
March 2015 DocID026137 Rev 3 1/89

1

UM1741
User manual

STM32F0 series safety manual

Introduction

This document describes how to use the microcontrollers of STM32F0 series in the context
of a safety-related system, specifying the user's responsibilities for installation and operation
in order to reach the targeted safety integrity level.

This manual applies to the microcontrollers of the STM32F0 series and to STM32-SafeSIL
part number.

If the STM32F0 series microcontrollers are used in adherence to this manual, system
designers can avoid going into the details of the functional safety design and validation to
give an estimation about the impact to the overall safety function.

This manual is written in compliance with IEC 61508. It indicates how to use the STM32F0
series microcontrollers in the context of other functional safety standards such as safety
machine directives ISO 13849. This manual and FMEDA data were developed in
cooperation with the safety expertise company YOGITECH using their faultRobust
Methodology (fRMethodology).

The safety analysis summarized in this manual takes into account the variation in terms of
memory size, internal peripheral number and presence and package between the different
part numbers of the ARM® Cortex®-M0 based STM32F0 series microcontrollers.

This manual has to be read along with the technical documentation on related part numbers
(such as Reference Manuals and Datasheets) available on www.st.com.

www.st.com

http://www.st.com

Contents UM1741

2/89 DocID026137 Rev 3

Contents

1 About this document . 7

1.1 Purpose and scope . 7

1.2 Terms and abbreviations . 7

1.3 Reference normative . 8

2 STM32F0 series microcontroller development process 10

2.1 STMicroelectronics standard development process 10

2.2 Yogitech fRMethodology process . 12

3 Reference safety architecture . 13

3.1 Introduction . 13

3.2 Compliant item . 13

3.2.1 Definition of the compliant item . 13

3.2.2 Safety functions performed by the compliant item 14

3.3 Assumed requirements . 15

3.3.1 Assumed safety requirements . 15

3.4 Electrical specifications and environment limits . 16

3.5 Systematic safety integrity . 17

3.6 Description of hardware and software diagnostics 17

3.6.1 Cortex®-M0 CPU . 17

3.6.2 System FLASH memory . 20

3.6.3 System SRAM memory . 21

3.6.4 System bus interconnect . 22

3.6.5 NVIC and EXTI controller . 22

3.6.6 DMA . 23

3.6.7 CAN . 24

3.6.8 USART 1/2/3/4 . 25

3.6.9 I2C 1/2 . 26

3.6.10 SPI 1/2 . 27

3.6.11 USB - 2.0 Universal Serial Bus interface FS module 27

3.6.12 HDMI CEC module . 28

3.6.13 Touch Sensing Controller (TSC) . 29

3.6.14 Analog to Digital Converters (ADC) . 29

DocID026137 Rev 3 3/89

UM1741 Contents

4

3.6.15 DAC . 30

3.6.16 Comparator . 31

3.6.17 TIM 6/7 . 31

3.6.18 TIM1/2/3/14/15/16/17 . 32

3.6.19 GPIO – PORT A/B/C/D/E/F . 33

3.6.20 Real Time Clock module (RTC) . 34

3.6.21 Supply voltage system . 34

3.6.22 Reset and clock control subsystem . 35

3.6.23 Watchdogs (IWDG, WWDG) . 36

3.6.24 Debug . 36

3.6.25 Cyclic Redundancy Check module (CRC) . 36

3.6.26 Dual MCU architecture . 37

3.6.27 Latent fault detection . 37

3.6.28 Disable and periodic cross-check of unintentional activation of
unused peripherals . 38

3.7 Conditions of use . 39

4 Safety results . 44

4.1 Hardware random failure safety results . 44

4.1.1 Safety analysis result customization . 45

4.1.2 General requirements for Freedom From Interferences (FFI) 45

4.2 Dependent failures analysis . 46

4.2.1 Power supply . 46

4.2.2 Clock . 47

4.2.3 DMA . 47

4.2.4 Internal temperature . 47

5 List of evidences . 48

Appendix A Overview of fRMethodology . 49

A.1 The essence of fRMethodology. 49

A.2 fRMethodology and its flow . 49

A.3 fRTools . 51

Appendix B Examples of safety architectures – Informative 53

B.1 Conceptual block diagrams of the target safety architectures. 53

B.2 Considerations about voter implementation . 55

Contents UM1741

4/89 DocID026137 Rev 3

Appendix C Change impact analysis for other safety standards. 57

C.1 ISO 13849-1 / ISO 13849-2. 57

C.1.1 Architectural categories . 58

C.1.2 Safety metrics recomputation . 60

C.1.3 Work products. 61

C.2 IEC 62061:2012-11 . 64

C.2.1 Architectural categories . 65

C.2.2 Safety metrics recomputation . 69

C.2.3 Work products. 70

C.3 IEC 61800-5-2:2007 . 71

C.3.1 Architectural categories . 71

C.3.2 Safety metrics recomputation . 72

C.3.3 Work products. 72

C.4 IEC 60730-1:2010 . 73

C.4.1 Architectural categories . 74

C.4.2 Safety metrics recomputation . 75

C.4.3 Work products. 80

C.5 ISO 26262:2010 . 82

C.5.1 Architectural categories . 83

C.5.2 Safety metrics recomputation . 83

C.5.3 Work products. 84

Appendix D fRSTL_STM32F0_SIL2(3) product and its
use in the framework of this manual . 85

Revision history . 88

DocID026137 Rev 3 5/89

UM1741 List of tables

5

List of tables

Table 1. Terms and abbreviations . 7
Table 2. Mapping between this document content and IEC 61508-2 Annex D

 requirements . 9
Table 3. List of safety mechanisms . 39
Table 4. Overall achievable safety integrity levels . 44
Table 5. List of general requirements for FFI . 45
Table 6. Level of detail in fRMethodology. 51
Table 7. IEC 13849 architectural categories. 58
Table 8. IEC 13849 work product grid . 62
Table 9. SIL classification versus HFT . 64
Table 10. IEC 62061 architectural categories. 65
Table 11. IEC 62061 work product grid . 70
Table 12. IEC 61800 work product grid . 72
Table 13. IEC 60730 required safety mechanism for Class B/C compliance 75
Table 14. IEC 60730 work product grid . 80
Table 15. IEC 26262 work product grid . 84
Table 16. fRSTLs differentiation factors . 85
Table 17. List of STM32F0 series safety mechanism overlapped by

 fRSTL_STM32F0_SIL2(3) . 86
Table 18. Document revision history . 88

List of figures UM1741

6/89 DocID026137 Rev 3

List of figures

Figure 1. STMicroelectronics product development process . 11
Figure 2. Definition of the compliant item. 13
Figure 3. Abstract view of compliant item functions. 14
Figure 4. Allocation and target for STM32 PST . 15
Figure 5. Block diagram of safety characteristics for STM32F0 modules . 43
Figure 6. The fRMethodology flow for IEC 61508 . 50
Figure 7. Overview of the fRTools . 52
Figure 8. The HFT=0 1oo1 and 1oo1d architectures . 53
Figure 9. The HFT=1 1oo2 and 1oo2d architectures . 54
Figure 10. The HFT=1 2oo2 architecture. 54
Figure 11. A possible voter structure combining PEvi and PEve. 55
Figure 12. Block diagram for IEC 13849 Cat. B and Cat. 1 . 59
Figure 13. Block diagram for IEC 13849 Cat. 2 . 60
Figure 14. Block diagram for IEC 13849 Cat. 3 and Cat. 4 . 60
Figure 15. Block diagram for IEC 62061 Cat. A . 66
Figure 16. Block diagram for IEC 62061 Cat. B . 67
Figure 17. Block diagram for IEC 62061 Cat. C. 67
Figure 18. Block diagram for IEC 62061 Cat. D. 68
Figure 19. SRECS high-level diagram . 69
Figure 20. IEC 61800 architectural view . 71
Figure 21. Correlation matrix between SIL and ASIL. 82

DocID026137 Rev 3 7/89

UM1741 About this document

88

1 About this document

1.1 Purpose and scope

This document describes how to use the STM32F0 series microcontrollers in the context of
a safety-related system, specifying the user's responsibilities for installation and operation,
in order to reach the desired safety integrity level.

This document is useful to system designers willing evaluate the safety of their solution.

1.2 Terms and abbreviations

Table 1. Terms and abbreviations

Acronym Definition

ADAS Advanced Driver Assistance System

CCF Common Cause Failure

CM Continuous Mode

COTS Commercial Off-the-Shelf

CoU Conditions of Use

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DC Diagnostic Coverage

DMA Direct Memory Access

DTI Diagnostic Test Interval

ECM Engine Control Module

ECU Electronic Control Unit

EHSR Essential Health and Safety Requirement

EUC Equipment Under Control

FE Final Element (that is generalized actuator)

FIT Failure In Time

FMEA Failure Mode Effect Analysis

FMEDA Failure Mode Effect Diagnostic Analysis

FPU Floating Processing Unit

HD High Demand

HFT Hardware Fault Tolerance

HW Hardware

INTC Interrupt Controller

ITRS International Technology Roadmap for Semiconductors

LD Low Demand

About this document UM1741

8/89 DocID026137 Rev 3

1.3 Reference normative

This document is written in compliance with the IEC 61508 international norm for functional
safety of electrical/electronic/programmable electronic safety-related systems.

The version used as reference is IEC 61508:1-7 © IEC:2010.

The other functional safety standards considered in this manual are the following:

 ISO 26262-1, 2, 3, 4, 5, 6, 7, 8, 9: 2011(E) / ISO 26262-10: 2012(E),

 ISO 13849-1:2006 / ISO 13849-2:2010,

 IEC 62061:2012-11, ed. 1.1,

 IEC 61800-5-2:2007, ed.1.0,

 IEC 60730-1:2010, ed. 4.0.

Table 2 reports the mapping of this document content with respect to the requirements listed
in the IEC 61508-2 Annex D.

MCU Microcontroller Unit

MTBF Mean Time Between Failure

MTTFd Mean Time to Failure

OC Output Circuit

PDS(SR) Power Drive System (Safety Related)

PEc Programmable Electronics - core

PEd Programmable Electronics - diagnostic

PFH Probability of Failure per Hour

PL Performance Level

PST Process Safety Time

SE Sensor Element

SFF Safe Failure Fraction

SIL Safety Integrity level

SRCF Safety-Related Control Function

SRECS Safety-Related Electrical Control Systems

SRP/CS Safety-Related Parts of Control Systems

SW Software

Table 1. Terms and abbreviations (continued)

Acronym Definition

DocID026137 Rev 3 9/89

UM1741 About this document

88

The safe failure fraction reported in this manual has been computed under the assumptions
described in this document and especially according to the conditions of use described in
Section 3.7: Conditions of use.

Table 2. Mapping between this document content and IEC 61508-2 Annex D
 requirements

IEC 61508 requirement (part 2 annex D) Reference

D2.1 a) a functional specification of the functions capable of being performed Section 3

D2.1 b) identification of the hardware and/or software configuration of the
compliant item

Section 3.2

D2.1 c) constraints on the use of the compliant item and/or assumptions on
which analysis of the behavior or failure rates of the item are based

Section 3.2

D2.2 a) the failure modes of the compliant item due to random hardware failures,
that result in a failure of the function and that are not detected by diagnostics
internal to the compliant item;

Section 3.7

D2.2 b) for every failure mode in a), an estimated failure rate;

D2.2 c) the failure modes of the compliant item due to random hardware failures,
that result in a failure of the function and that are detected by diagnostics internal
to the compliant item;

D2.2 d) the failure modes of the diagnostics, internal to the compliant item due to
random hardware failures, that result in a failure of the diagnostics to detect
failures of the function;

D2.2 e) for every failure mode in c) and d), the estimated failure rate;

D2.2 f) for every failure mode in c) that is detected by diagnostics internal to the
compliant item, the diagnostic test interval;

Section 3.2.2

D2.2 g) for every failure mode in c) the outputs of the compliant item initiated by
the internal diagnostics;

Appendix B

D2.2 h) any periodic proof test and/or maintenance requirements;

Section 3.7D2.2 i) for those failure modes, in respect of a specified function, that are capable
of being detected by external diagnostics, sufficient information shall be provided
to facilitate the development of an external diagnostics capability.

D2.2 j) the hardware fault tolerance;

Section 3D2.2 k) the classification as type A or type B of that part of the compliant item that
provides the function (see 7.4.4.1.2 and 7.4.4.1.3);

STM32F0 series microcontroller development process UM1741

10/89 DocID026137 Rev 3

2 STM32F0 series microcontroller development
process

The development process of a microelectronic device that is used in safety critical
application takes into account the adequate management to reduce the probability of
systematic faults introduced during the design phase.

IEC 61508:2 in Annex F (Techniques and measures for ASICs - avoidance of systematic
failures) act as a guidance in tailoring the microcontroller standard design and manufacturer
process to the compliance of the IEC 61508 requirements. The checklist reported in the
named Annex F helps to collect all related evidences of a given real process.

2.1 STMicroelectronics standard development process

STMicroelectronics (ST) serves four industry domains:

1. Standard products,

2. Automotive products: ST automotive products are AEC-Q100 compliant. They are
subject to specific stress testing and processing instructions in order to achieve the
required quality levels and product stability.

3. Automotive safety: a subset of the automotive domain. ST uses as a reference the ISO
26262 Road vehicles Functional safety standard. ST supports customer inquiries
regarding product failure rates and FMEDA to support hardware system compliance to
established safety goals. ST provides products that are safe in their intended use,
working in cooperation with customers to understand the mission profile, adopt
common methods and define countermeasures for residual risks.

4. Medical products: ST complies with applicable regulations for medical products and
applies due diligence in the development and validation of these products.

DocID026137 Rev 3 11/89

UM1741 STM32F0 series microcontroller development process

88

STMicroelectronics product development process, compliant with the ISO/TS 16949
standard, is a set of interrelated activities dedicated to transform customer specification and
market or industry domain requirements into a semiconductor device and all its associated
elements (package, module, sub-system, application, hardware, software and
documentation), qualified respecting ST internal procedures and able to be manufactured
using ST internal or subcontracted technologies.

Figure 1. STMicroelectronics product development process

STM32F0 series microcontroller development process UM1741

12/89 DocID026137 Rev 3

2.2 Yogitech fRMethodology process

Yogitech fRMethodology is the “white-box” approach for safety design exploration
proprietary of Yogitech, including tools and methodology to FMEA/FTA analysis and fault
injection of integrated circuits. Appendix A: Overview of fRMethodology reports additional
informations.

Yogitech contribution to IEC 61508 compliance of STMicroelectronics development process
can be summarized in these key elements:

 Failure rate estimation based on multiple industry standards as well as
STMicroelectronics manufacturing data,

 Application of Yogitech fault injection techniques/tools to validate the safety metrics
claimed for STMicroelectronics devices belonging to STM32 program.

DocID026137 Rev 3 13/89

UM1741 Reference safety architecture

88

3 Reference safety architecture

3.1 Introduction

The STM32F0 series microcontrollers described in this document is a Safety Element out of
Context (SEooC), that is, the intent is to describe a compliant item that can be used within
different safety applications.

The aim of this section is to identify such compliant item and therefore to define the context
of the analysis in terms of assumptions with respect to a reference concept definition, that is
with respect to reference safety requirements as also assumptions with respect to the
design external to that compliant item.

As a consequence of the SEooC approach, the goal is not to provide an exhaustive hazard
and risk analysis of the system around the microcontroller, but rather to list the system-
related information - such as the application-related assumptions for dangerousness
factors, frequency of failures and diagnostic coverage already guaranteed by the application
- that have been considered during the following steps of the analysis.

Additional details on the reference safety architecture are given in Appendix B: Examples of
safety architectures – Informative.

3.2 Compliant item

3.2.1 Definition of the compliant item

According to IEC 61508:1 clause 8.2.12, a compliant item is any item (for example an
element) on which a claim is being made with respect to the clauses of IEC 61508 series.
With respect to its user, at the end of its development the compliant item shall be described
by a safety manual.

In this document, the compliant item is defined as a system including one or two STM32
microcontrollers (MCU) (see Figure 2). The communication bus is directly or indirectly
connected to sensors and actuators.

Figure 2. Definition of the compliant item

Other components might be related to the compliant item, like the external HW components
needed to guarantee either the functionality of the STM32F0 (external memory, clock quartz
etc) or its safety (for example the external watchdog, voltage supervisors).

Reference safety architecture UM1741

14/89 DocID026137 Rev 3

3.2.2 Safety functions performed by the compliant item

In essence, the compliant item architecture can be represented as composed by the
following processes performing the safety function or part of it:

 Input processing elements (PEi) reading safety related data from the remote controller
connected to the sensor(s) and transferring them to the following computation
elements;

 Computation processing elements (PEc) performing the algorithm required by the
safety function and transferring the results to the following output elements;

 Output processing elements (PEo) transferring safety related data to the remote
controller connected to the actuator;

 in the case of the 1oo2, 1oo2d or 2oo2 architecture (see Appendix B: Examples of
safety architectures – Informative), a further voting processing element (PEv) can be
present;

 in the 1oo2d case (see again Appendix B: Examples of safety architectures –
Informative), the abstract view is the same as 1oo2 but with the addition of diagnostic
processing elements (PEd), having the role of performing cross-diagnostic functions
and contributing to the decision of the voter PEv;

 processes external to the compliant item are considered to guarantee functional safety,
such as a watchdog (WDTe) and voltage monitors (VMONe).

Figure 3. Abstract view of compliant item functions

The role of the PEv and of the external processes WDTe and VMONe is clarified in the
sections where the CoU (definition of safety mechanism) are detailed:

 WDTe: refer to Independent watchdog – VSUP_SM_2, Control flow monitoring in
application software – CPU_SM_1,

 VMONe: refer to Supply Voltage Monitoring – VSUP_SM_1.

DocID026137 Rev 3 15/89

UM1741 Reference safety architecture

88

3.3 Assumed requirements

3.3.1 Assumed safety requirements

It is assumed that the concept specification, the hazard and risk analysis, the overall safety
requirement specification and the consequent allocation has determined the following
requirements for the compliant item (assumed safety requirements):

 The compliant item can be used for four kinds of safety functions:

– A continuous mode / high-demand SIL3 safety function (CM3), or

– A low-demand SIL3 safety function (LD3), or

– A continuous mode / high-demand SIL2 safety function (CM2), or

– A low-demand SIL2 safety function (LD2).

 The compliant item is used in a safety function with a worst case budget of 10 ms for
the STM32 MCU to detect and react to a failure, which corresponds to the portion of
the Process Safety Time(a) allocated to the STM32F0 MCU (“STM32F0 duty” in
Figure 4)

Figure 4. Allocation and target for STM32 PST

 The compliant item is used in a safety function powered-on for a long time. It is
assumed to not require any proof test and the lifetime of the product is considered to be
not less than 10 years.

 The safe state of the compliant item is the one in which either:

– the operating system (OS) is informed by the presence of a fault and a reaction is
possible, or

– if the OS cannot be informed or the OS is not able to execute a reaction(b):

in case of a 1oo2 or 1oo2D architecture, the PEv shall be directly informed so that
the PEv itself is able to achieve or maintain the safe state of the system or,

in case of 1oo1 and 1oo2/1oo2D high demand or continuous mode architectures,
the safe state of the electronic system is “de-energize”.

 The compliant item is assumed to be analyzed according to routes 1H and 1S of IEC
61508:2.

a. As explained in the following section, for the HFT=1 computations the value of the process safety time is not as
stringent as it is for HFT=0 architectures (that is clarified further in the document).

b. The end user shall take into account that hardware random failures affecting the STM32 can compromise the
MCU capability of operating properly (for example failure modes affecting the program counter prevent the
correct execution of software).

