General Purpose Transistor NPN Silicon

These transistors are designed for general purpose amplifier applications. They are housed in the SOT-416/SC-75 package which is designed for low power surface mount applications.

Features

- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

CASE 463 SOT-416/SC-75

MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	75	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation (Note 1) $T_A = 25^{\circ}C$	PD	150	mW
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	833	°C/W
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint.

MARKING DIAGRAM

1P = Specific Device Code = Date Code Μ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT2222ATT1G	SOT–416 (Pb–Free)	3000 / Tape & Reel
NSVMMBT2222ATT1G	SOT–416 (Pb–Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector – Emitter Breakdown Voltage (Note 1) ($I_C = 10 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	40	-	Vdc
Collector – Base Breakdown Voltage $(I_C = 10 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	75	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \ \mu Adc, I_C = 0$)	V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current (V _{CE} = 60 Vdc, V _{EB} = 3.0 Vdc)	I _{BL}	-	20	nAdc
Collector Cutoff Current ($V_{CE} = 60 \text{ Vdc}, V_{EB} = 3.0 \text{ Vdc}$)	I _{CEX}	-	10	nAdc
ON CHARACTERISTICS (Note 2)				•
DC Current Gain $(I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ $(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	H _{FE}	35 50 75 100 40		-
Collector – Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$)	V _{CE(sat)}	-	0.3 1.0	Vdc
Base – Emitter Saturation Voltage $(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$ $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	V _{BE(sat)}	0.6	1.2 2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				-
Current-Gain – Bandwidth Product (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	f _T	300	-	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)	C _{obo}	-	8.0	pF
Input Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$	C _{ibo}	-	30	pF
Input Impedance $(V_{CE} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	h _{ie}	0.25	1.25	kΩ
Voltage Feedback Ratio $(V_{CE} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	h _{re}	-	4.0	X 10 ⁻²
Small-Signal Current Gain ($V_{CE} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 1.0 \text{ kHz}$)	h _{fe}	75	375	-
Output Admittance ($V_{CE} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 1.0 \text{ kHz}$)	h _{oe}	25	200	μmhos
Noise Figure (V _{CE} = 10 Vdc, I _C = 100 μ Adc, R _S = 1.0 k ohms, f = 1.0 kHz)	NF	-	4.0	dB
SWITCHING CHARACTERISTICS				

Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc},$	t _d	-	10	20
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc)	tr	-	25	ns
Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc},$	t _s	-	225	ns
Fall Time	I _{B1} = I _{B2} = 15 mAdc)	t _f	-	60	115

1. Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint.2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

Figure 9. Capacitances

Figure 10. Current–Gain Bandwidth Product

PACKAGE DIMENSIONS

SC-75/SOT-416 CASE 463 ISSUE G

NOT	TES:
1.	DIMENSIONING AND TOLERANCING PER ANSI
	Y14.5M, 1982.
2.	CONTROLLING DIMENSION: MILLIMETER.

	MIL	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.80	0.90	0.027	0.031	0.035	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
b	0.15	0.20	0.30	0.006	0.008	0.012	
С	0.10	0.15	0.25	0.004	0.006	0.010	
D	1.55	1.60	1.65	0.061	0.063	0.065	
E	0.70	0.80	0.90	0.027	0.031	0.035	
е	1	1.00 BSC			0.04 BSC		
L	0.10	0.15	0.20	0.004	0.006	0.008	
HE	1.50	1.60	1.70	0.060	0.063	0.067	

STYLE 1:

PIN 1. BASE 2 FMITTER

2. EMITTER 3. COLLECTOR

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdl/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any product herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor handhord or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with suc

Phone: 421 33 790 2910

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative