cursor and set the flash frequency level to 6;

Delay for 5s;

Move the cursor to the ten bit of the second.

Code:

#tinclude <Wire.h>

#include <I2C LCD. h>

12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)
{
Wire. begin() ; //12C controler init

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s

//Set the font, character address update mode, display mode
LCD. FontModeConf (Font 8x16 1, FM_ANL AAA, BLACK BAC);

LCD. DispStringAt(“12:00:007, 0, 30); //Display clcok string.
delay (2000) ; //Delay for 2s

//To move the cursor point to ones place of second.

//Calculate the X position of the cursor in accordance with the font
width: x=8X7=56

//Calculate the starting position of the cursor based on the starting
position of the character: y=30.

//Calculate the width of the cursor in accordance with the font width:
width=8.

//Calculate the height of the cursor in accordance with the font
height: height=16

//APl Prototype: void CursorGotoXY (x, y, width, height);

LCD. CursorGotoXY (56, 30, 8, 16);

//0pen the cursor, and set the flicker cycle to 6-level.
LCD. CursorConf (ON, 6) ;
delay (5000) ; //Delay for 5s.

//To move the cursor point to decade of second.
LCD. CursorGotoXY (48, 30, 8, 16):

delay (5000) ; //Delay for 5s
LCD. CursorConf (OFF, 6): //Turn off the cursor.

while(l); //Wait for ever.

Operating Results:

3.2 Cursor Config API Instruction

This section describes the details of the cursor API functions, and
show the usage of them.

The following table lists the API functions associated with the cursor
in the 12C_LCD library for Arduino.

Function

Instruction

CursorConf()

Cursor property configuration.

CursorGotoXY()

Cursor position configuration.

3.2.1

CursorConf ()

Instruction: Set the cursor's switch and the flicker frequency.

Function Prototype:

void CursorConf(enum LCD_SwitchState swi, uint8_t freq)

Parameter Acceptable .
Parameter . Value Instruction
Instruction Value
Close the cursor, the
OFF
_ default value.
SWi Cusor ON/OFF
ON Open the cursor.
Cursor blink 16 stage cursor blink
freq 0~15 :
frequency. frequency setting.
Return: Null

Example: The cursor switch is set to ON,

set to 6.

and the blink frequency is

LCD. CursorConf (ON, 6) :

3.2.2 CursorGotoXY ()

Instruction: Set the position of the cursor.

Function Prototype:

void CursorGotoXY (uint8_t x, uint8_t y, uint8_t width, uint8_t height)

Parameter Acceptable]
Parameter . Value Instruction
Instruction Value
Starting X— The total number of points on
X coordinates of the 0~127 the X-axis is 128, encoding
cursor. 07127.
Starting Y- The total number of points on
y coordinates of the 0~63 the Y-axis is 64, encoding
cursor. 0763.
_ Cursor width of X- The maximum value of (X+width)
width) . . 0~127 .
axis direction. is 127.
) Cursor height of Y- The maximum value of (Y+height)
height) . . 0~63)
axis direction. is 63.
Return: Null

Example: The starting position of the cursor is set to (0,0), the width
of the cursor is set to 20, the height of the cursor is set to 8.

LCD. CursorGotoXY (0, 0, 20, 8):

Chapter 4. Drawing 2D Graphics

In order to meet the needs of the user interface design, 12C_LCD
integrates the functions of 2D graphics rendering, it can draw points,
lines, circles and rectangles. To achieve these graphics rendering, you
only need to call the API functions provided by the library. For example,
to draw a circle, pass the center coordinates and radius parameters to
an APl function, you will achieve a circle drawing, users do not involve
complex graphics algorithm, greatly reduce the difficulty.

Since the graphics related algorithms are running in the 12C_LCD
independent conftroller, it can save the ROM and RAM resources of the
user controller.

This chapter describes how to use 12C_LCD library to quickly draw
2D graphics with API functions.

4.1 Sample Project Of 2D Graphics

4.1.1 Drawing points and lines

4.1.1.1 Sample 1
Objective: Demonstrate drawing lines in different colors.
Path: UserManual\DemoCode\Sec_4111_Graphic
Steps:
Erase full screen with white background color;
Delay for 1s;
Draw a black horizontal line from (0, 20) to (127, 20) ;
Delay for 2s;
Draw a black vertical line from (20, 0) to (20, 63) ;

Delay for 2s;

Draw a black dot at (63, 50);
Delay for 2s;
Draw a filt black line from (0, 0) to (127, 63) ;

Code:

#tinclude <Wire.h>
#include <I2C LCD. h>
T12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default:

void setup(void)

{
Wire. begin() ; //12C controler init.

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s.

//Draw a black horizontal |ine

//Prototype: void DrawHLineAt (startX, endX, y, color)
LCD. DrawHLineAt (0, 127, 20, BLACK) ;

delay (2000) ; //Delay for 2s.

//Draw a black vertical line.

//Prototype: void DrawVLineAt (startY, endY, x, color)
LCD. DrawVLineAt (0, 63, 20, BLACK) ;

delay (2000) ; //Delay for 2s.

//Draw a black point.

//Prototype: void DrawDotAt(x, y, color)
LCD. DrawDotAt (63, 50, BLACK) ;

delay (2000) ; //Delay for 2s.

//Draw any black line

//Prototype: void DrawLineAt (startX, endX, startY, endY, color)

LCD. DrawLineAt (0, 127, 0, 63, BLACK);

while(1): //Wait for ever.
}

Operating Results:

0x51

4.1.1.2 Sample 2

Objective: Demonstrate drawing lines in different color.
Path:UserManual\DemoCode\Sec_4112_Graphic
Steps:

Erase full screen with black background color;
Delay for 1s;

Draw a white horizontal line from (0, 20) to (127, 20) ;
Delay for 2s;

Draw a white vertical line from (20, 0) to (20, 63) ;
Delay for 2s;

Draw a white dot at (63, 50);

Delay for 2s;

Draw a filt white line from (0, 0) to (127, 63) ;

Code:

#tinclude <Wire.h>
#include <I2C _LCD. h>

I12C LCD LCD;
uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)

{
Wire. begin() ; //12C controler init

void loop (void)

{
LCD. CleanAll (BLACK) ; //Erase all.
delay (1000) : //Delay for 1s

//Draw a white horizontal |ine

//Prototype: void DrawHLineAt (startX, endX, y, color)
LCD. DrawHLineAt (0, 127, 20, WHITE) ;

delay (2000) ; //Delay for 2s

//Draw a white vertical line

//Prototype: void DrawVLineAt (startY, endY, x, color)
LCD. DrawVLineAt (0, 63, 20, WHITE) ;

delay (2000) ; //Delay for 2s

//Draw a white point.

//Prototype: void DrawDotAt (x, y, color)
LCD. DrawDotAt (63, 50, WHITE) ;

delay (2000) ; //Delay for 2s

//Draw any white |ine.
//Prototype: void DrawlLineAt (startX, endX, startY, endY, color)

LCD. DrawLineAt (0, 127, 0, 63, WHITE);

while(1); //Wait for ever.

}
Operating Results:

4.1.2 Drawing rectangle and circle

4.1.2.1 Sample 1

Objective: Demonstrate drawing rectangle and circle in different

colors.

