

Making
Things Talk
Second Edition

Tom Igoe

Making Things Talk

The Make logo and Maker Media logo are registered trademarks of Maker Media, Inc. The MAKE: Projects

series designations, Making Things Talk, and related trade dress are trademarks of Maker Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in this book, and Maker Media, Inc. was aware of the

trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author

assume no responsibility for errors or omissions, or for damages resulting from the use of the

information contained herein.

Please note: Technology, and the laws and limitations imposed by manufacturers and content owners,

are constantly changing. Thus, some of the projects described may not work, may be inconsistent

with current laws or user agreements, or may damage or adversely affect some equipment.

Your safety is your own responsibility, including proper use of equipment and safety gear, and

determining whether you have adequate skill and experience. Power tools, electricity, and other

resources used for these projects are dangerous unless used properly and with adequate precautions,

including safety gear. Some illustrative photos do not depict safety precautions or equipment, in

order to show the project steps more clearly. These projects are not intended for use by children.

Use of the instructions and suggestions in Making Things Talk is at your own risk. Maker Media, Inc.,

disclaims all responsibility for any resulting damage, injury, or expense. It is your responsibility to

make sure that your activities comply with applicable laws, including copyright.

ISBN: 978-1-449-39243-7

[TI] [2013-03-22]

by Tom Igoe

Copyright © 2011 Maker Media, Inc. All rights reserved. Printed in Canada.

Published by Maker Media, Inc.

1005 Gravenstein Highway North, Sebastopol, CA 95472.

Maker Media books may be purchased for educational, business, or sales promotional use.

For more information, contact O’Reilly Media’s corporate/institutional sales department:

800-998-9938 or corporate@oreilly.com.

Print History

September 2007

First Edition

September 2011

Second Edition

Editor: Brian Jepson

Proofreader: Marlowe Shaeffer

Cover Designer: Karen Montgomery

Production Editor: Adam Zaremba

Indexer: Lucie Haskins

Cover Photograph: Tom Igoe

Contents

Preface . vii
Who This Book Is For . viii
What You Need to Know . ix
Contents of This Book . ix
On Buying Parts . x
Using Code Examples . xi
Using Circuit Examples . xi
Acknowledgments for the First Edition . xii
Note on the Second Edition . xiv

Chapter 1: The Tools .1
It Starts with the Stuff You Touch . 2
It’s About Pulses . 2
Computers of All Shapes and Sizes . 3
Good Habits . 4
Tools . 5
Using the Command Line . 13
Using an Oscilloscope . 34
It Ends with the Stuff You Touch . 35

Chapter 2: The Simplest Network . 37
Supplies for Chapter 2 . 38
Layers of Agreement . 40
Making the Connection: The Lower Layers . 42

Project 1: Type Brighter . 46
Project 2: Monski Pong . 50

Flow Control . 62
Project 3: Wireless Monski Pong . 64
Project 4: Negotiating in Bluetooth . 68

Conclusion . 72

Chapter 3: A More Complex Network . 75
Supplies for Chapter 3 . 76
Network Maps and Addresses . 77

Project 5: Networked Cat . 89
Conclusion . 112

Chapter 4: Look, Ma, No Computer! Microcontrollers on the Internet . 115
Supplies for Chapter 4 .117
Introducing Network Modules . 118

Project 6: Hello Internet! . 120
An Embedded Network Client Application . 127

Project 7: Networked Air-Quality Meter . 127
Programming and Troubleshooting Tools for Embedded Modules . 140
Conclusion . 147

Chapter 5: Communicating in (Near) Real Time . 149
Supplies for Chapter 5 . 150
Interactive Systems and Feedback Loops . 151
Transmission Control Protocol: Sockets & Sessions . 152

Project 8: Networked Pong . 153
The Clients . 155
Conclusion . 178

Chapter 6: Wireless Communication .181
Supplies for Chapter 6 . 182
Why Isn’t Everything Wireless? . 184
Two Flavors of Wireless: Infrared and Radio . 185