Reference safety architecture UM1741

16/89 DocID026137 Rev 3

The base assumptions about the de-energize state and the repair conditions, in the
computation of the PFD/PFH, are as follows;

 In the 1oo1 mode:

– The system is de-energized as soon as a fault is identified by the HW or SW
diagnostics.

– If the fault has been identified as a transient fault, the compliant item can be reset
and the safety function can continue after reset.

– If the fault has been identified as a permanent fault or if it has not been identified,
the compliant item is assumed to be kept de-energized.

 In the 1oo2 / 1oo2D low-demand modes:

– The 1oo2 system is NOT de-energized if a fault is identified in one of the two
channels.

– The faulty compliant item can be repaired, that is the faulty STM32F0 MCU can be
replaced or one of the external components might be replaced.

 In the 1oo2 / 1oo2D high-demand or continuous modes:

– The system is de-energized as soon as a fault is identified in one of the two
channels or in the shared logic.

– If the fault has been identified as a transient fault, the compliant item can be reset
and the safety function can continue after reset.

– If the fault has been identified as a permanent fault or if it has not been identified,
the compliant item is assumed to be kept de-energized, and the compliant item
cannot be repaired, that is the faulty STM32F0 MCU cannot be replaced or one of
the external components cannot be replaced.

3.4 Electrical specifications and environment limits

The user must not exceed the electrical specification and the environmental limits defined in
the below list as reported in the STM32F0 user manual in order to guarantee the STM32F0
safety integrity:

 Absolute maximum rating,

 Capacity,

 Operating conditions.

Due to the large number of STM32F0 part numbers, the related user manuals/datasheets
are not listed in this document; users are responsible to carefully check the above reported
limits in the technical documentation on the related part number available on www.st.com.

DocID026137 Rev 3 17/89

UM1741 Reference safety architecture

88

3.5 Systematic safety integrity

According to the requirements of IEC 61508 -2, 7.4.2.2, the Route 1s has been considered
in the STM32F0 development and the techniques and measures given in IEC 61508-2
Annex F have been applied. The Safety Case Database (Section 5: List of evidences)
maintains the evidences of the compliance to the norm.

3.6 Description of hardware and software diagnostics

This section lists all the safety mechanisms (hardware, software and application level)
considered in the safety analysis of the microcontrollers of the STM32F0 series. It is
expected that users are familiar with the STM32F0 architecture, and that this document is
used in conjunction with the related device datasheet, user manual and reference
information. Therefore, to avoid the eventuality of mistakes and reduce the amount of
informations to be shown, no functional details are included in this document.

Note that the part numbers of the STM32F0 series represent different combinations of
peripherals (for instance, some of them are not equipped with USB peripheral). To reduce
the number of documents and avoid information-less repetitions, the current safety manual
(and therefore this section) addresses the overall possible peripherals available in the
targeted part numbers. Users have to select which peripherals are really available on their
devices, and discard the meaningless recommendations accordingly.

The implementation guidelines reported in the following section are for reference only. The
safety verification executed by Yogitech and related coverage figures reported in this
manual are based on such guidelines.

Please read the following definitions:

 end user: the final user of STM32F0 that is in charge of integrating the MCU in a real
application (for example an electronic control board).

 application software: the real software that runs on the STM32F0 and that is used to
implement the safety function.

3.6.1 Cortex®-M0 CPU

Periodical core self test software - CPU_SM_0

Permanent faults affecting the CPU Core ARM® Cortex®-M0 are addressed through a
dedicated software test executing a sequence of instructions and data transfers.

The software test is built around well-known techniques already addressed by IEC 61508:7,
A.3.2 (Self-test by software: walking bit one-channel). A detailed safety analysis has shown
that a self-test software based only on software testing operation is not able to reach the
required values of coverage due to the complexity of the CPU. Therefore, in order to reach
the required values of coverage, the self-test software has to be specified by means of a
detailed analysis of all the CPU failure modes and related failure modes distribution.
Moreover, it has to be verified by means of fault injection (according to ISO 26262:10,
Annex A - the state of the art in terms of safety analysis applied to integrated circuits - fault
injection is the recommended method for the verification of failure modes coverage in
modern and complex microprocessor like Cortex®-M0).

Reference safety architecture UM1741

18/89 DocID026137 Rev 3

The overall test software suite is assumed to be periodically executed with a time period
compatible with the IEC 61508 requirements for the relationship between PST and the
diagnostic test interval.

Control flow monitoring in application software – CPU_SM_1

A significant part of the failure distribution of ARM® Cortex®-M0 core for permanent faults is
related to failure modes directly related to program counter loss of control or hang-up. Due
to their intrinsic nature, such failure modes are not addressed by a standard software test
method based on the execution of sequences of instruction/data access and consequent
checks. Therefore it is necessary to implement a run-time control of the application software
flow, in order to monitor and detect deviation from the expected behavior due to such faults.
Linking this mechanism to watchdog firing assures that severe loss of control (or, in the
worst case, a program counter hang-up) will be detected within DTI.

This diagnostic measure also contributes to the transient fault detection affecting the
program counter and branch execution subpart in ARM® Cortex®-M0.

The guidelines for the implementation of the method are the following:

 The different internal states of the application software is well documented and
described (the use of a dynamic state transition graph is encouraged).

 The monitoring of the correctness of each transition between different states of the
application software is implemented.

 The transition through all expected states during the normal application software
program loop is checked.

 The function in charge of triggering the system watchdog is implemented in order to
constrain the triggering (preventing the watchdog reset) also to the correct execution of
the above-described method for program flow monitoring.

The use of the window feature of the independent watchdog (IWDG) (or an external one)
helps to implement a more robust control flow mechanism fed by a different clock source. In
any case the safety metrics do not depend on the watchdog in use (the adoption of
independent or external watchdog contributes to the mitigation of dependent failures, see
Section 4.2.2: Clock).

Double computation in application software – CPU_SM_2

A timing redundancy for safety-related computation is considered to detect transient faults
affecting the ARM® Cortex®-M0 CPU subparts devoted to mathematical computations and
data access.

The guidelines for the implementation of the method are the following:

 The requirement needs be applied only to safety-relevant computation, that is to the
computations that in case of wrong result could interfere with the system safety

DocID026137 Rev 3 19/89

UM1741 Reference safety architecture

88

functions. Such computation shall be therefore carefully identified in the original
application software source code.

 Both mathematical operation and comparison are intended as computation.

 The redundant computation for comparison could be implemented according to the
following template:

– Original code:

If (VarA > VarB) then { (execute function) }

– Modified code:

copyVarA:=VarA;

copyVarB:=VarB;

If (VarA > VarB) then {

If (copyVarA <= copyVarB) then { (signal_error); break }

(execute function)

}

 The redundant computation for mathematical computation is implemented by using
copies of the original data for second computation, and by using an equivalent formula
if possible.

 End users are responsible to carefully avoid that the intervention of optimization
features of the used compiler removes the timing redundancy introduced according to
this current condition of use.

ARM® Cortex®-M0 HardFault exceptions – CPU_SM_3

HardFault exception raise is an intrinsic safety mechanism implemented in ARM® Cortex®-
M0 core, mainly devoted to intercept systematic faults due to software limitations and/or
error in software design, leading for example to execution of undefined operations,
unaligned address access. This safety mechanism is therefore able to detect hardware
random faults inside the CPU bringing to such described abnormal operations.

Stack hardening for application software – CPU_SM_4

The stack hardening method is required to address faults affecting the CPU register bank.
This method is based on source code modification, introducing information redundancy in
register-passed information to the called functions.

The guidelines for the implementation of the method are the following:

 Pass also the redundant copy of the passed parameters values (possibly inverted) and
execute a coherence check in the function.

 Pass also the redundant copy of the passed pointers and execute a coherence check
in the function.

 For the parameters that are not protected by redundancy, implement defensive
programming techniques (plausibility check of passed values). For example
enumerated fields are to be checked for consistency.

External watchdog – CPU_SM_5

Using an external watchdog for the control flow monitoring method (CPU_SM_1)
contributes to further reduce potential common cause failures, because the external
watchdog will be clocked and supplied independently from the STM32F0.

Reference safety architecture UM1741

20/89 DocID026137 Rev 3

3.6.2 System FLASH memory

Periodical software test for Flash memory – FLASH_SM_0

Permanent faults affecting the system Flash memory (that is the memory cells and address
decoder) are addressed through a dedicated software test that checks the memory cell
contents versus the expected value, using signature-based techniques. According to IEC
61508:2 Table A.5, the effective diagnostic coverage of such techniques depends on the
width of the signature in relation to the block length of the information to be protected -
therefore the signature computation method is to be carefully selected. Note that the simple
signature method (IEC 61508:7 - A.4.2 Modified checksum) is inadequate as it only
achieves a low value of coverage.

The information block does not need to be addressed with this test as it is not used during
normal operation (no data/program fetch).

Without information over the frequency of usage of different occupied Flash sections, in
principle, all used Flash area are assumed to be tested with a time period compatible with
the IEC 61508 requirements for the relationship between PST and the diagnostic test
interval.

Control flow monitoring in application software – FLASH_SM_1

Permanent and transient faults affecting the system Flash memory (that is the memory cells
and address decoder) can interfere with the access operation by the CPU, leading to wrong
data or instruction fetches. Such wrong data and operation, if able to heavily interfere with
the expected flow of the application software, are detected by strong control flow
mechanism linked to a system watchdog. For more detailed implementation guidelines for
such technique refer to safety mechanism CPU_SM_1 in Control flow monitoring in
application software – CPU_SM_1.

ARM® Cortex®-M0 Hardfault exceptions – FLASH_SM_2

Hardfault exception raise is an intrinsic safety mechanism implemented in ARM® Cortex®-
M0 core, mainly devoted to intercept systematic faults that are due to software limitations
and/or error in software design, leading for example to the execution of undefined
operations, unaligned address access. This safety mechanism is therefore able to detect
hardware random faults (both permanent and transient) that affect the system Flash
memory (cells and address decoder) bringing to such described abnormal operations.

Option byte write protection – FLASH_SM_3

This safety mechanism prevents unintended writes on the option byte; it addresses
therefore systematic faults in software application and not hardware random faults affecting
the option byte value during running time. The use of this method is encouraged to enhance
end application robustness for systematic faults.

DocID026137 Rev 3 21/89

UM1741 Reference safety architecture

88

3.6.3 System SRAM memory

Periodical software test for SRAM memory – RAM_SM_0

To enhance the coverage on SRAM data cells and to ensure adequate coverage for
permanent faults affecting the address decoder it is required to execute a periodical
software test on the system RAM memory. The selection of the algorithm ensures the target
SFF coverage for both the RAM cells and the address decoder. The end user provides also
evidences of the effectiveness of the coverage of the selected method.

The overall test software suite is assumed to be periodically executed with a time period
compatible with the IEC 61508 requirements for the relationship between PST and the
diagnostic test interval.

Parity bit check – RAM_SM_1

The Parity check on the system SRAM provides a relevant contribution to the detection of
hardware random faults (both permanent and transient) that affect the RAM data cells (no
expected contribution is expected for address decoder faults detection). This option is
assumed to be enabled by the user after the boot.

Stack hardening for application software – RAM_SM_2

The stack hardening method is used to enhance the application software robustness to
SRAM faults that affect the address decoder. The method is based on source code
modification, introducing information redundancy in the stack-passed information to the
called functions. This method is relevant in case the combination between the final
application software structure and the compiler settings requires a significant use of the
stack for passing function parameters.

The guidelines for the implementation of the method are the following:

 Pass also the redundant copy of the passed parameters values (possibly inverted) and
execute a coherence check in the function.

 Pass also the redundant copy of the passed pointers and execute a coherence check
in the function.

 For parameters that are not protected by redundancy, implement defensive
programming techniques such as the plausibility check of the passed values for
example to check the consistency of enumerated fields.

Information redundancy for safety-related variables in application software –
RAM_SM_3

To address transient faults affecting SRAM controller, it is required to implement information
redundancy on the safety-related system variables stored in the RAM.

The guidelines for the implementation of this method are the following:

 The system variables that are safety-related (in the sense that a wrong value due to a
failure in reading on the RAM affects the safety functions) are well-identified and
documented.

 The arithmetic computation and/or decision based on such variables are/is executed
twice and the two final results are compared.

Note that the implementation of this safety method shows a partial overlap with an already
foreseen method for Cortex®-M0 (CPU_SM_1); optimizations in implementing both

Reference safety architecture UM1741

22/89 DocID026137 Rev 3

methods are therefore possible (see Control flow monitoring in application software –
CPU_SM_1).

3.6.4 System bus interconnect

Periodical software test for interconnections – BUS_SM_0

The intra-chip connection resources (Bus Matrix, AHB/APB bridges) needs to be
periodically tested for permanent faults detection. Note that STM32F0 series MCUs have no
hardware safety mechanism to protect these structures. The test executes a connectivity
test of these shared resources, including the testing of the arbitration mechanisms between
peripherals. This method which is based on the periodical execution of software-based tests
is executed at least once per DTI.

According to IEC 61508:2 Table A.8, A.7.4 the above-described method is considered able
to achieve high levels of coverage (and it has to be verified by means of fault injection).

Information redundancy in intra-chip data exchanges – BUS_SM_1

Both permanent and transient fault affecting the intra-chip connection features (Bus Matrix,
AHB/APB bridges) are addressed by information redundancy techniques implemented over
the messages exchanged inside the MCU.

Lock mechanism for configuration options – LOCK_SM_0

The STM32F0 series MCUs feature spread protection to prevent unintended configuration
changes for some peripherals and system registers (for example PVD_LOCK, timers); the
spread protection detects systematic faults in software application and transient faults such
as soft errors, that cause some bit-flip on registers during running time. The use of this
method is encouraged to enhance the end application robustness to systematic faults.

The method described in this section provides a marginal protection against permanent and
transient faults affecting system interconnect bus.

3.6.5 NVIC and EXTI controller

Periodical read-back of configuration registers – NVIC_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” is implemented by executing a periodical check of the
configuration registers of each used system peripheral against its expected value that was
previously stored in RAM and adequately updated after each configuration change. It mainly
addresses the transient faults that affect the configuration registers, by detecting bit flips in
the registers due to these transient faults. The register test is executed at least once per DTI
in order to be able to claim the related diagnostic coverage.

Expected and unexpected interrupt check – NVIC_SM_1

According to IEC 61508:2 Table A.1 recommendations, a diagnostic measure for
continuous, absence or cross-over of interrupt must be implemented. The method of
expected and unexpected interrupt check is implemented at application software level. It
contributes to detecting both permanent and transient fault for all the above-reported failure
modes affecting interrupt handling.

DocID026137 Rev 3 23/89

UM1741 Reference safety architecture

88

The guidelines for the implementation of the method are the following:

 The list of the implemented interrupt for the MCU are well documented, reporting also
the expected frequency of each request when possible (for example the interrupts
related to ADC conversion completion, therefore coming on a deterministic way).

 Individual counters are maintained for each interrupt request served, in order to detect
in a given time frame the cases of a) no interrupt at all b) too many interrupt requests
(“babbling idiot” interrupt source). The control of the time frame duration shall be
regulated according to the individual interrupt expected frequency.

 Interrupt vectors related to unused interrupt source point to a default handler that will
report, in case of triggering, a faulty condition (unexpected interrupt).

 In case an interrupt service routine is shared between different sources, a plausibility
check on the caller identity is implemented.

 Interrupt requests related to not-safety-relevant peripherals are handled with the same
method here described, despite their originator safety classification; in order to
decrease the complexity of this method implementation, the use of polling instead of
interrupt for not-safety-relevant peripherals is suggested.

3.6.6 DMA

Periodical read-back of configuration registers – DMA_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” is implemented by executing a periodical check of the
configuration registers of the DMA peripheral against its expected value that was previously
stored in RAM and adequately updated after each configuration change. It mainly
addresses the transient faults that affect the configuration registers, by detecting bit flips in
the registers due to these transient faults. The register test is executed at least once per DTI
in order to be able to claim the related diagnostic coverage.

Information redundancy on data packet transferred via DMA – DMA_SM_1

The information redundancy required on the DMA data transfer cannot be implemented, in
line with the DMA concept, with multiple transfers of the same data block. Therefore, this
method is implemented by constraining the use of DMA to the transfer of data packed
covered by a redundancy check (like CRC, or similar techniques). Note that other diagnostic
measures on data communication peripherals (potential DMA sources or destinations)
already foresee the implementation of information redundancy at message level – therefore
the overlap with those measures could reduce the potential complexity in the referred-
method implementation.

Information redundancy including sender/receiver identifier on data packet
transferred via DMA – DMA_SM_2

This method requires that the information redundancy introduced at message level
(therefore adding a checksum field to the message) helps to identify inside the MCU the
source and the originator of the message exchange (that is which peripherals dialogs with
the RAM or the CPU). This is implemented by adding an additional field to the protected
message, with a coding convention for message type identification fixed at MCU level. That
is, this method implements some “virtual channel” between the peripheral and the target.

Reference safety architecture UM1741

24/89 DocID026137 Rev 3

Periodical software test for DMA – DMA_SM_3

This method requires the periodical testing of the DMA basic functionality, implemented
through a deterministic transfer of a data packet from one source to another (for example
from memory to memory) and the checking of the correct transfer of the message on the
target. The data packets are composed by not-trivial patterns (avoid the use of 0x0000,
0xFFFF values) and organized in order to allow the detection during the check of the
following failures:

 Incomplete packed transfer,

 Errors in single transferred word,

 Wrong order in packed transmitted data.

The use of CRC packet protection is a way to simplify such checking operations.

3.6.7 CAN

Periodical read-back of configuration registers – CAN_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of CAN
peripheral against its expected value that is previously stored in the RAM and adequately
updated after each configuration change. It mainly addresses the transient faults affecting
the configuration registers, detecting bit flips in the registers due to transient faults. The
register test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

Protocol error signals – CAN_SM_1

The CAN protocol error counters, which are entirely managed by the module at hardware
level despite being conceived to detect network-related abnormal conditions, are able to
contribute to the detection of the faults that lead to error messages generation.

The handling at application level of such error signals is a common technique in embedded
applications. Their use is highly recommended.

Information redundancy techniques on messages, including End to End
safing – CAN_SM_2

The CAN communications are protected by addressing both the permanent and transient
faults with the redundant information technique that includes the End to End Safing.

For the implementation of redundant information, it is possible to adopt a different approach:

 Multiple sending of the same message, with comparison of the received results.

 Addition by the sender of a checksum field to the message to be verified by the
receiver.

In case the checksum field approach is adopted, the selection of the algorithm for checksum
computation shall ensure a similar protection against message corruption as the one
ensured by a full redundancy.

DocID026137 Rev 3 25/89

UM1741 Reference safety architecture

88

For End to End Safing, additional measures are implemented:

 Additional field in payload allowing the unique identification of sender/receiver, and
coherence check by receiver side.

 Timing monitoring of the message exchange (for example check the message arrival
within the expected time window)

 Check of the message consistence using a message counter in the additional payload
field and checking the right sequence of messages on the receiver side.

The use of a safe communication protocol such as ProfiSAFE is recommended for the
correct implementation of this safety mechanism.

3.6.8 USART 1/2/3/4

Periodical read-back of configuration registers – UART_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of
USART against their expected value (previously stored in RAM and adequately updated
after each configuration change). It mainly addresses transient faults affecting the
configuration registers, detecting bit flips in the registers due to transient faults. The
registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

Protocol error signals – UART_SM_1

The UART protocol errors signals (if used) despite being conceived to detect physical layer
related abnormal conditions, are able to contribute to the detection to faults leading to error
messages generation. For instance, option parity bit in data byte frame, overrun error.

The handling at application level of such error signals is a common technique in embedded
applications. Their use is highly recommended.

Information redundancy techniques on messages – UART_SM_2

The redundant information technique is used to protect the USART communications by
detecting both the permanent and transient faults. There are two different approaches to
implement this technique:

 Multiple sending of the same message, with comparison of the received results.

 Addition by the sender of a checksum field to the message to be verified by the
receiver.

In case the checksum field approach is adopted, the selection of the algorithm for checksum
computation shall ensure a similar protection against message corruption as the one
ensured by a full redundancy. Theoretic demonstrations on coverage capability are admitted
– the use of CRC coding is anyway suggested.

The above-reported approaches are equivalent; an additional criteria for the selection of the
approach is the availability of a quick hardware support on the MCU platform, and the
evaluation of the computation capability of the external device with which the STM32F0 will
exchange data.

Note that if the message is transferred by the DMA, the implementation of this safety
mechanism takes into account also the overlap of DMA-related safety mechanism related to
the message exchange inside the MCU and already declared as highly recommended.

Reference safety architecture UM1741

26/89 DocID026137 Rev 3

3.6.9 I2C 1/2

Periodical read-back of configuration registers – IIC_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of I2C
against their expected value (previously stored in RAM and adequately updated after each
configuration change). It mainly addresses transient faults affecting the configuration
registers, detecting bit flips in the registers due to transient faults. The registers test is
executed at least once per DTI in order to be able to claim the related diagnostic coverage.

Protocol error signals – IIC_SM_1

The I2C protocol errors signals, despite being conceived to detect physical layer related
abnormal conditions, are able to contribute to the detection of faults leading to error
messages generation such as for instance the ACK assertion phase, and related checks.

The handling at application level of such error signals being a common technique in
embedded applications, their use is highly recommended.

Note: the adoption of SMBus protocol, if available on the selected I2C module and compatible with
the external connected devices, is a way to get available additional hardware-based error
checking mechanisms.

Information redundancy techniques on messages – IIC_SM_2

The redundant information technique is used to protect the I2C communications by
detecting both the permanent and transient faults. There are two different approaches to
implement this method:

 Multiple sending of the same message, with comparison of the received results

 Addition by the sender of a checksum field to the message to be verified by the
receiver.

In case the checksum field approach is adopted, the selection of the algorithm for checksum
computation shall ensure a similar protection against message corruption as the one
ensured by a full redundancy. Theoretic demonstrations on coverage capability are admitted
– the use of CRC coding is anyway suggested (also looking to the availability of a quick
hardware support on the MCU platform).

The above-reported approaches are equivalent; an additional criteria for the selection is the
evaluation of the computation capability of the external device with which the STM32F0 will
exchange data.

If the message is transferred by the DMA, the implementation of this safety mechanism
takes into account also the overlap of DMA-related safety mechanism related to the
message exchange inside the MCU and therefore its use is highly recommended.

Note: The adoption of SMBus protocol (if available on selected I2C module and compatible with
the external connected devices) is a way to simplify the implementation of this safety
mechanism.

DocID026137 Rev 3 27/89

UM1741 Reference safety architecture

88

3.6.10 SPI 1/2

Periodical read-back of configuration registers – SPI_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of SPI
against their expected value that was previously stored in RAM and adequately updated
after each configuration change. It mainly addresses transient faults affecting the
configuration registers, detecting bit flips in the registers due to transient faults. The
registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

Protocol error signals -SPI_SM_1

The SPI protocol errors signals, despite being conceived to detect physical layer related
abnormal conditions, are able to contribute to the detection to faults leading to error
messages generation such as for instance FIFO overrun and Mode error flags.

The handling at application level of such error signals being a common technique in
embedded applications, their use is highly recommended.

Information redundancy techniques on messages – SPI_SM_2

The redundant information technique is used to protect the SPI communications by
detecting both the permanent and transient faults. There are two different approaches to
implement this method:

 Multiple sending of the same message, with comparison of the received results.

 Addition by the sender of a checksum field to the message to be verified by the
receiver.

In case the checksum field approach is adopted, the selection of the algorithm for checksum
computation shall ensure a similar protection against message corruption as the one
ensured by a full redundancy. Theoretic demonstrations on coverage capability are admitted
– the use of the hardware CRC computation unit built into SPI module is highly suggested).

The above-reported approaches are equivalent; an additional criteria for the selection is the
evaluation of the computation capability of the external device with which the STM32F0 will
exchange data.

If the message is transferred by the DMA, the implementation of this safety mechanism
takes into account also the overlap of DMA-related safety mechanism related to the
message exchange inside the MCU and therefore its use is highly recommended.

3.6.11 USB - 2.0 Universal Serial Bus interface FS module

Periodical read-back of configuration registers – USB_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of USB
against their expected value that was previously stored in the RAM and adequately updated
after each configuration change. It mainly addresses transient faults affecting the
configuration registers, detecting bit flips in the registers due to transient faults. The
registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

Reference safety architecture UM1741

28/89 DocID026137 Rev 3

Protocol error signals – USB_SM_1

The USB protocol errors signals, despite being conceived to detect physical layer related
abnormal conditions, are able to contribute to the detection to faults leading to error
messages generation. The errors are those entirely handled by hardware. that is buffer
overruns, bit stuffing, frame format violations, CRC errors. End users must take care of the
system availability by managing adequately the protocol errors that are not related to
random hardware faults but to transmission issues that can be recovered with a repetition of
the message transmission.

The handling at application level of such error signals being a common technique in
embedded applications, their use is highly recommended.

Information redundancy techniques on messages – USB_SM_2

The redundant information technique is used to protect the USB communications by
detecting both the permanent and transient faults. There are two different approaches to
implement this method:

 Multiple sending of the same message, with comparison of the received results

 Addition by the sender of a checksum field to the message to be verified by the
receiver.

In case the checksum field approach is adopted, the selection of the algorithm for checksum
computation shall ensure a similar protection against message corruption as the one
ensured by a full redundancy. Theoretic demonstrations on coverage capability are admitted
– the use of CRC coding is anyway suggested (also looking to the availability of a quick
hardware support on the MCU platform).

The above-reported approaches are equivalent; an additional criteria for the selection is the
evaluation of the computation capability of the external device with which the STM32F0 will
exchange data.

If the message is transferred by the DMA, the implementation of this safety mechanism
takes into account also the overlap of DMA-related safety mechanism related to the
message exchange inside the MCU and therefore its use is highly recommended.

3.6.12 HDMI CEC module

Periodical read-back of configuration registers – HDMI_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of HDMI
module against their expected value that was previously stored in RAM and adequately
updated after each configuration change. It mainly addresses the transient faults affecting
the configuration registers, detecting bit flips in the registers due to transient faults. The
registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

Protocol error signals – HDMI_SM_1

HDMI protocol errors signals, despite being conceived to detect physical layer related
abnormal conditions, are able to contribute to the detection to faults leading to error
messages generation, for instance reception, transmission and arbitration error flags,
transmission and reception under-run.

DocID026137 Rev 3 29/89

UM1741 Reference safety architecture

88

Information redundancy techniques on messages – HDMI_SM_2

The redundant information technique is used to protect the HDMI communications by
detecting both the permanent and transient faults. There are two different approaches to
implement this method:

 Multiple sending of the same message, with comparison of the received results

 Addition by the sender of a checksum field to the message to be verified by the
receiver.

In case the checksum field approach is adopted, the selection of the algorithm for checksum
computation shall ensure a similar protection against message corruption as the one
ensured by a full redundancy. Theoretic demonstrations on coverage capability are admitted
– the use of CRC coding is anyway suggested (also looking to the availability of a quick
hardware support on the MCU platform).

The above-reported approaches are equivalent; an additional criteria for the selection is the
evaluation of the computation capability of the external device with which the STM32F0 will
exchange data.

3.6.13 Touch Sensing Controller (TSC)

Periodical read-back of configuration registers – TSC_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of TSC
against their expected value that was previously stored in RAM and adequately updated
after each configuration change. It mainly addresses transient faults affecting the
configuration registers, detecting bit flips in the registers due to transient faults. The
registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

Multiple acquisition by application software – TSC_SM_1

To address transient faults affecting the TSC module it is required to implement a timing
information redundancy by executing multiple acquisitions on TSC input data. This method
overlaps on the native features of the TSC module of counting events in order to ensure a
stable acquisition.

3.6.14 Analog to Digital Converters (ADC)

Periodical read-back of configuration registers – ADC_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of ADC
against their expected value that was previously stored in RAM and adequately updated
after each configuration change. It mainly addresses transient faults affecting the
configuration registers, detecting bit flips in the registers due to transient faults. The
registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

Multiple acquisition by application software - ADC_SM_1

To address the transient faults that affect the ADC module, it is required to implement a
timing information redundancy scheme that executes multiple acquisitions of the same

Reference safety architecture UM1741

30/89 DocID026137 Rev 3

signal. This recommendation will most probably be satisfied by design by the end user
application software. The usage of multiple acquisitions followed by average operations is a
common technique in industrial applications where it is needed to survive with spurious EMI
disturbs on sensor lines.

Range check by application software – ADC_SM_2

To address permanent faults affecting ADC module, and also to address failure modes
affecting the analogue section, it is required that the application software executes a range
of check/plausibility checks on the measures coming from ADC acquisitions.

The guidelines for the implementation of the method are the following:

 The expected range of the data to be acquired are investigated and adequately
documented. Note that in a well-designed application it is improbable that during
normal operation an input signal has a very near or over the upper and lower rail limit
(saturation in signal acquisition).

 If the application software is aware of the state of the system, this information is to be
used in the range check implementation. For example, if the ADC value is the
measurement of a current through a power load, reading an abnormal value such as a
a current flowing in opposite direction versus the load supply may indicate a fault in the
acquisition module.

 As the ADC module is shared between different possible external sources, the
combination of plausibility checks on the different signals acquired helps to cover the
whole input range in a very efficient way.

Note: The implementation of this safety mechanism is strongly application-dependent.

Periodical software test for ADC – ADC_SM_3

To address permanent faults affecting ADC module, and also to address failure modes
affecting the analogue section, it is required to execute a periodical test on the ADC
acquisition section. The method is implemented by acquiring either the internal reference
voltage or, alternatively, a reference voltage coming from the external (board) and
connected to an input pin, and comparing to the expected value. This test is executed
periodically at least once per DTI.

3.6.15 DAC

Periodical read-back of configuration registers – DAC_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of DAC
module against their expected value that was previously stored in RAM and adequately
updated after each configuration change. It mainly addresses transient faults affecting the
configuration registers, detecting bit flips in the registers due to transient faults. The
registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

DAC output loopback on ADC channel – DAC_SM_1

To address permanent faults affecting DAC modules, and also to address failure modes
affecting the analogue section, it is required to implement a loopback scheme where the
output analogue value of DAC is acquired by one channel of the ADC and checked versus

DocID026137 Rev 3 31/89

UM1741 Reference safety architecture

88

its expected value. This test is executed periodically, each time the DAC value is updated
and at least once per DTI.

3.6.16 Comparator

Periodical read-back of configuration registers – COMP_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of the
comparator against their expected value that was previously stored in RAM and adequately
updated after each configuration change. It mainly addresses transient faults affecting the
configuration registers, detecting bit flips in the registers due to transient faults. The
registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

1oo2 scheme for comparator – COMP_SM_1

This safety mechanism is implemented using the two internal comparators to take the same
decision. It requires that the comparator voting is handled accordingly.

Note: this safety mechanism ensure a high level of coverage against both permanent and
transient faults but it is not compatible with the “window” comparator feature.

Plausibility check on inputs – COMP_SM_2

To address permanent faults affecting comparator module, it is needed to redundantly
acquire, on the ADC channels, the analog inputs that are subjected to comparator function,
and periodically check the coherence of the comparator output on the measured values.
This method addresses only the permanent faults and with a medium level of efficiency. This
test is executed periodically at least once per DTI.

Multiple acquisition by application software – COMP_SM_3

To address transient faults affecting comparator module, it is required that the application
software makes a decision not on the basis of a single-shot transition, but with multiple
events. This recommendation will most probably be satisfied by design by the end user
application software. The usage of multiple acquisitions is a common technique in industrial
applications where it is needed to survive with spurious EMI disturbs on sensor lines.

Comparator LOCK mechanism – COMP_SM_4

This safety mechanism prevents configuration changes for comparator control and status
registers; it addresses therefore systematic faults in the software application and not
transient faults (soft errors) possibly causing bit-flip on registers during running time. The
use of this method is encouraged to enhance the end-application robustness for systematic
faults.

3.6.17 TIM 6/7

Periodical read-back of configuration registers - GTIM_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of
TIMER against their expected value that was previously stored in RAM and adequately
updated after each configuration change. It mainly addresses transient faults affecting the

Reference safety architecture UM1741

32/89 DocID026137 Rev 3

configuration registers, detecting bit flips in the registers due to transient faults. The
registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

1oo2 for counting timers – GTIM_SM_1

This method provides a high level of coverage for both permanent and transient faults on
the addressed timers. The method is conceived to protect the timers used for counting
features, for example the timers dedicated to maintain a system time base and/or to
generate a timed interrupt for the execution of service routines (like for instance general
timing counters update/increase).

The guidelines for the implementation of the method are the following:

 In case of timer use as a time base, use in the application software one of the timer as
timebase source, and the other one just for check. In that case the coherence check for
the 1oo2 will be done at application level.

 In case of interrupt generation usage, use the first timer as main interrupt source for the
service routines, and use the second timer to activate a “checking routine” that cross-
checks the coherence between the timers.

3.6.18 TIM1/2/3/14/15/16/17

Note: as the advanced timers are equipped with many different channels, each independent from
the others, and possibly programmed to realize different features, the safety mechanism is
selected individually for each channel.

Periodical read-back of configuration registers – ATIM_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of
TIMERS against their expected value that was previously stored in RAM and adequately
updated after each configuration change. It mainly addresses transient faults affecting the
configuration registers, detecting bit flips in the registers due to transient faults. The
registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

1oo2 for counting timers – ATIM_SM_1

This method provides a high level of coverage for both the permanent and transient faults
on the addressed timers. The method is conceived to protect the timers used for counting
features, for example the timers dedicated to maintain a system time base and/or to
generate a timed interrupt for the execution of service routines (like for instance general
timing counters update/increase).

The guidelines for the implementation of the method are the following:

 In case of timer use as a time base, use in the application software one of the timer as
timebase source, and the other timer just for check. In that case the coherence check
for the 1oo2 is done at application level.

 In case of interrupt generation usage, use the first timer as main interrupt source for the
service routines, and use the second timer to activate a “checking routine” that cross-
checks the coherence between timers.

DocID026137 Rev 3 33/89

UM1741 Reference safety architecture

88

1oo2 for input capture timers - ATIM_SM_2

This method, based on 1oo2 scheme, provides a high level of coverage for both the
permanent and transient faults on the addressed timers. It is conceived to protect the timers
used for external signal acquisition and measurement, like “input capture” and “encoder
reading”. The implementation is easy as it simply requires to connect the external signals
also to the redundant timer, and perform a coherence check on the measured data at
application level. To reduce the potential effect of the common cause failure, it is suggested,
for the redundant check, to use a channel belonging to a different timer module and mapped
to not-adjacent pins on the device package.

Loopback scheme for PWM outputs – ATIM_SM_3

This method uses a loopback scheme to detect permanent and transient faults on the timer
channels used for wave generations (PWM). It is implemented by connecting the PWM to a
separate channel, either in the same or in another timer, to acquire the generated waveform
characteristics.

The guidelines for the implementation of the method are the following:

 Both frequency and duty cycle of PWM are measured and checked versus the
expected value.

 To reduce the potential effect of common cause failure, it is suggested to use for the
loopback check a channel belonging to a different timer module and mapped to not-
adjacent pins on the device package.

This measure can be replaced under the end-user responsibility by different loopback
schemes already in place in the final application and rated as equivalent. For example if the
PWM is used to drive an external power load, the reading of the on-line current value can be
used instead of the PWM frequency measurement.

3.6.19 GPIO – PORT A/B/C/D/E/F

Periodical read-back of configuration registers – GPIO_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of GPIO
against their expected value that was previously stored in RAM and adequately updated
after each configuration change. It mainly addresses transient faults affecting the
configuration registers, detecting bit flips in the registers due to transient faults. The
registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

1oo2 for input GPIO lines – GPIO_SM_1

To address both permanent and transient faults on GPIO lines used as input, it is required to
implement a 1oo2 scheme by connecting the external safety-relevant signal to two
independent GPIO lines. To reduce the potential impact of common cause failure, it is
suggested to use GPIO lines belonging to different i/o ports (for example PORT A and B)
and mapped to not-adjacent pins on the device package.

Loopback scheme for output GPIO lines – GPIO_SM_2

To address both permanent and transient faults on GPIO lines used as output, it is required
to implement a loopback scheme, connecting the output to a different GPIO line
programmed as input and used to check the expected value on output port. To reduce the

Reference safety architecture UM1741

34/89 DocID026137 Rev 3

potential impact of common cause failure, it is suggested to use GPIO lines belonging to
different i/o ports (for example PORT A and B) and mapped to not-adjacent pins on the
device package.

GPIO port configuration lock register – GPIO_SM_3

This safety mechanism prevents configuration changes for GPIO registers; it addresses
therefore systematic faults in software application and not transient faults (soft errors) that
can possibly cause bit-flip on registers during running time. The use of this method is
encouraged to enhance the end-application robustness for systematic faults.

3.6.20 Real Time Clock module (RTC)

Periodical read-back of configuration registers – RTC_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of RTC
module against their expected value that was previously stored in RAM and adequately
updated after each configuration change. It mainly addresses transient faults affecting the
configuration registers, detecting bit flips in the registers due to transient faults. The
registers test shall be executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

Application check of running RTC – RTC_SM_1

The application software implements some plausibility check on RTC calendar/timing data,
mainly after a power-up and further date reading by RTC.

The guidelines for the implementation of the method are the following:

 RTC backup registers are used to store the coded information and detect the absence
of VBAT during power-off period.

 RTC backup registers are used to periodically store compressed information on
date/time, and allow the application software to execute minimal consistence checks
for date reading after power-on (that is detect “past” date/time retrieve).

3.6.21 Supply voltage system

Periodical read-back of configuration registers – VSUP_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of the
Power Control logic against their expected value that was previously stored in RAM and
adequately updated after each configuration change. It mainly addresses transient faults
affecting the configuration registers, detecting bit flips in the registers due to transient faults.
The registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

Supply Voltage Monitoring – VSUP_SM_1

It is required to detect early the under voltage and overvoltage conditions that are potential
sources of failure at MCU level. The power supply values close to the operating limits
reported in device datasheet are considered at the same level as hardware faults and lead
to similar recovery actions by the application software.

DocID026137 Rev 3 35/89

UM1741 Reference safety architecture

88

The use of internal Programmable Voltage Detector (PVD) helps to implement this method.
The adoption of an external monitoring power supply device outside the MCU ensures
additional protection against potential common cause failures.

Caution: the internal PVD will have limited efficiency in detecting an overvoltage condition – therefore
it is highlighted recommended the end users respect the absolute maximum ratings for
voltage (see Section 3.4: Electrical specifications and environment limits).

Independent watchdog – VSUP_SM_2

The independent watchdog is fed directly by VDD; therefore, major failures in the 1.8 V
supply for digital logic (core/peripherals) will not affect its behavior but may lead to a
violation of the IDWG window for the key value write by the application software, leading to
a system reset.

Internal temperature sensor check – VSUP_SM_3

The internal temperature sensor shall be periodically tested in order to detect abnormal
increase of the die temperature – hardware faults in supply voltage system may cause
excessive power consumption and consequent temperature rise. This method also
mitigates the eventuality of common-cause affecting the MCU and due to too high
temperature.

Refer to the device datasheet to set the threshold temperature.

3.6.22 Reset and clock control subsystem

Periodical read-back of configuration registers – CLK_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of the
Reset and Clock Control logic against their expected value (previously stored in RAM and
adequately updated after each configuration change). It mainly addresses transient faults
affecting the configuration registers, detecting bit flips in the registers due to transient faults.
The registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

Clock Security System (CSS) – CLK_SM_1

The Clock Security System (CSS) detects the loss of HSE clock activity and executes the
corresponding recovery action, such as switch-off HSE and commute on the HSI. For this
reason it is able to detect potential abnormal situations:

 Loss of external clock,

 Abnormal activation of HSE despite being disabled by design.

The CSS detection of HSE abnormal condition is considered as equivalent to hardware
faults and brings to similar recovery actions by the application software.

As these two above situations are potential source of common cause failure, the adoption of
this method is highly recommended.

Independent watchdog – CLK_SM_2

The independent watchdog is fed by a dedicated oscillator; therefore, major failures on
clock generation at system level will not affect its behavior but may lead to a violation of the
IDWG window for the key value write by the application software, leading to a system reset.

Reference safety architecture UM1741

36/89 DocID026137 Rev 3

Note that the efficiency of this safety mechanism is strongly dependent on the correct
window setting and handling for the IDWG. The refresh of the IDWG should be implemented
in order to bring alteration of the program flow able to bypass the time window limit.

Internal clock cross-measure – CLK_SM_3

This method is implemented using TIM14 capabilities to be fed by the 32KHz RTC clock or
an external clock source (if available). This way a dedicated software routine is able to
cross-measure the internal clock and detect any abnormal value of oscillation frequency.
This method, despite its complexity, only provides medium efficiency in clock-related failure
mode coverage.

3.6.23 Watchdogs (IWDG, WWDG)

Periodical read-back of configuration registers – WDG_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of
Configuration Registers” executes a periodical check of the configuration registers of the
watchdogs against their expected value (previously stored in RAM and adequately updated
after each configuration change). It mainly addresses transient faults affecting the
configuration registers, detecting bit flips in the registers due to transient faults. The
registers test is executed at least once per DTI in order to be able to claim the related
diagnostic coverage.

Software test for watchdog at startup – WDG_SM_1

This safety mechanism ensures the right functionality of the internal watchdogs in use. At
startup, the software test programs the watchdog with the required expiration timeout,
stores a specific flag in the RAM and waits for the reset signal. After the watchdog reset, the
software understands that the watchdog has correctly triggered, and does not execute the
procedure again.

3.6.24 Debug

Independent watchdog – DBG_SM_0

The debug unintentional activation due to hardware random fault will result in the massive
disturbance of the independent watchdog or alternately, the other system watchdog
WWGDG or an external one.

3.6.25 Cyclic Redundancy Check module (CRC)

CRC self-coverage – CRC_SM_0

The CRC algorithm implemented in this module (CRC-32 Ethernet polynomial: 0x4C11DB7)
offers excellent features in terms of error detection in the message. Therefore the
permanent and transient faults affecting CRC computations are easily detected by each
operations using the module to recomputed the expected signature.

DocID026137 Rev 3 37/89

UM1741 Reference safety architecture

88

3.6.26 Dual MCU architecture

Cross-checking between two STM32F0 microcontrollers – DUAL_SM_0

In a dual MCU safety architecture, the previously defined diagnostics are complemented by
a cross-check between the two MCUs. The rationale behind this safety mechanism is to
involve in the cross-check both the self-check testing for each MCUs and the control flow /
result checks for the running application software.

The guidelines for the implementation of this method are the following:

 The two microcontrollers receive the same input data at the same time and individually
execute the mission algorithm, that is the application software. It is important that the
input data received from the external world is protected by the most robust methods
already described in this safety manual for the system peripherals in terms of data
message protection - refer to safety mechanism like Information redundancy
techniques on messages, including End to End safing – CAN_SM_2, or Information
redundancy techniques on messages – UART_SM_2.

 During the execution of the mission algorithm, at every fixed time (referenced here as
“tick”), each CPU interrupts the normal execution flow and executes a self-test aimed at
the detection of permanent faults. The results are exchanged between the two MCUs
by means of an external peripheral interface, like USART or SPI. The most efficient
related safety mechanisms described in this safety manual are implemented for the
peripherals used for the inter-MCU informations exchange.

Moreover, with the aim of detecting transient faults, the exchange of compressed results of
the algorithm steps executed in the “tick” is performed according to the following steps:

 MCU2 compares the result of algorithm steps of MCU2 with the result of algorithm
steps of MCU1.

 MCU1 compares the result of algorithm steps of MCU1 with the result of algorithm
steps of MCU2.

The above referred “algorithm steps” are used to record intermediate safety-related
computation data and tracking information on the internal state of the application
software/algorithm. Note that the latter can be derived from the available data already
computed by the safety mechanism linked to control flow monitoring (refer to Control flow
monitoring in application software – CPU_SM_1).

3.6.27 Latent fault detection

This safety manual is based on a safety analysis according to IEC 61508.

ISO 26262 – the reference for integrated circuit safety analysis - considers also a metric for
“latent” faults. The latent fault is a multiple-point fault which presence is not detected by a
safety mechanism nor perceived by the driver within the multiple-point fault detection
interval. In practical words, the latent fault is a combination of a fault in a safety mechanism
- that by itself will NOT cause the violation of the safety goal (function) - and a fault in the
mission logic supervised by that safety mechanism. Despite the lack of definition for latent
fault metrics in IEC 61508, the robustness of a design against latent is considered as a key
point in the safety community.

The following reported methods mainly address latent fault for the foreseen safety
mechanism at MCU level.

Reference safety architecture UM1741

38/89 DocID026137 Rev 3

CRC self-coverage – LAT_SM_0

The intrinsic high-level of self-coverage of the CRC computation unit is computed as a
safety mechanism for latent fault for all STM32F0 series peripherals/modules covered by
the safety mechanism implemented as software check based on CRC computations.

Independent Watchdog – LAT_SM_1

Each safety mechanism implemented as periodical software testing runs on the CPU.
Possible faults in the safety mechanism are therefore faults in the “support” for the
execution that is the CPU. The independent watchdog is considered here as safety
mechanism addressing the program counter failures due to the CPU hardware random
faults.

Periodical core self test software – LAT_SM_2

As the major part of the safety mechanism described in this safety manual is implemented
by software, the periodical core self-test software execution able to detect faults in the
ARM® Cortex®-M0 CPU acts as safety mechanism for latent faults. For implementation
details refer to the description reported in Periodical core self test software - CPU_SM_0 for
CPU_SM_0.

3.6.28 Disable and periodic cross-check of unintentional activation of
unused peripherals

This section reports the safety mechanism that addresses peripherals not used by the
safety application, or not used at all. Note that it is possible to use these methods to manage
application where the end user completely disables the DMA (using therefore polling
techniques) in order to avoid the implementation of DMA-related safety measures.

Unused peripherals disable – FFI_SM_0

This method contributes to the reduction of the probability of cross-interferences caused by
peripherals not used by the software application. It is implemented by end users, taking care
of disabling by software (for instance during the system boot) each peripheral that is not
used.

Periodical read-back of interference avoidance registers – FFI_SM_1

This method contributes to the reduction of the probability of cross-interferences between
peripherals that can potentially conflict on the same output pins, including for instance
unused peripherals (refer to Unused peripherals disable – FFI_SM_0). This diagnostic
measure executes a periodical check of the below described registers against their
expected value (previously stored in RAM and adequately updated after each configuration
change). The register test is executed at least once per DTI.

The configuration registers to be tested with this method are those related to clock disabling
features for peripherals and those related to the enabling of alternate functions on I/O pins.

DocID026137 Rev 3 39/89

UM1741 Reference safety architecture

88

3.7 Conditions of use

Table 3 provides a summary of the safety concept recommendations reported in
Section 3.6: Description of hardware and software diagnostics. The conditions of use to be
applied to STM32F0 series MCUs are reported in the form of safety mechanism
requirements.

The single MCU/dual MCU columns address the related architecture and have the following
meaning:

 M = this safety mechanism is always operating during normal operations – no end user
activity can deactivate it.

 ++ = Highly recommended being a common practice and considered in this safety
manual for the computation of the safety metrics.

 + = Recommended as additional safety measure, but not considered in this safety
manual for the computation of safety metrics. Users of the STM32F0 series can skip
the mechanism in case it is in contradiction with functional requirements.

 o = optional, not needed

The “X” marker in the “Perm” and “Trans” columns in Table 3, indicates that the related
safety mechanism is effective for such fault model.

Table 3. List of safety mechanisms

STM32F0 function Diagnostic Description
Single
MCU

Dual
MCU

Perm Trans

ARM® Cortex®-M0
CPU

CPU_SM_0
Periodical software test addressing
permanent faults in ARM Cortex-M0 CPU
core

++ ++ X -

CPU_SM_1
Control flow monitoring in application
software

++ ++ X X

CPU_SM_2
Double computation in application
software

++ ++ - X

CPU_SM_3 ARM® Cortex®-M0 HardFault exceptions M M X X

CPU_SM_4 Stack hardening for application software + + X X

CPU_SM_5 External watchdog o o X X

System Flash

FLASH_SM_0 Periodical software test for Flash memory ++ ++ X -

FLASH_SM_1
Control flow monitoring in application
software

+ + X X

FLASH_SM_2 ARM® Cortex®-M0 HardFault exceptions M M X X

FLASH_SM_3 Option byte write protection M M - -

System SRAM

RAM_SM_0 Periodical software test for SRAM memory ++ ++ X -

RAM_SM_1 Parity bit check ++ ++ X X

RAM_SM_2 Stack hardening for application software + + X X

RAM_SM_3
Information redundancy for system
variables in application software

++ ++ X X

Reference safety architecture UM1741

40/89 DocID026137 Rev 3

System interconnect

BUS_SM_0
Periodical software test for
interconnections

++ ++ X -

BUS_SM_1
Information redundancy in intra-chip data
exchanges

++ ++ X X

NVIC

NVIC_SM_0
Periodical read-back of configuration
registers

++ ++ X X

NVIC_SM_1
Expected and unexpected interrupt check
by application software

++ ++ X X

CAN

CAN_SM_0
Periodical read-back of configuration
registers

++ ++ X X

CAN_SM_1 Protocol error signals + + X X

CAN_SM_2
Information redundancy techniques on
messages, including End to End safing

++ ++ X X

UART

UART_SM_0
Periodical read-back of configuration
registers

++ ++ X X

UART_SM_1 Protocol error signals + + X X

UART_SM_2
Information redundancy techniques on
messages

++ ++ X X

I2C

IIC_SM_0
Periodical read-back of configuration
registers

++ ++ X X

IIC_SM_1 Protocol error signals + + X X

IIC_SM_2
Information redundancy techniques on
messages

++ ++ X X

SPI

SPI_SM_0
Periodical read-back of configuration
registers

++ ++ X X

SPI_SM_1 Protocol error signals + + X X

SPI_SM_2
Information redundancy techniques on
messages

++ ++ X X

USB

USB_SM_0
Periodical read-back of configuration
registers

++ ++ X X

USB_SM_1 Protocol error signals + + X X

USB_SM_2
Information redundancy techniques on
messages

++ ++ X X

HDMI

HDMI_SM_0
Periodical read-back of configuration
registers

++ ++ X X

HDMI_SM_1 Protocol error signals + + X X

HDMI_SM_2
Information redundancy techniques on
messages

++ ++ X X

Table 3. List of safety mechanisms (continued)

STM32F0 function Diagnostic Description
Single
MCU

Dual
MCU

Perm Trans

DocID026137 Rev 3 41/89

UM1741 Reference safety architecture

88

TSC
TSC_SM_0

Periodical read-back of configuration
registers

++ ++ X X

TSC_SM_1 Multiple acquisition by application software ++ ++ - X

ADC

ADC_SM_0
Periodical read-back of configuration
registers

++ ++ X X

ADC_SM_1 Multiple acquisition by application software ++ ++ - X

ADC_SM_2 Range check by application software ++ ++ X X

ADC_SM_3 Periodical software test for ADC + + X -

DAC
DAC_SM_0

Periodical read-back of configuration
registers

++ ++ X X

DAC_SM_1 DAC output loopback on ADC channel ++ ++ X X

COMP

COMP_SM_0
Periodical read-back of configuration
registers

++ ++ X X

COMP_SM_1 1oo2 scheme for comparator ++ ++ X X

COMP_SM_2 Plausibility check on inputs + + X -

COMP_SM_3 Multiple acquisition by application software + + - X

COMP_SM_4 Comparator LOCK mechanism + + - -

DMA

DMA_SM_0
Periodical read-back of configuration
registers

++ ++ X X

DMA_SM_1
Information redundancy on data packet
transferred via DMA

++ ++ X X

DMA_SM_2
Information redundancy including
sender/receiver identifier on data packet
transferred via DMA

++ ++ X X

DMA_SM_3 Periodical software test for DMA ++ ++ X -

TIM6/7
GTIM_SM_0

Periodical read-back of configuration
registers

++ ++ X X

GTIM_SM_1 1oo2 for counting timers ++ ++ X X

TIM1/2/3/14/15/16/17

ATIM_SM_0
Periodical read-back of configuration
registers

++ ++ X X

ATIM_SM_1 1oo2 for counting timers ++ ++ X X

ATIM_SM_2 1oo2 for input capture timers ++ ++ X X

ATIM_SM_3 Loopback scheme for PWM outputs ++ ++ X X

CRC CRC_SM_0 CRC self-coverage ++ ++ X X

Table 3. List of safety mechanisms (continued)

STM32F0 function Diagnostic Description
Single
MCU

Dual
MCU

Perm Trans

Reference safety architecture UM1741

42/89 DocID026137 Rev 3

GPIO

GPIO_SM_0
Periodical read-back of configuration
registers

++ ++ X X

GPIO_SM_1 1oo2 for input GPIO lines ++ ++ X X

GPIO_SM_2 Loopback scheme for output GPIO lines ++ ++ X X

GPIO_SM_3 GPIO port configuration lock register + + - -

RTC
RTC_SM_0

Periodical read-back of configuration
registers

++ ++ X X

RTC_SM_1 Application check of running RTC ++ ++ X X

Supply system

VSUP_SM_0
Periodical read-back of configuration
registers

++ ++ X X

VSUP_SM_1 Supply voltage monitoring ++ ++ X -

VSUP_SM_2 Independent Watchdog ++ ++ X -

VSUP_SM_3 Internal temperature sensor check o o - -

Clock and Reset

CLK_SM_0
Periodical read-back of configuration
registers

++ ++ X X

CLK_SM_1 CSS Clock Security System ++ ++ X -

CLK_SM_2 Independent Watchdog ++ ++ X -

CLK_SM_3 Internal clock cross-measure + + X -

Watchdogs
WDG_SM_0

Periodical read-back of configuration
registers

++ ++ X X

WDG_SM_1 Software test for watchdog at startup o o X -

Debug DBG_SM_0 Independent watchdog ++ ++ X X

Dual MCU DUAL_SM_0
Cross-checking between two STM32F0
microcontrollers

- ++ X X

Software-based
safety mechanism

using hardware CRC
LAT_SM_0 CRC self-coverage + + X -

Software-based
safety mechanism

LAT_SM_1 Independent Watchdog + + X -

LAT_SM_2 Periodical core self test software + + X -

System / peripherals
control

LOCK_SM_0 Lock mechanism for configuration options + + - -

Part separation (no
interference)

FFI_SM_0 Unused peripherals disable + + - -

FFI_SM_1
Periodical read-back of interference
avoidance registers

+ + - -

Table 3. List of safety mechanisms (continued)

STM32F0 function Diagnostic Description
Single
MCU

Dual
MCU

Perm Trans

DocID026137 Rev 3 43/89

UM1741 Reference safety architecture

88

The above-described safety mechanism/conditions of use are implemented with different
levels of abstraction depending on their nature: the more a safety mechanism is
implemented as application-independent, the wider is its possible use on a large range of
end-user applications.

The safety analysis highlights two major areas inside the MCU, illustrated in Figure 5:

 The light blue area includes all MCU modules that are system-critical, meaning that
each end-user application will be affected from a safety point of view by an issue on
these modules. Each safety application addresses these modules with the adequate
methods (according to the safety analysis reported above). Furthermore, these
modules being commonly used by each end user application, the related
methods/safety mechanism as described above are mainly implemented to be
application-independent.

 The orange area includes peripheral modules that could be not used by the end-user
application, or that were used for not-safety relevant tasks. The related safety methods
are therefore implemented mainly at application level, as application software solutions
and/or architectural solutions.

Figure 5. Block diagram of safety characteristics for STM32F0 modules

Safety results UM1741

44/89 DocID026137 Rev 3

4 Safety results

This section reports the results of the safety analysis of the STM32F0 series MCU,
according to IEC 61508 and to the Yogitech fRMethodology flow, related to the hardware
random and dependent failures.

4.1 Hardware random failure safety results

The analysis for random hardware failures of STM32F0 series devices reported in this
safety manual is executed according to Yogitech fRMethodology flow. The main advantages
of this flow, described in details in Appendix A, are the following:

 the component is split into elementary parts and the analysis is executed at such level
of detail, therefore with a more accurate granularity than typical approaches based on
IEC 61508 tables (where granularity is the subpart level);

 verification of safety results by means of fault injection for both permanent and
transient faults executed on the real netlist and RTL of real device;

 comparison of safety results coming from fault injection validation with those coming
from estimation phase, allowing a redundant double check.

In summary, with the adoptions of the safety mechanism and conditions of use reported in
Section 3.7: Conditions of use, it is possible to achieve the integrity levels summarized in
Table 4.

The resulting metrics (DC and SFF) are not reported in this section but in the FMEDA, and
the same happens for absolute metrics (PFH, PFD), due to

 the large number of STM32F0 series devices,

 the possibility to declare not-safety-relevant unused peripherals, and

 the possibility to enable or not the different available safety mechanism.

The FMEDA calculation sheet can be provided on demand, please refer to your local ST
sales contact.

Table 4. Overall achievable safety integrity levels

MCUs used Safety architecture Target Safety analysis result

1 1oo1/1oo1D
SIL2 LD Achievable

SIL2 HD/CM Achievable with potential performance impact(1)

1. Note that the potential performance impact related to some above-reported target achievements is mainly
related to the need of execution of periodical software-based diagnostics (refer to safety mechanism
description for details). The impact is therefore strictly related to how “aggressive” the system level PST is
(see Section 3.3.1: Assumed safety requirements).

2

1oo2
SIL3 LD Achievable

SIL3 HD/CM Achievable with potential performance impact(1)

1oo2D
SIL3 LD Achievable

SIL3 HD/CM Achievable with potential performance impact(1)

2oo2
SIL3 LD Achievable

SIL3 HD/CM Achievable with potential performance impact(1)

DocID026137 Rev 3 45/89

UM1741 Safety results

88

4.1.1 Safety analysis result customization

The safety analysis executed for STM32F0 series devices and contained in this safety
manual are considered to be safety relevant, that is able to interfere with the safety function,
to all microcontroller parts, with no exclusion. This is in line with the conservative approach
to be followed during the analysis of a general-purpose microcontroller, in order to be
agnostic versus the final application. This means that no STM32F0 series device has been
declared as “no part” nor “no effect” and therefore all STM32F0 series devices are included
in SFF computations.