Path: UserManual\DemoCode\Sec_4121_Graphic
Steps:

Erase full screen with white background color;

Delay for Ts;

Draw a 107-width, 33-height rectangle at (10, 15), and filled with

black;

Delay for 2s;

Draw a circle with a radius of 30 at (63, 31), and filled with black.

Code:

#tinclude <Wire.h>
#include <I2C LCD. h>
I12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0xb5l; //Device address setting, default: 0x51

void setup(void)

{

Wire. begin() ; //12C controler init
1

void loop (void)

{

LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s.

//Draw a rectangle, and filled with black;

//Prototype: void DrawRectangleAt (x, y, width, height, mode)
LCD. DrawRectangleAt (10, 15, 107, 33, BLACK FILL);

delay (2000) ; //Delay for 2s.

//Draw a circle, and filled with black;
//Prototype: void DrawCircleAt(x, y, r, mode)

LCD. DrawCircleAt (63, 31, 30, BLACK FILL):

while(1); //Wait for ever.

}
Operating Results:

4.1.2.2 Sample 2

Objective: Demonstrate drawing rectangle and circle in different
colors.

Path: UserManual\DemoCode\Sec_4122_Graphic
Steps:

Erase full screen with black background color;
Delay for Ts;

Draw a 107-width, 33-height rectangle at (10, 15), and filled with
white;

Delay for 2s;

Draw a circle with a radius of 30 at (63, 31), and filled with white.

Code:

#tinclude <Wire.h>

#tinclude <I2C _LCD. h>

12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)

{

Wire. begin() ; //12C controler init

void loop (void)

{
LCD. CleanAll (BLACK) ; //Erase all.
delay (1000) ; //Delay for 1s.

//Draw a rectangle, and filled with white;

//Prototype: void DrawRectangleAt (x, vy, width, height, mode)
LCD. DrawRectangleAt (10, 15, 107, 33, WHITE FILL);

delay (2000) ; //Delay for 2s.

//Draw a circle, and filled with white;

//Prototype: void DrawCircleAt(x, y, r, mode)
LCD. DrawCircleAt (63, 31, 30, WHITE FILL);

while(1); //Wait for ever.
}

Operating Results:

4.1.2.3 Sample 3

Objective: Demonstrate the method and color setting of drawing
rectangle and circle.

Path: UserManual\DemoCode\Sec_4123_Graphic
Steps:

Erase full screen with white background color;

Delay for Ts;

Draw a circle with a radius of 50 at (63, 31), and filled with black;

Delay for 2s;

Draw a 60-width, 20-height white rectangle at (33, 21), and without
fill;

Delay for 2s;

Draw a 52-width, 12-height rectangle at (37, 25), and filled with
white.

Code:

#tinclude <Wire.h>
#tinclude <I2C LCD. h>
I12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0x5l1; //Device address setting, default: 0x51

void setup(void)
{
Wire. begin() ; //12C controler init

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s.

//Draw a circle, and filled with black
//Prototype: void DrawCircleAt(x, y, r, mode)
LCD. DrawCircleAt (63, 31, 50, BLACK FILL);
delay (2000) ; //Delay for 2s

//Draw a white rectangle, and without fill.

//Prototype: void DrawRectangleAt (x, vy, width, height, mode)
LCD. DrawRectangleAt (33, 21, 60, 20, WHITE NO FILL):

delay (2000) ; //Delay for 2s.

//Draw a rectangle, and filled with white.
//Prototype: void DrawRectangleAt (x, y, width, height, mode)

LCD. DrawRectangleAt (37, 25, 52, 12, WHITE FILL);

while(1); //Wait for ever.

Operating Results:

4.2 2D Graphics A

Pl Instruction

This section describes the details of the 2D graphics API functions,

and show the usage of them.

The following table lists the API functions associated with the 2D
graphics in the 12C_LCD library for Arduino.

Function

Instruction

At
DrawDotAt()

the specified location, use the specify
color to painting point.

: At
DrawHLineAt()

the specified location, use the specify
color to painting horizontal line.

: At
DrawVLineAt()

the specified location, use the specify
color to painting vertical line.

: At
DrawLineAt()

the specified location, use the specify
color to painting any line.

At
DrawRectangleAt()

the specified location, use the specify
mode to painting rectangle.

: At
DrawCircleAt()

the specified location, use the specify

mode to painting circle.

4.2.1 DrawDotAt ()

Instruction: At the specified
painting a point.

Function Prototype:

location, use the specify color to

void DrawDotAt(uint8_t x, uint8_t y, enum LCD_ColorSort color)

Parameter | ParameterInstruction

A
cceptable Value Instruction
Value

X-coordinates of the
points.

The total number of points on
0~127 the X-axis is 128, encoding
07127.

) The total number of points on
Y-coordinates of the .. .
y . 0~63 the Y-axis is 64, encoding
points. ~
0 63.
WHITE White point.
color The color of point.
BLACK Black point.
Return: Null

Example: 7% Draw a black dot at (0, 0).
LCD. DrawDotAt (0, 0, BLACK) ;

4.2.2

DrawHLineAt ()

Instruction: Draw a horizontal line use the specify color.

Function Prototype:

void DrawHLineAt(uint8_t startX, uint8_t endX,

uint8_t y, enum LCD_ColorSort color)

. Acceptable .
Parameter | ParameterInstruction Value Instruction
Value
Starting X-— The total number of points on
startX coordinates of the 0~127 the X—axis is 128, encoding
line. 07127.
. . The total number of points on
Ending X-coordinates o .
endX . 0~127 the X-axis is 128, encoding
of the line. .
0 127.
Th 1 f poi
Y—coordinate of the e tota ?umber 0 p01nt§ on
y . 0~63 the Y-axis is 64, encoding
line. ~
0 63.
WHITE White.
color The color of line.
BLACK Black.
Return: Null

Example: Draw a black horizontal line from (0, 0) to (127, 0).

LCD. DrawHLineAt (0,

4.2.3 DrawVlineAt ()

127, 0, BLACK) ;

Instruction: Draw a vertical line use the specify color.

Function Prototype:

void DrawVLineAt(uint8_t startY, uint8_t endY,

uint8_t x, enum LCD_ColorSort color)

A tabl
Parameter | ParameterInstruction SEEEDAE Value Instruction
Value
Starting Y- The total number of points on
startY coordinates of the 0~63 the Y-axis is 64, encoding
line. 0763.
. . The total number of points on
Ending Y-coordinates . .
endY) 0~63 the Y-axis is 64, encoding
of the line. ~
0 63.
) The total number of points on
X—coordinate of the L .
X . 0~127 the X—axis is 128, encoding
line. ~
0 127.
WHITE White.
color The color of line.
BLACK Black.
Return: Null

Example: Draw a black vertical line from (0O, O) to (0O, 63).
LCD. DrawVLineAt (0, 63, 0, BLACK) ;

4.2.4

DrawlineAt ()

Instruction: Draw a line with the specified color from start point to
the destination.

Function Prototype:

void DrawLineAt(uint8_t startX, uint8_t endX,

uint8_t startY, uint8_t endY, enum LCD_ColorSort color);

A tabl
Parameter | ParameterInstruction G E Value Instruction
Value
Starting X-— The total number of points on
startX coordinates of the 0~127 the X-axis is 128, encoding
line. 07127.
. . The total number of points on
Ending X-coordinates L .
endX) 0~127 the X—axis is 128, encoding
of the line. 9
0 127.
Starting Y- The total number of points on
startY coordinates of the 0~63 the Y-axis is 64, encoding
line. 0763.
. . The total number of points on
Ending Y-coordinates L .
endY i 0~63 the Y-axis is 64, encoding
of the line. ~
0 63.
White.
The color of the U e
color .
line.
BLACK Black.
Return: Null

Example: Draw a black slash from (0, 0) to (127, 63) .

L.CD. DrawLineAt (0,

4.2.5 DrawRectangleAt ()

127, 0, 63, BLACK) ;

Instruction: Draw a rectangle with the specified parameters.

Function Prototype:

void DrawRectangleAt(uint8_t x, uint8_t y, uint8_t width,

uint8_t height, enum LCD_DrawMode mode);

Parameter

ParameterInstruction

Acceptable
Value

Value Instruction

Starting X- The total number of points on
X coordinates of the 0~127 the X—axis is 128, encoding
rectangle. 07127.
Starting Y- The total number of points on
y coordinates of the 0~63 the Y-axis is 64, encoding
rectangle. 0763.
dth X-axis direction 0~127 The maximum value of
Wi ~
width. (X+width) is 127.
height Y-axis direction 0~63 The maximum value of
I ~
9 height. (Y+height) is 63.
WHITE_NO_FILL White without filling.
The color and fill WHITE_FILL White with filling.
mode mode of the
rectangle. BLACK_NO_FILL Black without filling.
BLACK_FILL Black with filling.
Return: Null

Example: Draw a 60-width, 40-height black rectangle at (0, 0), and

without fill.

LCD. DrawRectangleAt (0, 0, 60, 40, BLACK NO FILL) ;

4.2.6 DrawCircleAt ()

Instruction: Draw a circle with the specified parameters.

Function Prototype:

void DrawCircleAt(int8_t x, int8_t y, uint8_t r,

enum LCD_DrawMode mode);

Acceptable
Parameter | ParameterInstruction 5 Value Instruction
Value
The center X- The total number of points on
X coordinates of the 0~127 the X—axis is 128, encoding

circle.

07127.

The center Y- The total number of points on
y coordinates of the 0~63 the Y-axis is 64, encoding
circle. 0763.
Radius of the . .
r) 0~127 The maximum value of r is 127.
circle.
WHITE_NO_FILL White without filling.
Whit ith filling.
The color and fill WHITE_FILL ite wi illing
mode .
mode of the circle.) o
BLACK_NO_FILL Black without filling.
BLACK_FILL Black with filling.
Return: Null
Example: Draw a circle with a radius of 25 at (60, 30), and filled
with black.

LCD. DrawCircleAt (60, 30, 25, BLACK FILL);

Chapter 5. Bitmap Display

In order to enrich the user interface elements, 12C_LCD integrated
the bitmap display function, you can display any image on the
12C_LCD (Maximum support for 128*64 dual color pictures).

This chapter describes how to use the API function to achieve
desired picture display.

5.1 Sample Project Of Bitmap Display

5.1.1 Display a bitmap

5.1.1.1 Sample 1
Objective: Demonstrate how to display a bitmap.
Path: UserManual\DemoCode\Sec_5111_Bitmap
Steps:
Erase full screen with white background color;
Delay for Ts;
Switch 12C_LCD work mode to drawing mode;

Display the bitmap of Tuzki(Tuzki.omp) at (30, 0), details of picture
data packet generation, please refer to section 5.3;

Delay for 5s;

Display "Sparking" logo at (0, 0);

Code:
#tinclude <Wire.h>

#include <I2C LCD. h>

I12C LCD LCD;
extern GUI Bitmap t bmTuzki; //Declare bitmap data packet.
extern GUI Bitmap t bmSPLogo; //Declare bitmap data packet.

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)

{

Wire. begin() ; //12C controler init.

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s

//Booting logo ON, backlight ON, bitmap work mode
//1f you want to display characters please switch to WM_CharMode
LCD. WorkingModeConf (ON, ON, WM BitmapMode) ;

//Display bitmap at the specified location

//For details about bitmap display, please refer to the 5.3 section of
user manual.

LCD. DrawScreenAreaAt (&bmTuzki, 30, 0);

delay (5000) ; // Delay for 5s.

//Display bitmap at the specified location
LCD. DrawScreenAreaAt (&bmSPLogo, 0, 0);

while(1); //Wait for ever.

}
Operating Results:

5.2 Bitmap Display API Instruction

This section describes the details of the bitmap display API
functions, and show the usage of them.

The following table lists the APl functions associated with the
bitmap display in the I2C_LCD library for Arduino.

Function

Instruction

DrawScreenAreaAt()

Display bi

location use

tmap at the specified

the bitmap data package.

5.2.1

DrawScreenAreaAt ()

Instruction: Display bitmap at the specified location.

Function Prototype:

void DrawScreenAreaAt(GUI_Bitmap_t *bitmap, uint8_t x, uint8_t y)

Parameter
Parameter] Acceptable Value Value Instruction
Instruction
GUI_Bitmap_t
A int to th
. p?ln Y ° 9% Data package generated by
*bitmap picture data structure data type ,
Bitmap Converter.
package.
address.
Starting X-— The total number of points on
X coordinate of the 0~127 the X—axis is 128, encoding
bitmap. 07127.
Starting Y- The total number of points on
y coordinate of the 0~63 the Y-axis is 64, encoding
bitmap. 0763.
Return: Null

Example: Display the bitmap at (20, 10).
LCD. DrawScreenAreaAt (&bmTuzki, 0, 0) ;

Note: bmTuzki is the picture data packet pointer, the data packet contains
the bitmap size, the pixel data and so on. The data packet generated by

Bitmap Converter software, the detailed steps please refer to 5.3 section

5.3 Picture Data Packet Generation

This section will infroduce the method of generating a data packet
file for any image. Our feam has developed the Converter Bitmap
software for the user, the software is now supporting Mac, OS Windows,
Linux. Users only need a few steps to display the picture on 12C_LCD .

In this section, we will generate the data packet of Tuzki_1.bmp,
and display it on 12C_LCD. (The picture file is under
UserManua\DemoCode\BitmapDisplay directory.)

1. *Users can edit the bitmap by software (Photoshop, mspaint
tool for windows, and so on). Due to the I12C_LCD can display only
black and white dual color content. Therefore, it is suggested to edit
the bitmap using only black and white , or may affect the final display
effects (color bitmap will automatically be converted to black and
white by BitmapConverter software).

2. *Save the bitmap which you edited. (supported by type: *.omp,
*jpeg. *pg);

Note: Do not contains the operators and special symbols("+=*\") in the

name of the file, otherwise it will can't generate data packets

3. Running the BitmapConverter software, click "Open" to browse
and open "Tuzki_1.omp";

Launguage .
Bitmap Converter

5 Open

Lookin: | I - oCode BitmapDisay v O © O @ [[F

™ My Computer Name Size Type Date Modified
@ 2mm [Tuzki_1.bmp 574.tes bm.le 2014/8/2022:28
m Desktop
Q Flename: | | G
Files of type: image fie(*.bmp *.jpg *joeg)

4. Use the cutting tool to select the final desired image area,
and then click OK button, as shown below;

Launguage Eal[IE R4

‘

5. Pictures have been loaded into the editing area, you can use
eraser, pencil and other tools to edit the bitmap, removal of burr pixels.

Launguage EulelIEHIR 4

Open Save As Code

6. Then, click "Save As Code" button, select the path you want to
save to, here is: UserManual\DemoCode\BitmapDisplay;

Launguage BleliE8 4

5 Save As

Bitmap Converter

Save As Bitmap

Bitmap Converter

Help About

X

lockin: || I <oCode imepDipay | O © O @ E) B

Name

Size

Type Date Modified

W My Computer
@ by |
i Desktop
Q —
Files of type: |C++ file(*.cop)

7. Open "BitmapDisplay.ino" under the directory:

UserManual\DemoCode\BitmapDisplay
Then declare the data packet("bomTuzki_1") at the beginning of the

project;

Note: if you have opened the project, please close it and then open it

again;

BitmapDisplay | Arduine 1.6.5
File Edit Sketch Tools Help

BitrnapDisplay

#include <Tire h>
#inelude <I2C_LCD h>»

I2C_LCD LCD:
Iextern GUI_Fitmap_t bmTuzki_1; //Declare bitmap data packet. I
uintd_t I20_LCD_ADDRESS = Ox51; J/Device address setting default: Ox51

8. Modify the bitmap display function, change the data packet
pointer, and starting coordinates;

Note: For details of bitmap display function, please refer to 5.2.1

section;

void loop(veid)

{
1CD. Cleandl] (FHITE); /{Erase all.
delaw(1000); FiTelay for 1=

ffBooting lago ON, backlight O, bitmap work mode.
/#1f wou want to display characters please switch to TM_CharMode.
LCD. TorkingModeConf (0N, ON, WM_EitmapMade);

SiDizplay bitmap at the speeified location
LCD. Dravdereendreabt (GbmTuzki 1, 30, 0);

while(1); //Mait for ever.

9. Click the "Upload" button to upload the program to Arduino
board, then enjoy yourself.

BitrapDisplay | Arduino 1.6.5
File Edit Sketch Tools Help

EitrnapDizplay

#include <Fire h>
#include <I2C_LCD. h>

I2C_LCD LCD;
extern GUI_Bitmap_t bmTuzki_1; //Declare bitmap data packet.
uintd_t I2C_LCD_ADDRESS = 0x51; //Device address setting, default: 0x51

Chapter 6. *“Memory Read / Write
operation

This chapter for advanced users reading content, mainly
infroduces to read and write 12C_LCD display memory directly by API
function. These features are designed to meet the special needs of
advanced users, ordinary users please skip this chapter.

LCD 12C design flexible, open, not only can meet the needs of
ordinary users DIY, but also can safisfy the needs of advanced users. In
order to meet the needs of users at different levels, It has special
operation mode for advanced user , to achieve more advanced
features.

This chapter mainly infroduces how to read/write display memory
directly by API functions.

6.1 Display Memory Operation Example

6.1.1 Single byte read / write

6.1.1.1 Sample 1
Objective: Read / write one byte of display memory.
Path: UserManual\DemoCode\Sec_6111_DisRam
Steps:
Erase full screen with white background color;
Delay for Ts;

Change the [2C_LCD operation mode to ram
mode (WM_RamMode);

Write data Oxae (hex) to (O, 1);

Delay for 3s;

Read one byte of ram from (0, 1), and keep the value in the buf
variable;

Print the value of buf to serial monitor;

Code:

#include <Wire.h>

#include <I2C LCD. h>

12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)

{
Wire. begin() ; //12C controler init
//Init serial port, and set the band rate as 115200.
Serial. begin (115200) ;
1
void loop (void)
{
uint8 t buf = 0; //Buffer.
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s

//Booting logo ON, backlight ON, RAM work mode.
//1f you want to display characters please switch to WM_CharMode
LCD. WorkingModeConf (ON, ON, WM RamMode) ;

//Write one byte ram to the specified location.
//Prototype: void WriteByteDispRAM (buf, x, v);
LCD. WriteByteDispRAM (OxXAE, 0, 1);

delay (3000) ; //Delay for 3s

//Read one byte ram from the specified location
//Prototype:uint8_t ReadByteDispRAM(x, v)
buf = LCD. ReadByteDispRAM(0, 1) ;

//Print the data that just read from RAM to serial monitor.
//Print in hex format

Serial. print (“buf = 0x”);

Serial. println (buf, HEX);

while(1); //Wait for ever.

}
Operating Results:

6.1.2 Write/Read multiple bytes of data

6.1.2.1 Sample 1
Objective: Write/Read multiple bytes of data to/from display ram;
Path: UserManual\DemoCode\Sec_6121_DisRam
Steps:
Erase full screen with white background color;
Delay for Ts;

Print the data (Oxfa, Oxas, Oxaf) to serial monitor that stored in the
bufl array;

Change the [2C_LCD operation mode to ram mode
(WM_RamMode);

Write the data “OxFA, OxAF, OxAS5" to (1, 1) that stored in bufl array ;
Delay for 3s;

Read three bytes of ram from (1, 1), and keep the value in the buf2
array;

Print the data fo serial monitor that stored in the buf2 array;

Code:
#tinclude <Wire.h>

#include <I2C LCD. h>
12C LCD LCD;
uint8 t I2C LCD ADDRESS = 0xb5l; //Device address setting, default: 0x51

void setup(void)

{

Wire. begin() ; //12C controler init

//Init serial port, and set the band rate as 115200
Serial. begin(115200); }

void loop (void)

{

bytes of

of ram.

uint8_t bufl[3] {0xFA, OxAF, 0xA5}; //Write buffer.

uint8 t buf2[3] = {0}; //Read buffer.
uint8 t adder;

LCD. CleanAll (WHITE) ; //Erase all.

delay (1000) ; //Delay for 1s

//Print the data stored in bufl array to serial monitor.
Serial. print ("bufl1[3] =7);
for (adder=0; adder<3; adder++)

{
//Print in hex format.
Serial.print(” 0x”);
Serial. print (bufl[adder], HEX)

}

Serial. println(””); //New| ine.

//Booting logo ON, backlight ON, RAM work mode.
//1f you want to display characters please switch to WM_CharMode
LCD. WorkingModeConf (ON, ON, WM RamMode) ;

//Starting from the specified location, continuous write multiple
data to ram.

//Prototype: void WriteSeriesDispRAM (xbuf, length, x, v)

LCD. WriteSeriesDispRAM (bufl, 3, 1, 1);

delay (3000) ; //Delay for 3s

//Starting from the specified location, continuous read multiple bytes

//Prototype: void ReadSeriesDispRAM(*buf, length, x, y)
LCD. ReadSeriesDispRAM (buf2, 3, 1, 1);

////Print the data stored in buf2 array to serial monitor.
Serial. print ("buf2[3] =7);

for (adder=0; adder<3; adder++)

{

//Print in hex format.

Serial.print(” 0x”);

Serial. print (buf2[adder], HEX);
}

Serial. println(””): //Newl ine.

while(1): //Wait for ever.
}

Operating Results:

6.2 Ram Write/Read API Instruction

This section describes the details of the API function, and the usage
of the function related to the ram write/read.

The following table lists the API functions associated with the ram
write/read in 1I2C_LCD library for Arduino.