Project 9: Infrared Control of a Digital Camera . 188
How Radio Works . 190

Project 10: Duplex Radio Transmission . 193
Project 11: Bluetooth Transceivers .206

Buying Radios . 216
What About WiFi? . 216

Project 12: Hello WiFi! . 217
Conclusion .220

Chapter 7: Sessionless Networks . 223
Supplies for Chapter 7 . 224
Sessions vs. Messages . 226
Who’s Out There? Broadcast Messages . 227

Project 13: Reporting Toxic Chemicals in the Shop . 232
Directed Messages . 246

Project 14: Relaying Solar Cell Data Wirelessly . 248
Conclusion . 258

Chapter 8: How to Locate (Almost) Anything . 261
Supplies for Chapter 8 . 262
Network Location and Physical Location . 264
Determining Distance . 267

Project 15: Infrared Distance Ranger Example . 268
Project 16: Ultrasonic Distance Ranger Example . 270
Project 17: Reading Received Signal Strength Using XBee Radios . 273
Project 18: Reading Received Signal Strength Using Bluetooth Radios . 276

Determining Position Through Trilateration . 277
Project 19: Reading the GPS Serial Protocol . 278

Determining Orientation . 286
Project 20: Determining Heading Using a Digital Compass . 286
Project 21: Determining Attitude Using an Accelerometer .290

Conclusion . 299

Chapter 9: Identification . 301
Supplies for Chapter 9 .302
Physical Identification .304

Project 22: Color Recognition Using a Webcam .306
Project 23: Face Detection Using a Webcam . 310
Project 24: 2D Barcode Recognition Using a Webcam . 313
Project 25: Reading RFID Tags in Processing . 318
Project 26: RFID Meets Home Automation . 321
Project 27: Tweets from RFID . 329

Network Identification . 353
Project 28: IP Geocoding . 355

Conclusion .360

Chapter 10: Mobile Phone Networks and the Physical World . 363
Supplies for Chapter 10 . 364
One Big Network .366

Project 29: CatCam Redux . 369
Project 30: Phoning the Thermostat . 386

Text-Messaging Interfaces . 393
Native Applications for Mobile Phones .396

Project 31: Personal Mobile Datalogger . 401
Conclusion . 415

Chapter 11: Protocols Revisited .417
Supplies for Chapter 11 . 418
Make the Connections . 419
Text or Binary? . 422
MIDI . 425

Project 32: Fun with MIDI . 427
Representational State Transfer . 435

Project 33: Fun with REST . 437
Conclusion .440

Appendix: Where to Get Stuff . 443
Supplies .444
Hardware . 447
Software . 452

Index . 455

Preface
A few years ago, Neil Gershenfeld wrote a smart book called When

Things Start to Think. In it, he discussed a world in which everyday

objects and devices are endowed with computational power: in other

words, today. He talked about the implications of devices that exchange

information about our identities, abilities, and actions. It’s a good read,

but I think he got the title wrong. I would have called it When Things

Start to Gossip, because—let’s face it—even the most exciting thoughts

are worthwhile only once you start to talk to someone else about them.

Making Things Talk teaches you how to make things that have compu-

tational power talk to each other, and about giving people the ability to

use those things to communicate.

Making Things Talk
MAKE: PROJECTS

viii MAKING THINGS TALK

For a couple of decades now, computer scientists have
used the term object-oriented programming to refer to a
style of software development in which programs and sub-
programs are thought of as objects. Like physical objects,
they have properties and behaviors. They inherit these
properties from the prototypes from which they descend.
The canonical form of any object in software is the code
that describes its type. Software objects make it easy to
recombine objects in novel ways. You can reuse a software
object if you know its interface—the collection of proper-
ties and methods to which its creator allows you access
(as well as the documents so that you know how to use
them). It doesn’t matter how a software object does what
it does, as long as it does it consistently. Software objects
are most effective when they’re easy to understand and
when they work well with other objects.