In end-user applications, not all the STM32F0 series parts/modules are used for the
implementation of the safety function. Requiring the implementation of the respective safety
mechanism for those parts could result in an overkill; as a consequence, a dedicated
analysis has been done. According to this analysis, the end user can define the selected
STM32F0 series parts as “not safety relevant” under the following conditions:

 Collect rationales and evidences that the parts play no role in safety function
implementation (user responsibility).

 Collect rationales and evidences that the parts do not interfere with the safety function
during normal operation.

 Fulfillment of the below-reported general condition for the mitigation of the intra-MCU
interferences (Table 5).

The end user is allowed for “not safety relevant” parts to do the following:

 Disable the part contribution from metrics computations in FMEDA;

 Not implement the related safety mechanisms listed in Table 3: List of safety
mechanisms.

4.1.2 General requirements for Freedom From Interferences (FFI)

A dedicated analysis has highlighted a list of general requirements to be followed by end
users in order to be authorized to declare selected STM32F0 series parts as “not safety
relevant”. The analysis considers two situations: the part that is not used at all (disabled) or
the part is used for a function that is not safety-related (for example a GPIO port driving a
“power-on” signaling led on the electronic board), and considers the possible interferences
due to hardware random faults affecting not-safety-relevant parts.

The requirement for the end user is to implement the safety mechanism detailed in
Section 3.6: Description of hardware and software diagnostics despite any evaluation about
their contribution for the safety metrics computations. Those safety mechanisms are
reported in Table 6.

Table 5. List of general requirements for FFI

Diagnostic Description

FFI_SM_0 Unused peripheral disable

FFI_SM_1 Periodical read-back of interference avoidance registers

BUS_SM_0 Periodical software test for interconnections

NVIC_SM_0 Periodical read-back of configuration registers

NVIC_SM_1 Expected and unexpected interrupt check by application software

DMA_SM_0 Periodical read-back of configuration registers

Safety results UM1741

46/89 DocID026137 Rev 3

4.2 Dependent failures analysis

The analysis of dependent failures is important for microcontrollers. The main sub-classes
of dependent failures are the Common Cause Failures (CCF). Their analysis is ruled by the
IEC 61508:2 annex E that lists the design requirements to be verified to allow the use of on-
chip redundancy for ICs with one common semiconductor substrate. However, based on an
agreement discussed by Yogitech with TÜV Sud Automotive in the past, the annexes E.1
and E.2 apply for HFT=1 while the Annex E.3 shall be applied to every on-chip redundancy,
intended also in terms of diagnostic implemented on the same silicon.

As there are no on-chip redundancy on STM32F0 series devices, the CCF quantification
through the BetaIC computation method is not required. Note that in the case of Dual-MCU
architectures implementing for instance1oo2 safety architecture, the end user is required to
evaluate the parameter βD, which is the measure of the common-cause between the two
channels) used in PFH computation.

The STM32F0 series device architecture and structure are potential sources of dependent
failures. These are analyzed in the following sections. The referred safety mechanisms are
described in detail in Section 3.6: Description of hardware and software diagnostics.

4.2.1 Power supply

Power supply is a potential source of dependent failures, because any alteration of the
power the supply can affect many parts, leading to not-independent failures. The following
safety mechanisms address and mitigate those dependent failures:

 VSUP_SM_1: detection of abnormal value of supply voltage;

 VSUP_SM_2: the independent watchdog has a different supply source from the digital
core of the MCU, and this diversity helps to mitigate dependent failures related to the
main supply alterations.

The adoption of such safety mechanisms is therefore strongly recommended despite their
minor contribution to the safety metrics to reach the required safety integrity level. Refer to
Section 3.6.21: Supply voltage system for the detailed safety mechanism descriptions.

DMA_SM_1 Information redundancy on data packet transferred via DMA

DMA_SM_2
Information redundancy including sender/receiver identifier on data packet
transferred via DMA

GPIO_SM_0 Periodical read-back of configuration registers

Table 5. List of general requirements for FFI (continued)

Diagnostic Description

DocID026137 Rev 3 47/89

UM1741 Safety results

88

4.2.2 Clock

System clocks are a potential source of dependent failures, because alterations in the clock
characteristics (frequency, jitter) can affect many parts, leading to not-independent failures.
The following safety mechanisms address and mitigate those dependent failures:

 CLK_SM_1: the clock security system is able to detect hard alterations (stop) of system
clock and activate the adequate recovery actions.

 CLK_SM_2: the independent watchdog has a dedicated clock source. The frequency
alteration of the system clock leads to the watchdog window violations by the triggering
routine on the application software, leading to the MCU reset by watchdog.

The adoption of such safety mechanism is therefore strongly recommended despite their
minor contribution to the safety metrics to reach the required safety integrity level. Refer to
Section 3.6.22: Reset and clock control subsystem for detailed safety mechanisms
description.

4.2.3 DMA

DMA is a widely shared resource involved in data transfers operated mainly by all
peripherals. Failures of DMA interfere with the behavior of the system peripherals, leading
to not independent failures. The safety mechanism addressing such independent failures,
which are described in Section 4.1.2: General requirements for Freedom From
Interferences (FFI), guarantee the Freedom from Interference:

 DMA_SM_0,

 DMA_SM_1,

 DMA_SM_2.

The adoption of such safety mechanism is therefore strongly recommended despite their
minor contribution to the safety metrics to reach the required safety integrity level. Refer to
Section 3.6.6: DMA for detailed safety mechanisms description.

4.2.4 Internal temperature

The abnormal increase of the internal temperature is a potential source of dependent
failures, because it can affect many MCU parts and therefore lead to not-independent
failures. The safety mechanism to be used to mitigate this potential effect is the following:

 VSUP_SM_3: the internal temperature read and check allow the user to quickly detect
potential risky conditions before they lead to a series of internal failures. Refer to
Section 3.6.21: Supply voltage system for the detailed safety mechanism descriptions.

List of evidences UM1741

48/89 DocID026137 Rev 3

5 List of evidences

The Safety Case Database stores all the informations related to the safety analysis
performed to derive the results and conclusions reported in this safety manual.

In detail, the Safety Case Database is composed of the following:

 Safety Case with the full list of all safety analysis related documents;

 Yogitech internal FMEDA tool database for the computation of the safety metrics,
including the estimated and measured values;

 Safety Report, the document that describes in detail the safety analysis executed on
STM32F0 series devices and the clause-by-clause compliance to IEC 61508;

 All paper works, academic studies and Yogitech internal white papers/application notes
quoted in the Safety Report to support the analysis;

 Yogitech internal fault injection campaign database including Safety Verifier settings,
injection logs and results.

The above-described contents are not publicly available and are available for possible
competent bodies audit and inspections.

DocID026137 Rev 3 49/89

UM1741 Overview of fRMethodology

88

Appendix A Overview of fRMethodology

This section provides an overview of Yogitech faultRobust Methodology (fRMethodology).

A.1 The essence of fRMethodology

The quality and completeness of the safety analysis is necessary to

 identify the failure modes of a microcontroller,

 plan the corresponding mitigations, and

 establish their effectiveness, that is their diagnostic coverage.

These are key points to consider for the functional safety applied to integrated circuits.

A typical black-box functional safety analysis is based on the collection of data from block
diagrams and component user manuals. It assumes the following:

1. an equal failure mode distribution,

2. an equal split between dangerous and safe failures, and

3. it claims a diagnostic coverage higher than 60% without a detailed quantitative analysis
and accurate safety verification.

However, the complexity of modern integrated circuits in terms of number of transistors,
CPU features, bus architecture, memory size and the complexity of the safety application
are such that the adoption of a black-box approach is no longer realistic. A functional safety
analysis exclusively based on the aforementioned items leads to an unacceptable gap
between the estimated and measured safety integrity levels (A/SIL).

In stark contrast to the “black-box” approach, Yogitech enables the highest safety integrity
levels for integrated circuits to be achieved by means of its fRMethodology. The Yogitech
fRMethodology is a patented white-box approach to perform and verify/validate functional
safety analyses and safety-oriented design exploration of integrated circuits, according to
different functional safety standards.

In essence, fRMethodology consists of:

 Dividing the component into elementary parts by using automatic tools to guarantee the
completeness of the analysis;

 Computing the safety metrics by looking to the fault models of each elementary part,
attributing the failure rate, the dangerousness and estimating the diagnostic coverage
of the planned HW or SW safety mechanisms;

 Verifying/Validating the safety metrics by an extensive fault injection campaign
simulating permanent, transient and common cause faults.

A.2 fRMethodology and its flow

fRMethodology is approved by TÜV SÜD as the flow to assess and validate the safe failure
fraction of given integrated circuit in adherence to IEC 61508 (statement included in the
certificate of Yogitech’ fRMEM product, Z10 06 11 61674 001). fRMethodology has been
extended by Yogitech to ISO 26262, benefiting from Yogitech active role as member of the
ISO-TC22-SC3-WG16 (ISO 26262) international working group. In the ISO 26262
international working group, Yogitech is a leading author of the Annex A of part 10, that is

Overview of fRMethodology UM1741

50/89 DocID026137 Rev 3

about how to deal with microcontrollers in the context of an ISO 26262 application.
Moreover, Yogitech extended both IEC 61508 and ISO 26262 requirements to analogue
circuits thanks to its consolidated experience in analogue design and analogue verification.

In essence, the fRMethodology flow is intended to assist engineers in making the safety
case for their designs with regard to the functional safety standards ISO 26262 and IEC
61508. It comprises:

 Splitting the component or system into elementary parts;

 Identifying the respective fault models and failure modes;

 Estimating the failure modes distribution;

 Using the relevant failure mode data to compute safety metrics;

 Performing sensitivity analyses by changing architectural and/or technology
parameters;

 Verifying the results by fault injection.

Figure 6 summarizes the flow and Table 6 shows the level of detail of the analysis required
at each phase.

Figure 6. The fRMethodology flow for IEC 61508

DocID026137 Rev 3 51/89

UM1741 Overview of fRMethodology

88

A.3 fRTools

Due to the complexity of modern integrated circuits, as recognized by functional safety
standards like ISO 26262, the completeness of the analysis can be guaranteed only through
automation. For this reason, fRMethodology is supported by a set of EDA tools:

 Safety Designer, a cockpit to determine failure rates, failure modes and failure modes
distribution of integrated circuits. This tool is specific for integrated circuits and supports
the safety engineer all the way through the safety analyses, from FMEA to FMEDA and
FTA, including dependent failure analysis.

 Safety Verifier, a tool that covers the validation of the safety metrics (safeness and
diagnostic coverage of HW and SW mechanisms) by managing a fault injection
campaign on a device (or part of it). The Safety Verifier allows the user to partition the
campaign according to the steps defined by the methodology and to the needs of
complexity of the design. It manages all the necessary simulations (run by an external
fault or functional simulator, depending on the fault model) and integrates the results
into a comprehensive view for the portions of hardware injected. Permanent, transient
and bridging fault models are supported.

 Vector Manager, a tool that supports the fault simulation flow, on which the Safety
Verifier is based, decoupling it from the actual verification environment. The fault
manager plugs into the customer’s verification suite and allows the user to extract all
the vectors being fed into the design, whatever is the language used. These vectors
will be then used by the fault injector for the fault simulation.

Table 6. Level of detail in fRMethodology

Phase Input from customer Level of detail Accuracy of metrics Verification type

A1.0
Block diagrams,

preliminary gate / flip-
flop count

Part-level

Initial Estimated figures
driven by info from standard
and experience with similar

architectures
Inspection

A1.1

A1.2

+ detailed specifications
of the component or IP,
and detailed gate / flip-
flop count estimation

Sub-part-level
More detailed estimation
based on initial design

database

A2.1
+ RTL and pre-layout

netlist
Gate-level

Accurate estimation on
concrete design data

Inspection

A2.2
Measured at

pre-layout level
Fault injection

A3 + post-layout information Gate-level
Measured at

post-layout level
Fault injection

Overview of fRMethodology UM1741

52/89 DocID026137 Rev 3

Figure 7. Overview of the fRTools

DocID026137 Rev 3 53/89

UM1741 Examples of safety architectures – Informative

88

Appendix B Examples of safety architectures –
Informative

This section includes complementary information to Section 3.

Note: This section is informative only, and the proposed architectures and/or solution are to be
considered just as an example.

B.1 Conceptual block diagrams of the target safety architectures

From a principle point of view, the safety architectures targeted in this document can be
represented with one of the following block diagrams – depending if an HFT=0 (1oo1,
1oo1d) or HFT=1 (1oo2 or 1oo2d) architecture is selected, as further detailed in the
following sections of this document. In the block diagrams: “S” represents the part of the
compliant item performing the safety function, “D” the one performing a separate
“diagnostic” function and “NS” the non-safety related function(s). For the 1oo2 architecture,
SC1 and SC2 represent the same safety function but redundant(c).

Figure 8. The HFT=0 1oo1 and 1oo1d architectures

c. As shown further in this document, the redundancy can/shall be implemented by means of diverse functions.
But they still perform the same safety function.

Examples of safety architectures – Informative UM1741

54/89 DocID026137 Rev 3

Figure 9. The HFT=1 1oo2 and 1oo2d architectures

Figure 10. The HFT=1 2oo2 architecture

The following considerations apply:

 It is assumed that only one safety function is performed or if many, all functions are
classified with the same SIL and therefore they are not distinguishable in terms of their
safety requirements;

 The “D” functions can be implemented using a “level” or “layered” approach, as further
discussed in the following of this document;

 It is assumed that there are no “not safety relevant” functions mixed with the safety
functions.

 The voter is not shown in 1oo2/1oo2D/2oo2 architectures. Note that in 1oo2D voter is
affected by the diagnostic result

 In 2oo2 the diagnostic section is optional

DocID026137 Rev 3 55/89

UM1741 Examples of safety architectures – Informative

88

B.2 Considerations about voter implementation

The general concept of the compliant item shown in Section 3.2.2: Safety functions
performed by the compliant item foresees the presence of a voter/actuator PEv, that could
be implemented by a combination of internal voter (PEvi) and external voter (PEve).

In absence of a dedicated piece of HW inside the STM32F0 series device that can take the
role of PEvi, the structure of the voter can be organized as shown in Figure 11. This is still a
general structure in the sense that the partitioning of voting functions between PEvi and
PEve shall be decided by the end-customer based on the complexity of the voting algorithm
to be performed.

Figure 11. A possible voter structure combining PEvi and PEve

The advantages of the internal PEvi are the following:

 Possibility to operate more elaborate types of voting (for example dynamic principles)
and/or to provide conditioning signals (for example synchronization signals) to ease
PEve process of the PEo output, and simplify the external circuit that implements the
PEve.

 Possibility to cooperate to guarantee the needed coverage of the external PEve, by
means of partially redundant decisions. As a consequence of the requirement in IEC
61508:2 Annex E.2.b, those external “measures shall achieve medium effectiveness
(see also A.3) as minimum”, that is they must be implemented by means of “Tests by
redundant hardware”, “Monitored redundancy”, etc…

The disadvantages of having an internal PEvi are:

 the possibly of more I/Os to be exchanged between MCU and the PEve;

 the need for a separation between the software functionalities related to PEc/PEo and
PEvi.

On the other hand, the advantages of not having an internal PEv, that is just using the PEo
outputs to drive the PEve, are:

 a simpler overall voting mechanism;

 the possibly of less I/Os to be exchanged.

Examples of safety architectures – Informative UM1741

56/89 DocID026137 Rev 3

The disadvantages of having just one external PEve are:

 this architecture is possible only if the voting algorithm is relatively simple – like a
continuous comparison between few static signals;

 it is more difficult to implement tests or redundancy to reach the coverage requirements
for the voter itself.

In general, with respect to the assumed requirement on the safe state described in
Section 3.3.1: Assumed safety requirements, one role of the PEvi and PEve shall also be to
achieve or maintain the safe state of the system in case the OS cannot be informed or
cannot properly react.

Since the safe state of the system is not very well defined, it is not possible to define some
standard and precise requirements about the structure of the voter in order to achieve or
maintain the safe state. Therefore, only general Conditions of Use (CoU) can be defined.

Examples of such generic CoUs are given hereafter:

 provide a mean to inform the PEvi and then the PEve about the error conditions that
cannot be resolved by the OS;

 provide a mean for the WDTe to communicate with the PEve in order to achieve or
maintain the safe state in case of a common-cause failure in the SC logic.

DocID026137 Rev 3 57/89

UM1741 Change impact analysis for other safety standards

88

Appendix C Change impact analysis for other safety
standards

The safety analysis reported in this user manual is executed according to IEC 61508 safety
norm. In this appendix a change impact analysis with respect to different safety standard is
executed. The following topics are considered for each addressed safety norm:

 Differences in the suggested hardware architecture (architectural categories), and how
to map what is foreseen in the new safety norm on the standard safety architectures of
IEC 61508.

 Differences in the safety integrity level definitions and metrics computation methods,
and how to recompute and judge the safety performances of STM32F0 series devices
according to the new standard.

 Work products required by the new safety norms, and how to remap or rework if
needed existing ones resulting as output of the IEC 61508 compliance activity.

The safety standards examined within this change impact analysis are the followings:

 ISO 13849-1:2006, ISO 13849-2:2010 – Safety of machinery / Safety-related parts of
control systems,

 IEC 62061:2012-11, ed. 1.1 –Safety of machinery / Functional safety of safety-related
electrical, electronic and programmable electronic control systems,

 IEC 61800-5-2:2007, ed.1.0 –Adjustable speed electrical power drive systems – Part 5-
2: Safety requirements – Functional,

 IEC 60730-1:2010, ed. 4.0 –Automatic electrical controls for household and similar use
– Part 1: General requirements,

 ISO 26262:2010 – Road vehicles - Electrical and/or electronic (E/E) systems.

C.1 ISO 13849-1 / ISO 13849-2

The ISO 13849-1 is a Type B1 standard. It offers applicable solutions for the machinery
domain of those safety general aspects outlined in the IEC 61508 standard.

This ISO standard provides a guideline for the development of safety-related parts of control
systems (SRP/CS) including programmable electronics, hardware and software,
requirements here supplied are compatible with the methodology of design defined in IEC
62061.

Table 1 in ISO 13849-1 standard identifies the technologies which are used for the
implementation of control systems for machines in the scope of ISO 13849-1 or IEC 62061.
It results that complex electronics is restricted to those architectures defined in §6.2 of the
ISO standard and with the achievable integrity level, here defined as Performance Level
(PL) up to PLr = d, that is SIL2 HD/CM. On the contrary, complex electronics in the scope of
IEC 62061 is suitable up to SIL 3 HD/CM since this standard is properly focused on the
electrical/electronic part of controls.

The §6.2 of ISO 13849 identifies five categories for the basic parameters, DC, MTTFd and
CCF, reflecting the expected resistance to faults of SRP/CS under design and needed to
achieve the required PLr. For each category, the standard suggests a typical architecture
that meets the related requirements.

Change impact analysis for other safety standards UM1741

58/89 DocID026137 Rev 3

C.1.1 Architectural categories

The section §6.2 of ISO 13849 identifies five categories for the basic parameters, DC,
MTTFd and CCF, reflecting the expected resistance to faults of SRP/CS under design and
needed for achieving the required PLr. For each category, the standard suggests a typical
architecture that meets the related requirements.

Considering the ISO 13849 architectural categories defined in §6.2 and focusing on
microcontrollers, Table 7 presents a summary for end users willing to develop Logic Solver
units suitable for safety critical channels and performing a defined safety function.

The assumptions are listed hereafter:

1. The safety function is realized by combining in series the elements (SRP/CS) input
system, signal processing unit, output system.

2. The SRP/CSs elements may be assigned to one and/or different categories and
different PLs.

3. The safety function is completely in the scope of the end user application.

4. The STM32F0 series MCU with the adoption of safety mechanism described in this
safety manual as single compliant item is by itself suitable for CM application up to PLd
(SIL2).

The ISO 13849 architectural categories for Logic Solver are shown in Table 7.

Table 7. IEC 13849 architectural categories

Cat. Ref. § Summary Designated architecture of Logic Block diagram

B 6.2.3

The main category; occurrence of one
fault can lead to the loss of the safety
function.
No need of DC and CCF (usually single
channel), MTTFd is low/medium. 
Highest achievable is PL = b

Single channel architecture, one MCU
in 1oo1

Refer to Section 3

Compliant item’s MTTFd = high

Figure 12

1 6.2.4

Enforcing category B requirements by
adopting solutions based on “well tried
components” for safety critical application
and “well tried” safety principles.
A microprocessor is not classified as a
“well tried” component.
No need of DC and CCF (usually single
channel), MTTFd is high.
Highest achievable is PL = c.

Single channel architecture, one MCU
in 1oo1

Refer to Section 3

Compliant item’s MTTFd = high

Figure 12

2 6.2.5

With respect to category 1, it is expected
to include in the architecture a test
equipment performing checks on the
safety function and reporting its loss.
Overall DC is low, CCF shall be
evaluated, MTTFd can range from low to
high allowing up to PL = d.

Single channel architecture, one MCU
in 1oo1d

Refer to Section 3

Compliant item’s MTTFd = high

TE is in charge of End User, PL = d

Figure 13

DocID026137 Rev 3 59/89

UM1741 Change impact analysis for other safety standards

88

Figure 12. Block diagram for IEC 13849 Cat. B and Cat. 1

3 6.2.6

With respect to category 1, it is expected
to have fault detection mechanisms and
any single fault occurrence does not lead
the loss of the safety function.Overall DC
is low, CCF shall be evaluated for the
channels, MTTFd can range from low to
high allowing up to PL = d

Double channel architecture, two
identical MCUs in 1oo2 or 2oo2d

Refer to Section 3

Continuous testing / monitoring

Compliant item’s MTTFd = high

Figure 14

4 6.2.7

With respect to category 1, it is expected
to have fault detection mechanisms and
any single fault occurrence does not lead
the loss of the safety function. Overall DC
is high, CCF shall be evaluated for the
channels, MTTFd is high allowing PL = e

Double channel architecture, two
identical MCUs in 1oo2 or 2oo2d

Refer to Section 3

Continuous testing / monitoring

Compliant item’s MTTFd = high

PLe achievable

Figure 14

Table 7. IEC 13849 architectural categories (continued)

Cat. Ref. § Summary Designated architecture of Logic Block diagram

Change impact analysis for other safety standards UM1741

60/89 DocID026137 Rev 3

Figure 13. Block diagram for IEC 13849 Cat. 2

Figure 14. Block diagram for IEC 13849 Cat. 3 and Cat. 4

C.1.2 Safety metrics recomputation

Appendix C of ISO 13849 presents tables of standardized MTTFd for the various
electric/electronics components. However, table C.3 in ISO 13849 points to ICs
manufacturer’s data while attempting to classify MTTFd for programmable ICs. As a
consequence, Yogitech fRMethodology results even if native for IEC 61508 but definitely
more and more accurate in the definition of dangerous failures identification can be re-
mapped in ISO 13849 domain.

When for a certain component PFH << 1 we can assume that PFH is the opposite of
MTTFd, that is MTTFd = 1 / PFH [years].

DocID026137 Rev 3 61/89

UM1741 Change impact analysis for other safety standards

88

In IEC 61508, part 6 B.2.3.2 it is stated “the system is made of components completely and
quickly repairable with constant failure and repair rates (for example dangerous detected
failures)”. This is not aligned with the assumptions of the report “No repair, not de-energizing
in case in case of a dangerous detected failure”.

From the reliability theory, MTTF (the inverse of  and PFH) is a metric applicable only to not
reparable systems. Nowadays it is a common practice to use MTBF also for not reparable
systems where MTBF has to be understood as the average time for the first (and only)
failure of the equipment; in this case MTBF is equal to MTTF.

Moreover the standard definition of diagnostic coverage §3.1.26 warrants the previously
performed estimations for DC, refer to §3.1.1.7 of this report, obtained from fRMethodology
application are still valid in the scope of ISO 13849-1. The DC for each single component
has the same meaning of the IEC 61508 metric. However, this standard defines the concept
of DCavg applicable to the whole SRP/CS in the form of the equation defined in Annex E,
formula E.1, where the contribution of each part of the control system is weighted with
respect to MTTF of the various subsystems of the channel. The standard denies any
possibility of fault exclusion while calculating DCavg (ISO13849-2 Tab.D.21 no exclusion
allowed) and this is the same assumption of fRMethodology. Application of fRMethodology
to STM32F0 produces a complete classification of all possible failure modes without any
exclusion being compliant to the standard’s requirements.

It is necessary to calculate the DCavg only for subsystem made of a 2 MCUs architecture by
applying the formula:

For two identical MCUs, that is devices having the same DC and MTTF, DCavg = DC.

An evaluation of the possible common failure modes is required for any architectural
solution implemented with two channels. This standard defines a simplified approach with
respect to IEC 61508 approach.

Table 7 of the IEC 13849 standard provides a simplified procedure for PL evaluation of
SRP/CS based on category, DCavg and MTTFd. Each architectural solution analyzed by
Yogitech with fRMethodology results in PFH producing high values of MTTF.

C.1.3 Work products

Table 8 lists the work products required by the IEC 13849, and how to map these into
available work products from IEC 61508 compliance activity:

Change impact analysis for other safety standards UM1741

62/89 DocID026137 Rev 3

Table 8. IEC 13849 work product grid

ISO 13849-1 STM32F0 series

IEC 61508 documentInformation to be provided ISO 13849-1 Part-Clause

Safety functions provided by the SRP/CS

10 Technical documentation End user responsibility

Characteristics of each safety function

Exact points at which the safety-related part(s) start
and end

Environmental conditions

Performance level (PL)

Category or categories selected

Parameters relevant to the reliability (MTTFd, DC,
CCF and mission time)

10 Technical documentation STM32F0 safety manualMeasures against systematic failure

Technology or technologies used;

All safety-relevant faults considered

Justification for fault exclusions (see ISO 13849-2) 10 Technical documentation End user responsibility

Design rationale (e.g. faults considered, faults
excluded) 10 Technical documentation

STM32F0 safety manual

Measures against reasonably foreseeable misuse

Dated reference to this part of ISO 13849 (that is
“ISO 13849-1:2006”);

11 Information for use
Category (B, 1, 2, 3, or 4)

Performance level (a, b, c, d, or e)

Use of de-energization (see ISO 13849-2)

G.2 Measures for the control
of systematic failures

Measures for controlling the effects of voltage
breakdown, voltage variations, overvoltage, under
voltage

Measures for controlling or avoiding the effects of
the physical environment (for example, temperature,
humidity, water, vibration, dust, corrosive
substances, electromagnetic interference and its
effects)

G.2 Measures for the control
of systematic failures

End user responsibilityProgram sequence monitoring shall be used with
SRP/CS containing software to detect defective
program sequences

Measures for controlling the effects of errors and
other effects arising from any data communication
process (see IEC 61508-2:2000, 7.4.8)

Failure detection by automatic tests
G.2 Measures for the control
of systematic failures

STM32F0 safety manual

DocID026137 Rev 3 63/89

UM1741 Change impact analysis for other safety standards

88

Computer-aided design tools capable of simulation
or analysis

G.3 Measures for avoidance of
systematic failures End user responsibility

Simulation -

Safety-related specification for machine control
App. J, tab.J.1 (SW) End user responsibility

Definition of the control architecture

Software descriptions App. J, tab.J.1 (SW)

Software User Guide

(End User responsibility
because in charge of
implementing software-
based diagnostics)

Function block modeling App. J, tab.J.1 (SW)

SW requirements
specification
 (End User responsibility
because in charge of
implementing software-
based diagnostics)

Encoding comments in the code

App. J, tab.J.1 (SW)

Code inspection results
 (End User responsibility
because in charge of
implementing software-
based diagnostics)

Encoding re-reading sheets

Correspondence matrix App. J, tab.J.1 (SW)

Software module test
specification
Software system integration
test specification
Programmable electronic
hardware and software
integration tests
specification
(End User responsibility
because in charge of
implementing software-
based diagnostics)

Test sheets App. J, tab.J.1 (SW)

Software module test report
Software system integration
test report
Programmable electronic
hardware and software
integration tests report
SW verification report
(End User responsibility
because in charge of
implementing software-
based diagnostics)

Table 8. IEC 13849 work product grid (continued)

ISO 13849-1 STM32F0 series

IEC 61508 documentInformation to be provided ISO 13849-1 Part-Clause

Change impact analysis for other safety standards UM1741

64/89 DocID026137 Rev 3

C.2 IEC 62061:2012-11

This standard is applicable in the specification, design and verification/validation of Safety-
Related Electrical Control Systems (SRECS) of machines. SRECS is the
electrical/electronic control system of the machine which failure could lead to reduction/loss
of safety. SRECS implements a Safety-Related Control Function (SRCF) to prevent any
increase of the risk.

With respect of the safety lifecycle, the scope of this standard is limited from safety
requirements allocation to safety validation.

IEC 62061 is the special standard for the machine domain within the framework of the more
generic IEC 61508:2010. Since it is just an application standard, IEC 62061 is not strict with
respect to the technical solutions. Moreover it is focused on electrical, electronic and
programmable electronic parts of safety-related control systems.

Note that §3.2.26 and §3.2.27 in IEC 62061 apply only to SRECS in HD/CM, suitable for the
machines domain. LD equipment are still ruled by IEC 61508 requirements.

The close relationship with IEC 61508:2010 is synthesized by the main assumption that the
design of complex electronic components as subsystems or elements of subsystems has to
be compliant with requirements of IEC 61508:2010 part 2, Route 1H, ref. to §7.4.4.2.
Coming from the IEC 62061 definition §3.2.8, natively a microprocessor has to be
considered as a complex component.

For this reason, the previously obtained results of the application of fRMethodology for the
STM32F0 series item (refer to Section 4: Safety results), in the scope of IEC 61508 are still
applicable also in the machines context ruled by IEC 62061.

End-users can effectively adopt the STM32F0 series compliant item to design SRECS
suitable for the achievement of SIL2 or SIL3 (by adopting two STM32F0 series MCUs)
machines control loops.

The standard defines as “subsystem” (refer to §3.2.5) the level of parts for a system
architecture where a dangerous failure could lead to the loss of the safety function.

Concerning the integrity levels achievable for subsystems, the standard suggests a
classification based on HFT and SFF as shown in Table 9.

SIL 3 is the highest requirement for SRCF in this context. SIL 4 is out of scope since the
final outcome of the development is a control system for one machine only.

For the designer, the SIL values listed in the table has to be seen as the SILCL for the
subsystem where SILCL is the maximum SIL claimable for a SRECS subsystem, as defined
in IEC 62061, §3.2.24.

Table 9. SIL classification versus HFT

SFF
HFT

0 1 2

<60% Not allowed SIL1 SIL2

60% - <90% SIL1 SIL2 SIL3

60% - <99% SIL2 SIL3 SIL3

≥90% SIL3 SIL3 SIL3

DocID026137 Rev 3 65/89

UM1741 Change impact analysis for other safety standards

88

C.2.1 Architectural categories

The standard in §6.7.8.2 defines a set of basic system architectures to be used for the
design of SRECS implementing their SRCFs. A key point is the definition of “subsystem”,
refer to §3.2.5, as the level of parts for a system architecture where a dangerous failure
could lead to the loss of the safety function.

Focusing on the microcontrollers, IEC 62061 proposed architectures are here quickly
summarized for supporting end users in the development of their Logic Solver units usable
as subsystems for the implementation of a SRCF.

The assumptions for the correct understanding of the architectures are listed hereafter:

1. The SRCF is completely in the scope of the end user.

2. The STM32F0 series device with the adoption of safety mechanism described in this
safety manual as single compliant item is by itself suitable for applications up to SILCL
2.

3. Two identical STM32F0 series devices with the adoption of safety mechanism
described in this Manual shall be used for achieving HFT ≠ 0, when required by basic
architectures.

4. For a microcontroller, the parameter T1, mentioned in the standard as the minimum
between service life or proof test, is intended as the lifetime (mission time) assumed
equal to 20 years, as per Section 3.3.1: Assumed safety requirements of this Manual.

Table 10. IEC 62061 architectural categories

Cat. Ref. § Summary Basic architecture of Logic
Block

diagram

A 6.7.8.2.2

Equivalent of 1oo1, with HFT = 0,
no diagnostic function(s).

Overall PFHDssA is the
probability of dangerous failure of
MCU

Single channel architecture, one MCU in 1oo1, n=1

– SILCL = 1 if SFF < 90%

– SILCL = 2 if 90 ≤ SFF < 99%

– SILCL = 3 if SFF ≥ 99%

Figure 15

B 6.7.8.2.3

Equivalent to 1oo2 with HFT = 1,
a single failure does not lead to
the loss of SRCF.

No diagnostic function(s).

Dual channel architecture with two identical MCUs

– SILCL = 1 if SFF < 60%

– SILCL = 2 if 60% ≤ SFF < 90%

– SILCL = 3 if SFF ≥ 90%

In this case:

For β factor see Section 4.2

Figure

Change impact analysis for other safety standards UM1741

66/89 DocID026137 Rev 3

Figure 15. Block diagram for IEC 62061 Cat. A

C 6.7.8.2.4

It is the equivalent of 1oo1d with
a diagnostic function that initiates
a reaction function as a
dangerous failure happens on
SRCF.

NOTE: diagnostic function
provides the Logic Solver with a
diagnosis of an external
subsystem, e.g. the actuator

Single channel architecture, one MCU in 1oo1, n=1

Diagnostic function is in charge of End User

– SILCL = 1 if SFF < 90%

– SILCL = 2 if 90 < SFF < 99%

– SILCL = 3 if SFF ≥ 99%

DC (Diagnostic Coverage) as resulting from
FMEDA

Figure 17

D 6.7.8.2.5

Any single failure does not lead
to a loss of the SRCF; it is
equivalent to 1oo2d with HFT =
1, with diagnostic function(s).

NOTE: diagnostic function
provides the Logic Solver with a
diagnosis of an external
subsystem, e.g. the actuator

Dual channel architecture with two identical MCUs

Diagnostic function is in charge of End User

– SILCL = 1 if SFF < 60%

– SILCL = 2 if 60% ≤ SFF < 90%

– SILCL = 3 if SFF ≥ 90%

For β factor see Section 4.2

DC (Diagnostic Coverage) as resulting from
FMEDA

In this case:

–

– T2 has to be defined at Logic Solver level by End
User

Figure 18

Table 10. IEC 62061 architectural categories (continued)

Cat. Ref. § Summary Basic architecture of Logic
Block

diagram

DocID026137 Rev 3 67/89

UM1741 Change impact analysis for other safety standards

88

T1 is the proof test interval of lifetime, whichever is the smaller

 is the susceptibility to common cause failures

Figure 16. Block diagram for IEC 62061 Cat. B

Figure 17. Block diagram for IEC 62061 Cat. C

DssB 1 – 2 Del De2 T1 x Del De2+  2 (B)+=

PFHDssB DssB 1h=



Change impact analysis for other safety standards UM1741

68/89 DocID026137 Rev 3

 is the dangerous failure rate of subsystem element 1 or 2

DC is the diagnostic coverage of subsystem element 1 or 2

Figure 18. Block diagram for IEC 62061 Cat. D

Note: The “subsystem element” mentioned in Figure 15, Figure , Figure 17 and Figure 18 is the
STM32F0 series device.

Based on IEC 62061 §6, Figure 19 shows how to proceed with the development of SRECS
implementing the generic control architecture depicted in figure B.1 of the standard.

DssD 1 – 2 De
2

2 DC  T2 2 De
2

1 DC–  T1 +  xDe+=

PFHDssD DssD 1h=

De

DocID026137 Rev 3 69/89

UM1741 Change impact analysis for other safety standards

88

Figure 19. SRECS high-level diagram

Where the microprocessor here presented is an STM32F0 series device with the adoption
of the safety mechanisms as defined in Section 3.7: Conditions of use.

C.2.2 Safety metrics recomputation

Again, as already seen in ISO13849, is still considered valid the approximation §6.7.8.2.1
NOTE2:

Where is assumed to be:

The failure rate (λ) in T is the smaller proof test interval or the life time of the subsystem. But
from being:

again:

Yogitech fRMethodology provides end-users with results for the STM32F0 series even if
native for IEC 61508 but definitely more and more accurate for the definition of dangerous
failure identifications that can be re-mapped in IEC 62061 domain. Thus, values of λ and
PFHD that are reported in the FMEDA (refer to Section 4: Safety results), are still valid and
can be used into formulas of the previous paragraph.

There is no need for re-computation for the SFF of a microcontroller. The end-user uses the
same value resulting from the performed safety analysis with Yogitech fRMethodology.

As previously discussed in Section 4.2: Dependent failures analysis, in evaluating CCF for
those basic architectures with an HFT = 1, the end-user uses the same result, if available,
as achieved by the IEC 61508 approach (refer to IEC 61508:2010-6 Annex D). Alternatively,

Change impact analysis for other safety standards UM1741

70/89 DocID026137 Rev 3

the end-user can apply the simplified approach from the standard (refer to Annex F) to
calculate the β factor value to be used in formulas for PFHD.

C.2.3 Work products

Table 11 lists the work products required by the IEC 62061 standard and their mapping with
the work products from IEC 61508 compliance activity:

Table 11. IEC 62061 work product grid

IEC 62061 1.1 Tab.8 STM32F0 series

IEC 61508 documentInformation to be provided IEC 62061-1.1 Clause

Functional safety plan 4.2.1

End User responsibility
Specification of requirements for SRCFs 5.2

Functional safety requirements specification for SRCFs 5.2.3

Safety integrity requirements specification for SRCFs 5.2.4

SRECS design 6.2.5
STM32F0 series safety

manual

Structured design process 6.6.1.2

End User responsibilitySRECS design documentation 6.6.1.8

Structure of function blocks 6.6.2.1.1

SRECS architecture 6.6.2.1.5
STM32F0 series safety

manual

Subsystem safety requirements specification 6.6.2.1.7
End User responsibility

Subsystem realization 6.7.2.2

Subsystem architecture (elements & their interrelationships) 6.7.4.3.1.2
STM32F0 series safety

manual

Fault exclusions claimed when estimating fault tolerance/SFF 6.7.6.1c / 6.7.7.3

End User responsibility

Software safety requirements specification 6.10.1

Software based parameterization 6.11.2.4

Software configuration management items 6.11.3.2.2

Suitability of software development tools 6.11.3.4.1

Documentation of the application program 6.11.3.4.5

Results of application software module testing 6.11.3.7.4

Results of application software integration testing 6.11.3.8.2

Documentation of SRECS integration testing 6.12.1.3

Documentation of SRECS installation 6.13.2.2

Documentation for installation, use and maintenance 7.2

Documentation of SRECS validation testing 8.2.4

Documentation for SRECS configuration management 9.3.1

DocID026137 Rev 3 71/89

UM1741 Change impact analysis for other safety standards

88

C.3 IEC 61800-5-2:2007

The scope of this standard is the functional safety of adjustable speed electric drive
systems. Part 5.2 of the IEC 61800 defines the requirements for the design, development,
integration and validation of the safety related parts for power drive speed applications,
PDS(SR), within the framework of IEC 61508 first edition. More precisely, this part of IEC
61800 just limits its application to those PSD(RS) operating in HD/CM, ref. to §3.10 NOTE1,
implementing safety functions with a target integrity up to SIL 3.

Form the architectural point of view, this limitation is reflected in two tables, §6.2.2.3 Tab. 3
and Tab. 4, for the two different types of classified devices. The CPU or the whole
microcontroller, since these are complex electronics parts, is classified as Type B. Also the
concept of HFT is derived from IEC 61508 as it is.

The development lifecycle depicted in §5.2 fig.2, matches with the realization phase, phase
10, of the overall safety lifecycle IEC 61508 (refer to part 1, figure 2). Annex A holds a cross
reference table of the ISO 61800-5-2 produced document set in order to match the
information content with respect to IEC 61508 requirements.

The strong link with the norm IEC 61508 is reflected also by the adoption in IEC 61800-5-2
of the same relevant metrics PFH, ref. to §6.2.1, and SFF, ref. to §6.2.3.

C.3.1 Architectural categories

The IEC 61800 standard provides an architectural view of PDS(SR) (refer to figure 1), that is
duplicated below in Figure 20.

Figure 20. IEC 61800 architectural view

The purpose of this logic representation is to introduce the basic elements used to design
PDS(SR) and it is deployed into a real system in the Annex B of the standard as an example
of implementation of the standard safety function Safe Torque Off STO and related metrics.

Change impact analysis for other safety standards UM1741

72/89 DocID026137 Rev 3

C.3.2 Safety metrics recomputation

The PFH of a safety function performed by PDS(SR) is evaluated by the application of IEC
61508-2. So, Yogitech fRMethodology results can be re-mapped in this domain.

Yogitech fRMethodology has an intrinsic high accuracy in catching the failures modes for a
certain CPU since the powerful analysis performed at the design level identifies a very
detailed list of them. This detailed list of failures is more representative for STM32F0 series
faults than the partial and arbitrary list provided in Table D.15 of this standard.

Moreover, the definition of the diagnostic coverage reported in IEC 61800-5.2 §3.3 indicates
that the estimations for DC computed from fRMethodology (refer to Appendix A in this
document) remain still valid in the scope of this standard. The same applies for SFF (refer to
IEC 61800-5.2 §3.15). End users can directly apply results coming from Yogitech
fRMethodology, refer to Section 4.1: Hardware random failure safety results and FMEDA.

C.3.3 Work products

Table 12 lists the work products required by the IEC 61800-5-2 standard and their mapping
with the work products from IEC 61508 compliance activity.

Table 12. IEC 61800 work product grid

IEC 618000 5.2
STM32F0 series

IEC 61508 documentInformation to be provided IEC 61800-5.2 Part-Clause

Safety requirements specification (SRS) for PDS(SR)
including safety function requirements and safety
integrity requirements

5.4

End user responsibilityVerification of PDS(SR) safety requirements
specification

8.2

Hardware design on an architectural level 6

Software design on an architectural level IEC 61508-3

Pre estimation of the probability of failure of safety
functions due to random hardware failures on a level
of functional block diagrams

IEC 61508-2
STM32F0 series safety

manual

Reviews of system design 8.2

End User responsibility

Detailed planning of the validation of safety related
PDS(SR).

8.3

Hardware design
6

Software design

Reliability Prediction 6
STM32F0 series safety

manual

DocID026137 Rev 3 73/89

UM1741 Change impact analysis for other safety standards

88

C.4 IEC 60730-1:2010

This IEC 60730-1:2010 version.4.0 standard is applicable to the electrical/electronics
control systems for household equipment/building automation/appliances that have a rated
power supply voltage ≤ 690 V and a current ≤ 63 A that guarantee safety and reliability.
Electrical and\or electronic devices intended for the public usage but not in normal
households are out of scope of this standard.

Nowadays these control systems are largely based on complex electronics parts, such as
embedded systems with microcontrollers and software implemented control functions.

Annex H of the standard defines specific requirements for electronics controls (HW and SW)
which are mandatory when designing safe compliant electronics parts of control systems.

Reviews of the system design
8.2

End user responsibility

Functional tests on module level

Integration and test of the safety related PDS(SR). 6.5

Review of HW/SW integration test results and
documentation

8.2

Develop user documentation describing PDS(SR)
installation, commissioning, operation and
maintenance.

7

Complete software and appropriate documentation

8.3

Documentation of the results of the validation tests

Validation tests and procedures according to the
validation plan

Documentation of the results of the validation tests

Subsystem testing plan

6.2.4.1.4
Integration testing plan

Validation testing plan

Configuration testing plan

Detailed results of each test 9.2.g)

Any discrepancy between expected and actual results 9.2.h)

Conclusion of the test: either it has been passed or the
reasons for failure

9.2.i)

Table 12. IEC 61800 work product grid (continued)

IEC 618000 5.2 STM32F0 series
IEC 61508 document

Information to be provided IEC 61800-5.2 Part-Clause

Change impact analysis for other safety standards UM1741

74/89 DocID026137 Rev 3

C.4.1 Architectural categories

In this standard the proposed architectures (refer to § H.11.12.1) are mainly classified on
software basis, where specific suggestions are given at software level to avoid systematic
faults.

IEC 60730-1:2010 §H.2.22 defines three classes of compliance for the performed control
functions:

 Class A (§H.2.22.1): control functions which are not intended to be relied upon for the
safety of the application. Room temperature control is a typical Class A control
function.

 Class B (§H.2.22.2): control functions which are intended to prevent an unsafe state of
the controlled equipment. Failure of the control function will not lead directly to a
hazardous situation. A pressure limiting and a door lock control are Class B control
functions.

 Class C (§H.2.22.3): control functions which are intended to prevent special hazards
such as explosion or which failure could directly cause a hazard in the appliance.
Automatic burner controllers are one example of Class C functions.

For those systems implementing their control function by software, the standard in §H.2.16
defines the set of applicable architectures. The following list summarizes typical solutions
for the design of Class B control functions.

 Single channel with functional test (§H.2.16.5). A single CPU executes the software
control functions as required. A functional test is performed as the software starts. It
guarantees that all critical features are properly working.

 Single channel with periodic self test (§H.2.16.6). A single CPU executes the software
control functions, but embedded periodical tests check the various critical functions of
the system without impacting the performance of the fully planned control tasks.

 Dual channel (homogeneous) with comparison (§H.2.16.3): The software is designed
to execute identical control functions on two independent CPUs. Both CPUs compare
internal signals for fault detection before starting any safety critical task.

An example of Class B control function is the prevention of the overheating for an electrical
motor. The control system can be implemented by dual-channel architecture with two
STM32F0 series devices. One channel monitors the temperature from the embedded
sensor in the coils; the other channel constantly measures the current of the rotor. In case
one channel fails the other channel is still able to perform its control function and stop the
motor when overheated.

For Class C control functions, the adequate architectural solutions are listed hereafter. The
comparison can be achieved by a comparator or by software.

 Single-channel with periodic self-test and monitoring (§H.2.16.7),

 Dual-channel (homogeneous) with comparison (§H.2.16.3),

 Dual-channel (diverse) with comparison (§H.2.16.2).

Implementing a Class-C control system based on a single-channel architecture that
comprises one single STM32F0 series device is possible but it requires to introduce some
robust diagnostic measures to ensure that the software control function works properly.
Monitoring the software control function to prevent any fault is required to avoid the
occurrence of the hazardous event.

The standard states the need for control measures (see §H.11.12.2), and explains how to
avoid faults/errors for Class B or Class C software control functions (see §H.11.12.3).

DocID026137 Rev 3 75/89

UM1741 Change impact analysis for other safety standards

88

C.4.2 Safety metrics recomputation

This safety standard does not mention safety metrics, therefore there it is no need to
recompute anything.

The possibility for a system to achieve Class B or Class C ranking is related to the adoption
of a certain set of methods; the qualitative table (see Table H.1) in the standard lists the
respective types of safety mechanism that need to be present in a Class B or C system.

Table 13 lists the requirements of the standard versus the target ranking (B or C) for the
various parts/functions of the STM32F0 series device, that are detailed in Section 3.6:
Description of hardware and software diagnostics. In case the IEC 60730 requires a safety
method not yet foreseen in the framework of the IEC 61508 safety analysis, the gap is
reported in the related field. For sake of clarity the original text of the standard requirement
is omitted in the table (refer to standard).

Table 13. IEC 60730 required safety mechanism for Class B/C compliance

Component(1) Fault/
error

Software
class Definitions

SM for
Class B(2)

SM for
Class C(3) Gaps/Notes

B C

1. CPU
1.1 Registers

Stuck at X -

H.2.16.5
H.2.16.6
H.2.19.6

H.2.19.8.2

CPU_SM_0 - None

DC fault - X

H.2.18.15
H.2.18.3
H.2.18.9
H.2.19.5
H.2.19.7
H.2.19.1

H.2.19.2.1
H.2.19.8.1
H.2.19.6

H.2.20.8.2

-

CPU_SM_1
CPU_SM_5

or
DUAL_SM_0

None

1.2 Instruction
decoding and
execution

Wrong
decoding
and execution

- X

H.2.18.15
H.2.18.3
H.2.18.9
H.2.18.5

- DUAL_SM_0

In case of single-MCU
architecture the safety
mechanism CPU_SM_0
described in the Manual
could be used but it shall
explicitly implement also
the “equivalent class
test” as described in
H.2.18.5 (this test it is
not needed for IEC
61508)

Change impact analysis for other safety standards UM1741

76/89 DocID026137 Rev 3

1.3 Program
counter

Stuck at X -

H.2.16.5
H.2.16.6

H.2.18.10.4
H.2.18.10.2

CPU_SM_0 - None

DC fault - X

H.2.16.7
H.2.18.10.3

H.2.18.9
H.2.18.15
H.2.18.3

-

CPU_SM_1
CPU_SM_5

or
DUAL_SM_0

None

1.4 Addressing DC fault - X

H.2.18.15
H.2.18.3
H.2.18.9
H.2.16.7

H.2.18.22
H.2.18.1.1
H.2.18.1.2

-
DUAL_SM_0

or
BUS_SM_0

None

1.5 Data paths
instruction
decoding

DC fault and
execution

- X

H.2.18.15
H.2.18.3
H.2.18.9
H.2.16.7

H.2.18.22
H.2.18.1.2

-
DUAL_SM_0

or
CPU_SM_0

None

2. Interrupt
handling and
execution

No interrupt
or too
frequent
interrupts

X -
H.2.16.5

H.2.18.10.4
NVIC_SM_1 - None

No interrupt
or too
frequent
interrupts
related to
different
sources

- X
H.2.18.15
H.2.18.3

H.2.18.10.3
-

NVIC_SM_1
or

DUAL_SM_0
None

3. Clock

Wrong
frequency
(for quartz
synchronized
clock:
harmonics/
subharmonics
only)

X -
H.2.18.10.1
H.2.18.10.4

CPU_SM_1 - None

- X

H.2.18.10.1
H.2.18.10.4
H.2.18.15
H.2.18.3

-
CPU_SM_1

or
DUAL_SM_0

None

Table 13. IEC 60730 required safety mechanism for Class B/C compliance (continued)

Component(1) Fault/
error

Software
class Definitions

SM for
Class B(2)

SM for
Class C(3) Gaps/Notes

B C

DocID026137 Rev 3 77/89

UM1741 Change impact analysis for other safety standards

88

4. Memory

4.1 Invariable
memory

All single bit
faults

X -
H.2.19.3.1
H.2.19.3.2
H.2.19.8.2

FLASH_SM_0 - None

99,6%
coverage of
all information
errors

- X

H.2.18.15
H.2.18.3
H.2.19.5

H.2.19.4.1
H.2.19.4.2
H.2.19.8.1

-
DUAL_SM_0

or
FLASH_SM_0

In case of adoption of
FLASH_SM_0
evidences shall be given
about the 99,6% target
of information errors

4.2 Variable
memory

DC fault X -
H.2.19.6

H.2.19.8.2
RAM_SM_0 - None

DC fault
and dynamic
cross links

- X

H.2.18.15
H.2.18.3
H.2.19.5
H.2.19.7
H.2.19.1

H.2.19.2.1
H.2.19.8.1

- DUAL_SM_0

For single-MCU solution
the RAM_SM_0
proposed for IEC 61508
needs to be enriched to
add features like
Abraham/GALPAT

4.3 Addressing
(relevant for
variable and
invariable
memory)

Stuck at X - H.2.19.18.2

FLASH_SM_0
RAM_SM_0

or
DUAL_SM_0

- None

DC fault - X

H.2.18.15
H.2.18.3

H.2.18.1.1
H.2.18.22
H.2.19.4.1
H.2.19.4.2
H.2.19.8.1

-

FLASH_SM_0
RAM_SM_0

or
DUAL_SM_0

None

5. Internal data
path 

5.1 Data

Stuck at X - H.2.19.8.2 BUS_SM_1 - None

DC fault - X

H.2.18.15
H.2.18.3

H.2.19.8.1
H.2.18.2.1
H.2.18.22
H.2.18.14

-

DUAL_SM_0
or

DMA_SM_1
DMA_SM_3
BUS_SM_0
BUS_SM_1

None

5.2 Addressing

Wrong
address

X - H.2.19.8.2 BUS_SM_1 - None

Wrong
address and
multiple
addressing

- X

H.2.18.15
H.2.18.3

H.2.19.8.1
H.2.18.1.1
H.2.18.22

-

DUAL_SM_0
or

BUS_SM_0
BUS_SM_1

None

Table 13. IEC 60730 required safety mechanism for Class B/C compliance (continued)

Component(1) Fault/
error

Software
class Definitions

SM for
Class B(2)

SM for
Class C(3) Gaps/Notes

B C

Change impact analysis for other safety standards UM1741

78/89 DocID026137 Rev 3

6. External
communication

6.1 Data

Hamming
distance 3

X -

H.2.19.8.1
H.2.19.4.1
H.2.18.2.2
H.2.18.14

CAN_SM_2
UART_SM_2

IIC_SM_2
SPI_SM_2
USB_SM_2
HDMI_SM_2

- None

Hamming
distance 4

- X

H.2.19.4.2
H.2.18.2.1
H.2.18.15
H.2.18.3

-

DUAL_SM_0
or

CAN_SM_2
UART_SM_2

IIC_SM_2
SPI_SM_2
USB_SM_2
HDMI_SM_2

In case of adoption of
DUAL_SM_0 the
communications are
managed by both cores
In case of adoption of
individual safety
mechanism for
peripherals, the use of
CRC32 is mandatory

6.2 Addressing

Wrong
address

X -

H.2.19.8.1
H.2.19.4.1
H.2.18.2.2
H.2.18.14

CAN_SM_2
UART_SM_2

IIC_SM_2
SPI_SM_2
USB_SM_2
HDMI_SM_2
DMA_SM_2

- None

Wrong and
multiple
addressing

- X

H.2.19.4.2
H.2.18.1.1
H.2.18.15
H.2.18.3

- DUAL_SM_0

In case of adoption of
DUAL_SM_0 the
communications are
managed by both cores

6.3 Timing

Wrong point
in time

X -
H.2.18.10.4
H.2.18.18

CPU_SM_1 - None

Wrong point
in time

- X
H.2.18.10.3
H.2.18.15
H.2.18.3

-
CPU_SM_1

or
DUAL_SM_0

None

Wrong
sequence

X -
H.2.18.10.2
H.2.18.10.4
H.2.18.18

CPU_SM_1 - None

Wrong
sequence

- X
H.2.18.10.3
H.2.18.15
H.2.18.3

-
CPU_SM_1

or
DUAL_SM_0

None

Table 13. IEC 60730 required safety mechanism for Class B/C compliance (continued)

Component(1) Fault/
error

Software
class Definitions

SM for
Class B(2)

SM for
Class C(3) Gaps/Notes

B C

DocID026137 Rev 3 79/89

UM1741 Change impact analysis for other safety standards

88

Note: Safety mechanisms separated by “or” word are alternative; safety mechanism listed
together are intended to be applied all together.

7. Input/output
periphery

7.1 Digital I/O

Fault
conditions
specified in
H.27

X - H.2.18.13
GPIO_SM_1
GPIO_SM_2

- None

- X

H.2.18.15
H.2.18.3
H.2.18.8
H.2.18.11
H.2.18.12
H.2.18.22
H.2.18.2

-
GPIO_SM_1
GPIO_SM_2

None

7.2 Analog I/O

7.2.1 A/D-and
D/A- converter

Fault
conditions
specified in
H.27

X - H.2.18.13 ADC_SM_2 - None

- X

H.2.18.15
H.2.18.3
H.2.18.8
H.2.18.11
H.2.18.12
H.2.18.22

-

ADC_SM_1
ADC_SM_3
DAC_SM_1

or
DUAL_SM_0

In case of adoption of
DUAL_SM_0 the analog
values are acquired by
both MCUs

7.2.2 Analog
multiplexer

Wrong
addressing

X - H.2.18.13 ADC_SM_2 - None

- X

H.2.18.15
H.2.18.3
H.2.18.8

H.2.18.22

-

ADC_SM_1
ADC_SM_3

or
DUAL_SM_0

In case of adoption of
DUAL_SM_0 the analog
values needs to be
acquired by both MCUs

8. Monitoring
devices and
comparators

Any output
outside the
static and
dynamic
functional
specification

- X
H.2.18.21
H.2.18.17
H.2.18.6

-
WDG_SM_1
CPU_SM_5

None

9. Custom
chips 5)
for example.
ASIC, GAL,
Gate array

Any output
outside the
static and
dynamic
functional
specification

X - H.2.16.6 N/A N/A Not applicable

- X
H.2.16.7
H.2.16.2
H.2.18.6

N/A N/A Not applicable

1. For fault/error assessment, some components are divided into their sub functions

2. It is recognized that some of the addressed measures provide a higher level of assurance than required by this standard for
Class B.

3. For each sub function in the table, the software class C measure will cover the software class B fault/error

Table 13. IEC 60730 required safety mechanism for Class B/C compliance (continued)

Component(1) Fault/
error

Software
class Definitions

SM for
Class B(2)

SM for
Class C(3) Gaps/Notes

B C

Change impact analysis for other safety standards UM1741

80/89 DocID026137 Rev 3

C.4.3 Work products

Table 14 provides the list of work products that are required by the IEC 60730standard and
their mapping with the work products from the IEC 61508 compliance activity:

Table 14. IEC 60730 work product grid

IEC 60730 5.2 STM32F0 series

IEC 61508 documentInformation to be provided IEC 60730 Part-Clause

Purpose of control Tab.1 - 6

End user responsibility

Construction of control and whether the control is electronic Tab.1 - 6a

Which of the terminals for external conductors are for a
wider range of conductor sizes than those indicated in the
table of 10.1.4.