Function Instruction

‘ Read one byte ram from the specified
ReadByteDispRAM() location

)) Write one byte ram to the specified
WriteByteDispRAM() locat ion

. . Starting from the specified location,
ReadSeriesDispRAM()))
continuous read multiple bytes of ram.

))) Starting from the specified location,
WriteSeriesDispRAM() . . .
continuous write multiple bytes to ram.

6.2.1

ReadByteDispRAM ()

Instruction: Read one byte ram from the specified location.

Function Prototype:

uint8_t ReadByteDispRAM(uint8_t x, uint8_t y)

Parameter Acceptable]
Parameter . Value Instruction
Instruction Value
The X-coordinate The total number of points
X of where you want 0~127 on the X-axis is 128,
to read. encoding 07127.
The X-coordinate Vertical 8 points as a line,
y of where you want 0~7 a total of 64/8=8 lines,
to read. encoding 0 7.

Return: One byte of ram just read out.

Example: Read one byte of ram from (O, 0), and keep the value in

the buf variable.

Buf = LCD. ReadByteDispRAM(0, 0);

6.2.2 WriteByteDispRAM ()

Instruction: Write one byte ram to the specified location.

Function Prototype:

void WriteByteDispRAM(uint8_t buf, uint8_t x, uint8_t y)

Parameter Acceptable .
Parameter] Value Instruction
Instruction Value
The dat t
buf ¢ cara YO WA 0x00~0xff One byte of data.
to write.
The X-coordinate The total number of points
X of where you want 0~127 on the X-axis is 128,
to write. encoding 07127.
The Y-coordinate Vertical 8 points as a
y of where you want 0~7 line, a total of 64/8=8
to write. lines, encoding 0" 7.

Return: Null

Example: Write one byte of ram to (0, 0).
LCD. WriteByteDispRAM (buf, 0, 0);

6.2.3 ReadSeriesDispRAM ()

Instruction: Starting from the specified location, continuous read
multiple bytes of ram.

Function Prototype:

void ReadSeriesDispRAM(uint8_t *buf, int8_t length, uint8_t x, uint8_t y)

Parameter A
Parameter . Acceptable Value Value Instruction
Instruction
: Address of storage The name of array or a
Pointer to a .
*buf pointer to the storage
storage area.
area. area.
The num of A maximum of 255 Byte
length bytes you want 0~255 data can be read one
to read. time.
The X-
. The total number of
coordinate of . o
X 0~127 points on the X—axis is
where you want) ~
128, encoding 0 127.
to read.
The Y-
. Vertical 8 points as a
coordinate of)
y 0~7 line, a total of 64/8=8
where you want)) N
lines, encoding 0 7.
to read.
Return: Null

Example: Read ten bytes of ram data from (0, 0), and store in
buf[10] array;

LCD. ReadSeriesDispRAM (buf,

10, 0, 0);

6.2.4 WriteSeriesDispRAM ()

Instruction: Starting from the specified location, continuous write
mulfiple bytes of data to ram.

Function Prototype:

void WriteSeriesDispRAM(uint8_t *buf, int8_t length, uint8_t x, uint8_t y)

Parameter .
Parameter] Acceptable Value Value Instruction
Instruction
. Address of storage | The name of array or
Pointer to a storage .
*buf a pointer to the
area
area. storage area.
A maximum of 255
The num of bytes you
length . 0~255 Byte data can be
want to write. . .
write one time.
The total number of
The X-coordinate of) .
points on the X—-axis
X where you want to 0~127) .
. is 128, encoding
write. ~
0 127.
. Vertical 8 points as
The Y-coordinate of .
h ¢ 4 0~7 a line, a total of
where you want to ~
y yo 64/8=8 lines,
write. . ~
encoding 0 7.
Return: Null

Example: Continuous write 10 bytes of data to (O,

buf[10] array;

0), that stored in

LCD. WriteSeriesDispRAM(buf, 10, 0, 0);

Chapter 7. System Configration

This chapter will talk about system setting of I2C_LCD, mainly
comprises display mode, backlight brightness, boot logo on/off, work
mode, screen contrast, device address, recovery factory settings.

This chapter will mainly infroduce how to change the system setting
by APl function.

/.1 System Setup Example

/.1.1 Reverse/Normal display mode switch

7.1.1.1 Sample 1

Objective: Set 1I2C_LCD display mode to reverse, and then set back
to normal.

Path: UserManual\DemoCode\Sec_7111_System
Steps:

Erase full screen with white background color;
Delay for Ts;

Set the font to Font_10x20, the character address update mode is

set to FM_ANL_AAA mode, the character display mode is set to
BLACK_BAC;

Display string “Sparking” at (0, 20);
Delay for 3s;

Set 12C_LCD display mode to reverse;
Delay for 3s;

Set [2C_LCD display mode to normal;

Code:

#tinclude <Wire.h>
#tinclude <I2C _LCD. h>
I12C LCD LCD:

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)
{

Wire. begin() ; //12C controler init.

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s

//Set the font, character address update mode, display mode
LCD. FontModeConf (Font 10x20, FM ANL AAA, BLACK BAC) ;

LCD. DispStringAt (“Sparking”, 0, 20); //Display string
delay (3000) ; //Delay for 3s

//Set to reverse display mode.
LCD. DisplayConf (A11REV) ;
delay (3000) ; //Delay for 3s

//Set to normal display mode.
LCD. DisplayConf (A1INOR) ;

while(1); //Wait for ever.
}

Operating Results:

/.1.2 Work mode switch

7.1.2.1 Sample 1
Objective: Switch to character or bitmap work mode.
Path: UserManual\DemoCode\Sec_7121_System
Steps:
Erase full screen with white background color;
Delay for Ts;

Set the font to Font_8x16_1, the character address update mode is
set to FM_ANL_AAA mode, the character display mode is set to
BLACK_BAC;

Display string “Hello!” at (50, 10);

Delay for 3s;

Set 12C_LCD work mode to bitmap drawing mode;
Display bitmap of camer at (0, 0);

Delay for 3s;

Set 12C_LCD work mode back to character mode;

Display string “Director.” at (50, 30);

Code:

#tinclude <Wire.h>
#tinclude <I2C LCD. h>

12C LCD LCD;
extern GUI Bitmap t bmCamera; //Declare bitmap data packet.
uint8 t I2C LCD ADDRESS = 0xb5l; //Device address setting, default: 0x51

void setup(void)

{

Wire. begin() ; //12C controler init.

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s

//Set the font, character address update mode, display mode
LCD. FontModeConf (Font 8x16 1, FM ANL AAA, BLACK BAC);

LCD. DispStringAt (“"Hello!”, 50, 10); //Display string
delay (3000) ; //Delay for 3s

//Booting logo ON, backlight ON, bitmap work mode
//1f you want to display characters please switch to WM_CharMode
LCD. WorkingModeConf (ON, ON, WM BitmapMode) ;

//Display bitmap at the specified location

//For details about bitmap display, please refer to the 5.3 section of
user manual.

LCD. DrawScreenAreaAt (&bmCamera, 0, 0);

delay (3000) ; //Delay for 3s

//Booting logo ON, backlight ON, character work mode
LCD. WorkingModeConf (ON, ON, WM CharMode) ;
LCD. DispStringAt (“Director. ”, 50, 30);

while(l); //Wait for ever.

}
Operating Results:

m¢ Hello! q

/'l'\ Director.

7.1.2.2 Sample 2
Objective: Switch to character or ram operate work mode.
Path: UserManual\DemoCode\Sec_7122_System
Steps:
Erase full screen with white background color;

Delay for 1s;

Set the font to Font_8x16_1, the character address update mode is

set to FM_ANL_AAA mode, the character display mode is set to
BLACK_BAC;

Display string “Hello!” at (50, 10);
Delay for 3s;

Set 12C_LCD work mode to ram operate mode (for advanced
user);

Write the data “"OxFA, OXAF, OxAS" to (20, 2) that stored in buf array ;
Delay for 3s;
Set 12C_LCD work mode back to character mode;

Display string “Director.” at (50, 30);

Code:

#tinclude <Wire.h>
#tinclude <I2C LCD. h>
I12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)

{

Wire. begin() ; //12C controler init.

void loop (void)

{

bytes of

}
Operating Results:

uint8 t buf[3] = {0xFA, 0xAF, 0xA5}; //Buffer.

LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s

//Set the font, character address update mode, display mode.
//FM_ANL_AAA: FM_AutoNewLine_ AutoAddrAdd

LCD. FontModeConf (Font 8x16 1, FM ANL AAA, BLACK BAC);

LCD. DispStringAt (“Hello!”, 50, 10); //Display string
delay (3000) ; //Delay for 3s

//Booting logo ON, backlight ON, RAM work mode.
//1f you want to display characters please switch to WM_CharMode.
LCD. WorkingModeConf (ON, ON, WM RamMode) ;

//Starting from the specified location, continuous write multiple
data to ram.

//Prototype: void WriteSeriesDispRAM Ckbuf, length, x, v)

LCD. WriteSeriesDispRAM (buf, 3, 20, 2);

delay (3000) ; //Delay for 3s

//Booting logo ON, backlight ON, character work mode
LCD. WorkingModeConf (ON, ON, WM CharMode) ;
LCD. DispStringAt (“Director. ”, 50, 30); //Display string

while(l); //Wait for ever.

” Hello! ﬂ

|

Director.

7/.1.3 Backlight and boot logo display on/off

7.1.3.1 Sample 1

Objective: Switch on/off the backlight and boot logo display.
Path: UserManual\DemoCode\Sec_7131_System

Steps:

Erase full screen with white background color;

Delay for Ts;

Set the font to Font_8x16_1, the character address update mode is

set to FM_ANL_AAA mode, the character display mode is set to
BLACK_BAC;

Display string “Hello!” at (20, 20);
Delay for 2s;

Turn off the backlight and boot logo display;
Press the reset button of I2C_LCD, 12C_LCD will keep the

configuration just now, because the configuration was saved in
EEPROM;

Code:

#tinclude <Wire.h>
#include <I2C _LCD. h>
I12C LCD LCD:

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)

{
Wire. begin() ; //12C controler init

}

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s.

//Set the font, character address update mode, display mode
//FM_ANL_AAA: FM_AutoNewLine AutoAddrAdd

LCD. FontModeConf (Font 8x16 1, FM ANL AAA, BLACK BAC) ;

LCD. DispStringAt (“"Hello!”, 20, 20): //Display string
delay (2000) : //Delay for 2s.

//Booting logo OFF, backlight OFF, character work mode
LCD. WorkingModeConf (OFF, OFF, WM CharMode) ;

while(1); //Wait for ever.
}

Operating Results:

7.1.3.2 Sample 2
Objective: Switch on/off the backlight and boot logo display.
Path: UserManual\DemoCode\Sec_7132_System
Steps:
Erase full screen with white background color;
Delay for Ts;

Set the font to Font_8x16_1, the character address update mode is
set to FM_ANL_AAA mode, the character display mode is set to
BLACK_BAC;

Display string “Hello!"” at (20, 20);
Delay for 2s;

Turn on the backlight and boot logo display;
Press the reset button of 1I2C_LCD, 12C_LCD will keep the

configuration just now, because the configuration was saved in
EEPROM;

Code:

#tinclude <Wire.h>
#include <I2C LCD. h>
I12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)

{
Wire. begin() ; //12C controler init

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s.

//Set the font, character address update mode, display mode
LCD. FontModeConf (Font 8x16 1, FM ANL AAA, BLACK BAC);

LCD. DispStringAt (“Hello!”, 20, 20); //Display string
delay (2000) ; //Delay for 2s.

//Booting logo ON, backlight ON, character work mode
LCD. WorkingModeConf (ON, ON, WM CharMode) ;

while(1); //Wait for ever.
}

Operating Results:

/.1.4 Backlight adjustment

7.1.4.1 Sample 1

Objective: Adjust the backlight brightness of 1I2C_LCD, the
configuration will recover when reboot.

Path: UserManual\DemoCode\Sec_7141_System
Steps:

Erase full screen with white background color;

Delay for Ts;

Switch on the backlight;

Set the backlight brightness to 20, and save the configuration to

ram;

Press the reset button of I2C_LCD, the brightness will recover to the
configuration before, because the configuration was saved in ram;

Code:

#include <Wire.h>
#include <I2C _LCD. h>
I12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)

{
Wire. begin() ; //12C controler init

}

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s

//Booting logo ON, backlight ON, character work mode
LCD. WorkingModeConf (ON, ON, WM CharMode) ;

//Set the backlight brightness to 20, and save the configuration to
ram.

LCD. BacklightConf (LOAD_TO_RAM, 20) ;

while(1); //Wait for ever.

}
Operating Results:

/.1.5 Contrast adjustment

7.1.5.1 Sample 1

Objective: Adjust the contrast of I2C_LCD, and the configuration
will recover when reboot.

Path: UserManual\DemoCode\Sec_7151_System
Steps:

Erase full screen with white background color;
Delay for Ts;

Set the font to Font_10x20, the character address update mode is
set to FM_ANL_AAA mode, the character display mode is set to
BLACK_BAC;

Display string “Sparking” at (0, 20);

Delay for 2s;

Set the contrast to 12, and save the configuration to ram;

Code:

#tinclude <Wire.h>
#include <I12C LCD. h>
I12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51

void setup(void)
{
Wire. begin() ; //12C controler init.

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s

//Set the font, character address update mode, display mode
LCD. FontModeConf (Font 10x20, FM_ANL AAA, BLACK BAC) ;

LCD. DispStringAt (“Sparking”, 0, 20); //Display string
delay (2000) ; //Delay for 2s

//Set the contrast to 12, and save the configuration to ram.
LCD. ContrastConf (LOAD TO RAM, 12);

while(1); //Wait for ever.
}

Operating Results:

7.1.6 Modify the device address

7.1.6.1 Sample 1

Objective: Modify the device address of I2C_LCD, and the
configuration will save to EEPROM.

Path: UserManual\DemoCode\Sec_7161_System
Steps:
Erase full screen with white background color;

Delay for Ts;

Set the font to Font_10x20, the character address update mode is
set to FM_ANL_AAA mode, the character display mode is set to
BLACK_BAC;

Display string “Sparking” at (0, 10);
Delay for 2s;
Set the device address to 0x52;

Try to display “Hello!” on (0, 30);

Code:

#tinclude <Wire.h>

#tinclude <I2C LCD. h>

I12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0x51; //Device address setting, default: 0x51
//uint8 t 12C_LCD_ADDRESS = 0x52; //Device address setting, default: Ox51

void setup(void)
{

Wire. begin() ; //12C controler init

}

void loop (void)

{
LCD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s.