Tab.1 - 18

For screw-less terminals the method of connection and
disconnection

Tab.1 - 19

 Details of any special conductors which are intended to be
connected to the terminals for internal conductors

Tab.1 - 20

 Method of mounting control Tab.1 - 31

Method of providing earthing of control Tab.1 - 31a

 Method of attachment for non-detachable cords Tab.1 - 32

Details of any limitation of operating time Tab.1 - 34
STM32F0 series safety

manual

 Type 1 or Type 2 action Tab.1 - 39

End user responsibility

 Additional features of Type 1 or Type 2 actions Tab.1 - 40

Reset characteristics for cut-out action Tab.1 - 43

 Any limitation to the number or distribution of flat push-on
receptacles which can be fitted

Tab.1 - 45

 Any Type 2 action shall be designed so that manufacturing
deviation and drift of its operating value, operating time or
operating sequence is within the limit declared in
requirements 41, 42 and 46 of Table 1 (7.2 of the previous
edition)

Tab.1 - 46

Extent of any sensing element Tab.1 - 47

Operating value (or values) or operating time Tab.1 - 48
STM32F0 series safety

manual

Control pollution degree Tab.1 - 49

End user responsibility

Rated impulse voltage Tab.1 - 75

Temperature for the ball pressure test Tab.1 - 76

Maximum declared torque on single bush mounting using
thermoplastic material

Tab.1 - 78

DocID026137 Rev 3 81/89

UM1741 Change impact analysis for other safety standards

88

Pollution degree in the micro-environment of the creepage
or clearance if cleaner than that of the control, and how this
is designed

Tab.1 - 79

End user responsibility

Rated impulse voltage for the creepage or clearance if
different from that of the control, and how this is ensured

Tab.1 - 80

The values designed for tolerances of distances for which
the exclusion from fault mode “short” is claimed

Tab.1 - 81

For SELV or PELV circuits, the ELV limits realized Tab.1 - 86

Value of accessible voltage of SELV/PELV circuit, if
different from 8.1.1, product standard referred to for the
application of the control, in which standard(s) the
accessible SELV/PELV level(s) is (are) given

Tab.1 - 87

The minimum parameters of any heat dissipater (for
example heat sink) not provided with an electronic control
but essential to its correct operation

H.7 - 52

Software sequence documentation H.7 - 66

Program documentation H.7 - 67

Software fault analysis H.7 - 68

Software class(es) and structure H.7 - 69

Analytical measures and fault/error control techniques
employed

H.7 - 70

Software fault/error detection time(s) for controls with
software classes B or C

H.7 - 71
STM32F0 safety manual

and
End User Responsibility

Control response(s) in case of detected fault/error H.7 - 72

End user responsibility

Software safety requirements H.11.12.3.2.1

Software architecture H.11.12.3.2.2

Module design and coding H.11.12.3.2.3

Design and coding standards H.11.12.3.2.4

Testing H.11.12.3.3

Inspection H.2.17.5

Walk-through H.2.17.9

Static analysis H.2.17.7.1

Dynamic analysis H.2.17.1

Hardware analysis H.2.17.3

 Hardware simulation H.2.17.4

 Failure rate calculation H.2.17.2
STM32F0 series safety

manual

Table 14. IEC 60730 work product grid (continued)

IEC 60730 5.2 STM32F0 series

IEC 61508 documentInformation to be provided IEC 60730 Part-Clause

Change impact analysis for other safety standards UM1741

82/89 DocID026137 Rev 3

C.5 ISO 26262:2010

This international standard, with a contribution from Yogitech in ISO working groups (WGs)
– ref. to Section A.2: fRMethodology and its flow - is the reference for the functional safety
for the automotive domain. It derives from IEC 61508 standard, and includes relevant
modifications. Since the automotive is a mass production industry, the safety validation is
usually performed at a sample C/D level, that is close to the pre-series version of the item.
Only the positively assessed design of the item, from the functional safety point of view,
shall be made ready for the production in a large number of copies.

ISO 26262 redefines the safety integrity levels in term of Automotive SIL (ASIL) with a scale
from A, the lowest level, to D, the highest level. A correlation matrix between SIL and ASIL
values has been empirically identified by TÜV SÜD and is illustrated in Figure 21.

Figure 21. Correlation matrix between SIL and ASIL

In the ISO 26262 scope, end-users can rely on ASIL decomposition to define system
architectures where the highest ASIL requirements are fulfilled by using lower ASILs
redundant sub systems but respecting the requirements in part 9 §5. Following the rules, an
ASIL D safety goal can be decomposed leading to an item made of two ASIL B independent
elements. Thus, end-users can positively match SEooC assumptions, in the form of
STM32F0 series CoU (refer to Section 3.7: Conditions of use). Then the safety
requirements of the system under development can integrate the STM32F0 series MCU
together with the related safety mechanism defined in this manual, in items performing up to
ASIL D safety functions.

In the automotive domain, hardware architectures that implement loops with two identical
MCUs are rare. When challenged with the highest ASIL requirements, that is ASIL C and/or
ASIL D, automotive safety designers usually adopt a multi core MCU solution. A practical

FMEA H.2.20.2 STM32F0 safety manual

Operational test H.2.17.6 End User responsibility

Table 14. IEC 60730 work product grid (continued)

IEC 60730 5.2 STM32F0 series

IEC 61508 documentInformation to be provided IEC 60730 Part-Clause

DocID026137 Rev 3 83/89

UM1741 Change impact analysis for other safety standards

88

application of this principle is the ECM implementing E-GAS control strategy that relies on a
dual-core lock-step MCU.

C.5.1 Architectural categories

Not Applicable - since ISO 26262 does not define any category.

C.5.2 Safety metrics recomputation

Hardware metrics in ISO 26262 standard have been defined with a slightly different
perspective that is mainly focused on the capability of identification of the following:

 Single Point Failures (SPF): those failures which occurrence leads to the violation of a
safety goal;

 Dual/multiple point failures: a chain of two subsequent or more independent failures is
required for the violation of the safety goal;

 Latent faults: those multiple point failures are not completely covered by the defined
safety mechanisms and are usually not perceived by the driver.

Moreover, these failures that are classified in IEC 61508 standard as no-parts/no-effect, are
classified as “safe failures” as they do not affect results.

Considering the metrics computation, the main differences between IEC 61508 and ISO
26262 are related to how the safe faults are computed and how the failure rate of diagnostic
is computed with the mission. The differences in failure rates related to hardware
diagnostics are assumed to be negligible; hardware-native safety failures in STM32F0
series devices are very few, and with very little weight in terms of gate counts. Therefore,
the safety analysis already performed for SFF target can be reused for the SPF targets in
ISO.

For such kind of Commercial Off-the-Shelf (COTS) microcontroller, the natural target in ISO
scenario is ASIL B (90% is the SPF target for permanent and transient, and 60% for latent).
As these are the same targets as for 1oo1 SIL2 case, one can assume that the same set of
conditions of use/safety mechanisms apply. Metrics computations are detailed into the
FMEDA for microcontrollers of the STM32F0 series; note that the resulting PMHF values
comply with the expectations for an ASIL B MCU.

We can conclude that the ASIL B target is reachable with some constraints for the final
application. Note that safety diagnostic measures based on periodical execution of software
are executed at least once each FTTI. As in the automotive domain this condition is easily
achievable, the STM32F0 series devices are an effective solution for many applications.

Some typical automotive ASIL-B examples are listed below:

 Electronics door closure: failures affecting the Electronic Control Unit (ECU) normally
generate ASIL A safety goals.

 Lighting ECU: faults on lighting functions such as failure on driving or braking lights
lead to safety goals ranked as ASIL B.

 Forward collision warning (Advanced Driver Assistance System: ADAS): the safety
goal of avoiding unattended deceleration can reasonably be ranked as ASIL B, if
decomposition is applied.

For the STM32F0 series device, the fulfillment of ASIL B latent faults metrics (60%) is
achieved (according to Yogitech fRMethodology analysis results) with the adoption of the
same safety mechanism combination as the one that guarantees the microcontroller to be
suitable for SIL2 applications.

Change impact analysis for other safety standards UM1741

84/89 DocID026137 Rev 3

C.5.3 Work products

Table 15 lists the work products required by the ISO 26262 standard and their mapping with
the work products from IEC 61508 compliance activity:

Table 15. IEC 26262 work product grid

IEC 26262 STM32F0 series

IEC 61508 documentInformation to be provided IEC 26262 Part-Clause

Technical safety requirements specification 4-6.5.1

STM32F0 series safety
manual

Technical safety concept 4-7.5.1

Safety analysis reports resulting from requirement 4-7.5.6

Hardware safety requirements verification report 5-6.5.3

Hardware safety analysis report 5-7.5.2

Analysis of the effectiveness of the architecture of the item
to cope with the random hardware failures

5-8.5.1

Review report of evaluation of the effectiveness of the
architecture of the item to cope with the random hardware
failures

5-8.5.2

Analysis of safety goal violations due to random hardware
failures

5-9.5.1

Review report of evaluation of safety goal violations due to
random hardware failures

5-9.5.3

Software safety requirements specification 6-6.5.1

End user ResponsibilitySoftware architectural design specification 6-7.5.1

Software verification report (refined) 6-11.5.3

Results of safety analyses 9-8.5.1
STM32F0 series safety

manual

DocID026137 Rev 3 85/89

UM1741 fRSTL_STM32F0_SIL2(3) product and its use in the framework of this manual

88

Appendix D fRSTL_STM32F0_SIL2(3) product and its
use in the framework of this manual

From the list of safety mechanisms that end users implement to reach the SIL2 safety
integrity level for STM32F0 series (see Table 3 and Section 3.7: Conditions of use), we can
extract a subset of mechanisms with the following characteristics:

 The safety mechanisms can be implemented with dedicated periodical software test.

 The safety mechanisms are inherently application-independent: they can be
implemented independently of the specific application software that runs on the
STM32F0 series final use.

Yogitech have developed a specific suite of fRSTL (fault-robust Software Test Libraries) for
the STM32F0 series devices. The software product implements a software-based
diagnostics. This dedicated version eases the implementation of the required safety
mechanism for the STM32F0 series.

Table 16 lists the five main key differentiation factors of fRSTLs with other possible
alternatives.

The main advantages for end users who adopt fRSTL_STM32F0_SIL2(3) are the following:

 no need to prove that the software diagnostics are developed according to IEC 61508
requirement. The end user only refers to fRSTL_STM32F0_SIL2(3) safety manual for
all the applicable safety measures. In general, when targeting different safety
standards, end users can save time by consulting the available IEC 61508 work
products documentation related to the fRSTL libraries development.

 no need to provide evidences on the claimed diagnostic coverage. The end user simply
refers to fRSTL_STM32F0_SIL2(3) safety manual for the coverage of all the applicable
safety measures.

 easy integration of the diagnostic with the end user application software. The fRSTL
product architecture and implementation ease the integration and implementation of

Table 16. fRSTLs differentiation factors

Compliant with IEC 61508
Both the diagnostic coverage and the development process
(systematic capability) are compliant with the IEC 61508 2nd edition

Yogitech enabled

The SW test Libraries are developed and validated according to
Yogitech fRMethodology,. This is a patented white-box approach
which performs functional safety analyses and safety-oriented
design exploration of integrated circuits

Optimized
The SW Test Libraries are optimized in code size and run-time for
real time operation.

Application independent
The diagnostic coverage and conditions of use are not tied to any
specific application

Modular
The SW Test Libraries are composed by a number of independent
test segments that user can selectively run according to specific
needs, thus facilitating integration with application software

fRSTL_STM32F0_SIL2(3) product and its use in the framework of this manual UM1741

86/89 DocID026137 Rev 3

the flow control when integrating the execution of the safety measures together with the
mission software.

 mitigation of the software diagnostic impact on system performances (code size,
execution time) because fRSTL are optimized. Optimization comes from the
application of the fRMethodology that allows the removal of redundant and overlapping
checks. Only the safety diagnostics that have a measurable and quantifiable
incremental output in terms of coverage are implemented.

Table 17 presents the safety mechanisms based on fRSTL_STM32_SIL2(3) that can apply
to the STM32F0 series functions detailed in Section 3.7: Conditions of use.

Table 17. List of STM32F0 series safety mechanism overlapped by
 fRSTL_STM32F0_SIL2(3)

STM32F0 series
function

Diagnostic Description

ARM® Cortex®-M0 CPU CPU_SM_0
Periodical software test addressing permanent faults
in Cortex-M0 CPU inner core

System Flash FLASH_SM_0 Periodical software test for Flash memory cells

System SRAM RAM_SM_0 Periodical software test for SRAM memory cells

System interconnect BUS_SM_0 Periodical software test for interconnections

NVIC NVIC_SM_0

Periodical read-back of configuration registers

CAN CAN_SM_0

UART UART_SM_0

I2C IIC_SM_0

SPI SPI_SM_0

USB USB_SM_0

HDMI HDMI_SM_0

TSC TSC_SM_0

ADC ADC_SM_0

DAC DAC_SM_0

DMA DMA_SM_0

COMP COMP_SM_0

TIM6/7 GTIM_SM_0

TIM1/2/3/14/15/16/17 ATIM_SM_0

GPIO GPIO_SM_0

RTC RTC_SM_0

Supply system VSUP_SM_0

Clock and Reset CLK_SM_0

Watchdogs WDG_SM_0

Part separation
(no interference)

FFI_SM_0
Periodical read-back of interference avoidance
registers

DocID026137 Rev 3 87/89

UM1741 fRSTL_STM32F0_SIL2(3) product and its use in the framework of this manual

88

For further information about fRSTL_STM32F0_SIL2(3) products (documentation, user
guide, software licensing) visit Yogitech website.

Revision history UM1741

88/89 DocID026137 Rev 3

Revision history

Table 18. Document revision history

Date Revision Changes

19-Jun-2014 1 Initial release.

30-Jan-2015 2

Extended the user manual applicability to STM32F0 series and to
STM32-SafeSIL part number.

Updated:

– Figure 1: STMicroelectronics product development process,

– Figure 16: Block diagram for IEC 62061 Cat. B,

– Figure 18: Block diagram for IEC 62061 Cat. D.

03-Mar-2015 3
Replaced all NVC occurrences with NVIC in Table 3: List of safety
mechanisms and in Table 17: List of STM32F0 series safety
mechanism overlapped by fRSTL_STM32F0_SIL2(3).

DocID026137 Rev 3 89/89

UM1741

89

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	1 About this document
	1.1 Purpose and scope
	1.2 Terms and abbreviations
	Table 1. Terms and abbreviations

	1.3 Reference normative
	Table 2. Mapping between this document content and IEC 61508-2 Annex D requirements

	2 STM32F0 series microcontroller development process
	2.1 STMicroelectronics standard development process
	Figure 1. STMicroelectronics product development process

	2.2 Yogitech fRMethodology process

	3 Reference safety architecture
	3.1 Introduction
	3.2 Compliant item
	3.2.1 Definition of the compliant item
	Figure 2. Definition of the compliant item

	3.2.2 Safety functions performed by the compliant item
	Figure 3. Abstract view of compliant item functions

	3.3 Assumed requirements
	3.3.1 Assumed safety requirements
	Figure 4. Allocation and target for STM32 PST

	3.4 Electrical specifications and environment limits
	3.5 Systematic safety integrity
	3.6 Description of hardware and software diagnostics
	3.6.1 Cortex®-M0 CPU
	3.6.2 System FLASH memory
	3.6.3 System SRAM memory
	3.6.4 System bus interconnect
	3.6.5 NVIC and EXTI controller
	3.6.6 DMA
	3.6.7 CAN
	3.6.8 USART 1/2/3/4
	3.6.9 I2C 1/2
	3.6.10 SPI 1/2
	3.6.11 USB - 2.0 Universal Serial Bus interface FS module
	3.6.12 HDMI CEC module
	3.6.13 Touch Sensing Controller (TSC)
	3.6.14 Analog to Digital Converters (ADC)
	3.6.15 DAC
	3.6.16 Comparator
	3.6.17 TIM 6/7
	3.6.18 TIM1/2/3/14/15/16/17
	3.6.19 GPIO – PORT A/B/C/D/E/F
	3.6.20 Real Time Clock module (RTC)
	3.6.21 Supply voltage system
	3.6.22 Reset and clock control subsystem
	3.6.23 Watchdogs (IWDG, WWDG)
	3.6.24 Debug
	3.6.25 Cyclic Redundancy Check module (CRC)
	3.6.26 Dual MCU architecture
	3.6.27 Latent fault detection
	3.6.28 Disable and periodic cross-check of unintentional activation of unused peripherals

	3.7 Conditions of use
	Table 3. List of safety mechanisms
	Figure 5. Block diagram of safety characteristics for STM32F0 modules

	4 Safety results
	4.1 Hardware random failure safety results
	Table 4. Overall achievable safety integrity levels
	4.1.1 Safety analysis result customization
	4.1.2 General requirements for Freedom From Interferences (FFI)
	Table 5. List of general requirements for FFI

	4.2 Dependent failures analysis
	4.2.1 Power supply
	4.2.2 Clock
	4.2.3 DMA
	4.2.4 Internal temperature

	5 List of evidences
	Appendix A Overview of fRMethodology
	A.1 The essence of fRMethodology
	A.2 fRMethodology and its flow
	Figure 6. The fRMethodology flow for IEC 61508
	Table 6. Level of detail in fRMethodology

	A.3 fRTools
	Figure 7. Overview of the fRTools

	Appendix B Examples of safety architectures – Informative
	B.1 Conceptual block diagrams of the target safety architectures
	Figure 8. The HFT=0 1oo1 and 1oo1d architectures
	Figure 9. The HFT=1 1oo2 and 1oo2d architectures
	Figure 10. The HFT=1 2oo2 architecture

	B.2 Considerations about voter implementation
	Figure 11. A possible voter structure combining PEvi and PEve

	Appendix C Change impact analysis for other safety standards
	C.1 ISO 13849-1 / ISO 13849-2
	C.1.1 Architectural categories
	Table 7. IEC 13849 architectural categories
	Figure 12. Block diagram for IEC 13849 Cat. B and Cat. 1
	Figure 13. Block diagram for IEC 13849 Cat. 2
	Figure 14. Block diagram for IEC 13849 Cat. 3 and Cat. 4

	C.1.2 Safety metrics recomputation
	C.1.3 Work products
	Table 8. IEC 13849 work product grid

	C.2 IEC 62061:2012-11
	Table 9. SIL classification versus HFT
	C.2.1 Architectural categories
	Table 10. IEC 62061 architectural categories
	Figure 15. Block diagram for IEC 62061 Cat. A
	Figure 16. Block diagram for IEC 62061 Cat. B
	Figure 17. Block diagram for IEC 62061 Cat. C
	Figure 18. Block diagram for IEC 62061 Cat. D
	Figure 19. SRECS high-level diagram

	C.2.2 Safety metrics recomputation
	C.2.3 Work products
	Table 11. IEC 62061 work product grid

	C.3 IEC 61800-5-2:2007
	C.3.1 Architectural categories
	Figure 20. IEC 61800 architectural view

	C.3.2 Safety metrics recomputation
	C.3.3 Work products
	Table 12. IEC 61800 work product grid

	C.4 IEC 60730-1:2010
	C.4.1 Architectural categories
	C.4.2 Safety metrics recomputation
	Table 13. IEC 60730 required safety mechanism for Class B/C compliance

	C.4.3 Work products
	Table 14. IEC 60730 work product grid

	C.5 ISO 26262:2010
	Figure 21. Correlation matrix between SIL and ASIL
	C.5.1 Architectural categories
	C.5.2 Safety metrics recomputation
	C.5.3 Work products
	Table 15. IEC 26262 work product grid

	Appendix D fRSTL_STM32F0_SIL2(3) product and its use in the framework of this manual
	Table 16. fRSTLs differentiation factors
	Table 17. List of STM32F0 series safety mechanism overlapped by fRSTL_STM32F0_SIL2(3)

	Revision history
	Table 18. Document revision history