//Set the font, character address update mode, display mode
//FM_ANL_AAA: FM_AutoNewLine AutoAddrAdd
LCD. FontModeConf (Font 10x20, FM ANL AAA, BLACK BAC) ;

LCD. DispStringAt (“Sparking”, 0, 10); //Display string
delay (2000) ; //Delay for 2s

//Modify the device address to 0x52, the default setting is O0x51.
LCD. DeviceAddrEdit (0x52) ;

//1 want to display character, but because the device address is
//different from the program current address setting,

//so it can't work properly

LCD. DispStringAt (“Hello!”, 0, 30);

//12C_LCD_ADDRESS variable is the device address of the current
program,

//after the value of the 12C _LCD _ADDRESS variable is changed to 0x52
as below, the 12C_LCD can work normal ly

//12C_LCD_ADDRESS = 0x52;

//LCD.DispStringAt ("Hello!", 0, 30);

//1f you have forgotten the 12C LCD device address, you can recover to
the factory settings: 0x51.

//For details, please refer to the 8.3 section of the user manual.

while(l); //Wait for ever.

}
Operating Results:

/.1.7 Clean the screen

7.1.7.1 Sample 1
Objective: Erase the entire screen.
Path: UserManual\DemoCode\Sec_7171_System
Steps:

Erase full screen with white background color;

Delay for Ts;

Set the font to Font_10x20, the character address update mode is
set to FM_ANL_AAA mode, the character display mode is set to
BLACK_BAC;

Display string “Sparking” at (0, 10);
Delay for 2s;

Clean up the entire screen use black as the background color;

Delay for 2s;

Clean up the entire screen use white as the background color;

Code:

#include <Wire.h>

#include <I2C LCD. h>

12C LCD LCD;

uint8 t I2C LCD ADDRESS = 0xb5l1; //Device address setting, default: 0x51

void setup(void)
{
Wire. begin() ; //12C controler init

void loop (void)

{
L.CD. CleanAll (WHITE) ; //Erase all.
delay (1000) ; //Delay for 1s.

//Set the font, character address update mode, display mode
//FM_ANL_AAA: FM AutoNewlLine AutoAddrAdd
LCD. FontModeConf (Font 10x20, FM ANL AAA, BLACK BAC) ;

LCD. DispStringAt (“Sparking”, 0, 10): //Display string

delay (2000) ; //Delay for 2s.

LCD. CleanAll (BLACK) ; //Erase all use black background color.
delay (2000) ; //Delay for 2s.

LCD. CleanAll (WHITE) ; //Erase all use white background color.

while(1): //Wait for ever.
}

Operating Results:

/.2 Macro And Variable Instruction

The following table lists the macro definitions and global variables
in [2C_LCD library.

When you do not need the graphic API function, you can set the
definition to “"FALSE"” at the beginning of “12C [2C_LCD.h" file. The
compiler will no longer compile this part of APl function, this can saving
the user conftroller ROM resources. Conversely, if you need to use this
part of the APl function, you need to set the definition to “TRUE".

I12C_LCD_ADDRESS is the device address of the current program, if
the user modifies the 12C device address, also need to set the
I2C_LCD_ADDRESS fo the same value, in order to continue to use the
I2C_LCD.

A tabl Val
Variable Or Macro Type A a ue.

Value Instruction

FALSE No s‘uppo'rt 2D
graphic library.

M
SUPPORT 2D _GRAPHIC LIB | , ™ TRUE, the

definitions Support 2D
hic lib .
default value. grapuic Libraty

12C_LCD_ADDRESS

uint8 t

0~127

(0x00~0x7f), The current

device address.
Default value:

0x51

/.3 System Configration API Instruction

This section describes the details of the system configration API
functions, and the usage of the function related to system configration.

The following table lists the API functions associated with system
configration in 1I2C_LCD library for Arduino.

Function

Instruction

DisplayConf()

Configure the display mode of the screen,

normal/reverse.

WorkingModeConf()

Configure the backlight on/off, boot logo

on/off and work mode.

BacklightConf()

Configure the backlight brightness and

parameter save mode.

ContrastConf()

Configure the contrast brightness and

parameter save mode.

DeviceAddrEdit() Change the device address of T12C_LCD.

CleanAll()

Erase full screen with the specified color

(black / white).

/.3.1 DisplayConf ()

Instruction: Configure the display mode of the screen.

Function Prototype:

void DisplayConf(enum LCD_DisplayMode mode)

Parameter Acceptable]
Parameter . Value Instruction
Instruction Value

Reverse display mode, white
AlIREV change to black, and black
mode Display mode. change to white.

Normal display mode, default
AIINOR

value.

Return: Null
Example: Set display mode to “AlIREV”.
LCD. DisplayConf (A11REV) ;

7.3.2 WorkingModeConf ()

Instruction: Configure the backlight on/off, boot logo on/off and
work mode.

Function Prototype:

void WorkingModeConf(enum LCD_SwitchState logoSwi,
enum LCD_SwitchState backLightSwi,

enum LCD_WorkingMode mode)

Parameter Paramet?r Acceptable Value Value Instruction
Instruction
Turn off the boot logo
OFF display, and save the
_ Boot logo configuration to EEPROM.
logoSwi
on/off. Turn on the boot logo
ON display, and save the
configuration to EEPROM.
Turn off the backlight,
OFF and save the configuration
)) Backlight to EEPROM.
Sl on/off. Turn on the backlight, and
ON save the configuration to
EEPROM.
mode Work mode. WM_CharMode Character work mode.

WM_BitmapMode

Bitmap work mode.

WM_RamMode

Ram operate work mode.

Return: Null

Example: Set boot logo switch fo “ON”, set backlight switch to

“OFF"”, and set work mode to “WM_CharMode".

LCD. WorkingModeConf (ON, OFF, WM CharMode) ;

7.3.3 BacklightConf ()

Instruction: Configure the backlight brightness, and configuration
save mode.

Function Prototype:

void BacklightConf(enum LCD_SettingMode mode, uint8_t buf)

P t
Parameter arame ?r Acceptable Value Value Instruction
Instruction
Configuration save to ram,
LOAD TO_RAM .
. . and discard when reboot.
Configuration - -
mode Configuration save to
save mode. .
LOAD TO_EEPROM EEPROM, and remain when
reboot.
Backlight
buf l)éf}n}g 0~127 128 levels of backlight
T ness ~
u & brightness, default 100.
set.
Return: Null

Example: Set the configuration save mode to “LOAD_TO_RAM”,

and set the backlight brightness level to 20.

LCD. BacklightConf (LOAD_TO RAM, 20);

/.3.4 ContrastConf ()

Instruction: fig Configure the contrast, and configuration save

mode.

Function Prototype:

void ContrastConf(enum LCD_SettingMode mode, uint8_t buf)

Parameter

ParameterInstruction

Acceptable Value Value Instruction

mode

Configuration save

Configuration save to ram,

LOAD_TO_RAM and discard when reboot.

Configuration save to

de.
noce LOAD TO EEPROM | EEPROM, and remain when
reboot.
buf ot et 0~63 64 levels of contrast,
: ontrast set. Sl 21,
Return: Null

Example: Set the configuration save mode to “LOAD_TO_RAM”,
and set the contrast to 10.

LCD. ContrastConf (LOAD TO RAM, 10);

7.3.5 DeviceAddrEdit ()

Instruction: Modify the device address of 12C_LCD.

Function Prototype:

void DeviceAddrEdit(uint8_t newAddr)

Parameter Acceptable ,
Parameter] Value Instruction
Instruction Value
The new The new device address of
newAddr device 0~127 I12C LCD, and take effect
address. immediately.
Return: Null

Example: Set “Ox51" as the new device address.
LCD. DeviceAddrEdit (0x51) ;

7.3.6 CleanAll ()

Instruction: Erase full screen with the specified color (black / white).

Function Prototype:

void CleanAll(enum LCD_ColorSort color)

Parameter Acceptable]
Parameter . Value Instruction
Instruction Value
Erase full screen with white
The color WHITE
. background color.
color which to -
Erase full screen with black
use. BLACK
background color.
Return: Null

Example: Erase full screen with black background color.
LCD. CleanAll (BLACK) ;

Chapter 8. Troubleshooting And

Recovery

This chapter will mainly infroduce how to solve the problem when

encountered.

8.1 FAQ

When you encountered problems, you can find the method to
solve the problem by searching the following fault list.

Failure Phenomenon

Elimination Procedure

The screen is black, without any

reaction.

1. Please make sure the power supply is 5HV.

2. Please refer to the 8.3 section, recover to

the factory setting.

I2C LCD is uncontrolled.

1. Press the RST button to retoot.

2. Problem with connection, please check the
connection is correctly, or try to use another

Grove cable

3. Please refer to the 8.3 section, recover to

the factory setting.

4. Please make sure the value of
”12C LCD ADDRESS” variable is set to the default

0x51 in your program.

Forgot the device address of

1. Please refer to the 8.3 section, recover to

I12C LCD. the factory setting.
Note: |f the above steps are still unable to resolve the problem, please
contact with us by E-mail, and describe in detail of the failure

phenomenon you encountered.

E-mail: joney. s@foxmail. com

mailto:joney.s@foxmail.com

Fall into the water, fall on the ground or abnormal power supply (Higher
than 5.5v, or less than 4.5v) caused by the failure, will not be within

the scope of our warranty

8.2 Reset Button Instruction

At the top of the I2C_LCD there is a reset button, if the state of the
I2C_LCD is not normal, can be recovered by pressing this button.

Note: After the reset button is pressed, the configurations saved in RAM

are lost, and the configurations saved in EEPROM are not affected

8.3 Restore Factory Settings

If you can not solve the failure, please follow the following steps to
restore the 12C_LCD to factory settings.

1. Make sure the [12C_LCD is under the typical power supply,
then use conductive objects fo short circuit the REC contacts
on the back of the 12C_LCD.

2, Keeping the REC contacts in short circuit contact state, and
then press the reset button (RST);

3. When the screen appears "Resetting...OK!", indicates that the
recovery is successful, and all the configurations has
resumed to the default value.

Note:

1. If you fail to recover, please try again several times, until the

screen appears 'Resetting... OK!".

2. After recover to factory setting successfully, all the configurations
will recover to default values, please confirm the device address
(12C_LCD_ADDRESS) in your program was set to the default value 0x51,

otherwise will cause 12C_LCD no response.

	Release Note
	Chapter 1. Introduction
	1.1 How to use this manual
	1.2 Parameters of I2C_LCD
	1.2.1 Features
	1.2.2 Electrical Characteristics

	1.3 Resource Requirements
	1.4 Screen & Coordinates

	Chapter 2. Character Display
	2.1 I2C_LCD Supported Characters
	2.2 Sample Project Of Character Display
	2.2.1 Display character and string
	2.2.1.1 Sample 1

	2.2.2 Font and color settings
	2.2.2.1 Sample 1

	2.2.3 Setting Character Background Color
	2.2.3.1 Sample 1

	2.2.4 Character Address Accumulation Mode
	2.2.4.1 Simple 1

	2.3 Character Display API Instruction
	2.3.1 print ()
	2.3.2 DispCharAt ()
	2.3.3 DispStringAt ()
	2.3.4 FontModeConf()

	Chapter 3. The Usage of Cursor
	3.1 Sample Project For Cursor Usage
	3.1.1 The property of the cursor
	3.1.1.1 Sample 1

	3.2 Cursor Config API Instruction
	3.2.1 CursorConf ()
	3.2.2 CursorGotoXY ()

	Chapter 4. Drawing 2D Graphics
	4.1 Sample Project Of 2D Graphics
	4.1.1 Drawing points and lines
	4.1.1.1 Sample 1
	4.1.1.2 Sample 2

	4.1.2 Drawing rectangle and circle
	4.1.2.1 Sample 1
	4.1.2.2 Sample 2
	4.1.2.3 Sample 3

	4.2 2D Graphics API Instruction
	4.2.1 DrawDotAt ()
	4.2.2 DrawHLineAt ()
	4.2.3 DrawVLineAt ()
	4.2.4 DrawLineAt ()
	4.2.5 DrawRectangleAt ()
	4.2.6 DrawCircleAt ()

	Chapter 5. Bitmap Display
	5.1 Sample Project Of Bitmap Display
	5.1.1 Display a bitmap
	5.1.1.1 Sample 1

	5.2 Bitmap Display API Instruction
	5.2.1 DrawScreenAreaAt ()

	5.3 Picture Data Packet Generation

	Chapter 6. *Memory Read / Write operation
	6.1 Display Memory Operation Example
	6.1.1 Single byte read / write
	6.1.1.1 Sample 1

	6.1.2 Write/Read multiple bytes of data
	6.1.2.1 Sample 1

	6.2 Ram Write/Read API Instruction
	6.2.1 ReadByteDispRAM ()
	6.2.2 WriteByteDispRAM ()
	6.2.3 ReadSeriesDispRAM ()
	6.2.4 WriteSeriesDispRAM ()

	Chapter 7. System Configration
	7.1 System Setup Example
	7.1.1 Reverse/Normal display mode switch
	7.1.1.1 Sample 1

	7.1.2 Work mode switch
	7.1.2.1 Sample 1
	7.1.2.2 Sample 2

	7.1.3 Backlight and boot logo display on/off
	7.1.3.1 Sample 1
	7.1.3.2 Sample 2

	7.1.4 Backlight adjustment
	7.1.4.1 Sample 1

	7.1.5 Contrast adjustment
	7.1.5.1 Sample 1

	7.1.6 Modify the device address
	7.1.6.1 Sample 1

	7.1.7 Clean the screen
	7.1.7.1 Sample 1

	7.2 Macro And Variable Instruction
	7.3 System Configration API Instruction
	7.3.1 DisplayConf ()
	7.3.2 WorkingModeConf ()
	7.3.3 BacklightConf ()
	7.3.4 ContrastConf ()
	7.3.5 DeviceAddrEdit ()
	7.3.6 CleanAll ()

	Chapter 8. Troubleshooting And Recovery
	8.1 FAQ
	8.2 Reset Button Instruction
	8.3 Restore Factory Settings