Who This Book Is For
This book is written for people who want to make things talk to other things. Maybe you’re

a science teacher who wants to show your students how to monitor weather conditions

at several locations around your school district simultaneously, or a sculptor who wants

to make a whole room of choreographed mechanical sculptures. You might be an industrial

designer who needs to be able to build quick mockups of new products, modeling both their

forms and their functions. Maybe you’re a cat owner, and you’d like to be able to play with

your cat while you’re away from home. This book is a primer for people with little technical

training and a lot of interest. This book is for people who want to get projects done.

The main tools in this book are personal computers, web
servers, and microcontrollers, the tiny computers inside
everyday appliances. Over the past decade, microcontrollers
and their programming tools have gone from being arcane
items to common, easy-to-use tools. Elementary school
students are using the tools that baffled graduate students
only a decade ago. During that time, my colleagues and
I have taught people from diverse backgrounds (few of
them computer programmers) how to use these tools to
increase the range of physical actions that computers can
respond to, sense, and interpret.

In recent years, there’s been a rising interest among
people using microcontrollers to make their devices not

only sense and control the physical world, but also talk to
other things about what they’re sensing and controlling.
If you’ve built something with a Basic Stamp or a Lego
Mindstorms kit, and want to make that thing communicate
with things you or others have built, this book
is for you. It is also useful for software programmers
familiar with networking and web services who want an
introduction to embedded network programming.

If you’re the type of person who likes to get down to
the very core of a technology, you may not find what
you’re looking for in this book. There aren’t detailed code
samples for Bluetooth or TCP/IP stacks, nor are there
circuit diagrams for Ethernet controller chips. The

In the physical world, we’re surrounded by all kinds of
electronic objects: clock radios, toasters, mobile phones,
music players, children’s toys, and more. It can take a
lot of work and a significant amount of knowledge to make
a useful electronic gadget—it can take almost as much
knowledge to make those gadgets talk to each other in
useful ways. But that doesn’t have to be the case. Electronic
devices can be—and often are—built up from simple
modules. As long as you understand the interfaces, you
can make anything from them. Think of it as object-oriented
hardware. Understanding the ways in which things talk to
each other is central to making this work, regardless of
whether the object is a toaster, an email program on your
laptop, or a networked database. All of these objects can
be connected if you can figure out how they communicate.
This book is a guide to some of the tools for making those
connections.
X

PREFACE ix

Many people whose programming experience begins
with microcontrollers can do wonderful things with some
sensors and a couple of servomotors, but they may not
have done much to enable communication between
the microcontroller and other programs on a personal
computer. Similarly, many experienced network and
multimedia programmers have never experimented with
hardware of any sort, including microcontrollers. If you’re
either of these people, this book is for you. Because the
audience of this book is diverse, you may find some of
the introductory material a bit simple, depending on your
background. If so, feel free to skip past the stuff you know
to get to the meatier parts.

If you’ve never used a microcontroller, you’ll need a little
background before starting this book. I recommend you
read my previous book, Physical Computing: Sensing
and Controlling the Physical World with Computers
(Thomson), co-authored with Dan O’Sullivan, which

What You Need to Know
In order to get the most from this book, you should have a basic knowledge of electronics

and programming microcontrollers, some familiarity with the Internet, and access to both.

Contents of This Book
This book explains the concepts that underlie networked objects and then provides

recipes to illustrate each set of concepts. Each chapter contains instructions for building

working projects that make use of the new ideas introduced in that chapter.

In Chapter 1, you’ll encounter the major programming
tools in the book and get to “Hello World!” on each of them.

Chapter 2 introduces the most basic concepts needed to
make things talk to each other. It covers the characteristics
that need to be agreed upon in advance, and how keeping

those things separate in your mind helps troubleshooting.
You’ll build a simple project that features one-to-one serial
communication between a microcontroller and a personal
computer using Bluetooth radios as an example of modem
communication. You’ll learn about data protocols, modem
devices, and address schemes.

components used here strike a balance between simplic-
ity, flexibility, and cost. They use object-oriented hardware,
requiring relatively little wiring or code. They’re designed

to get you to the end goal of making things talk to each
other as quickly as possible.
X

introduces the fundamentals of electronics, microcon-
trollers, and physical interaction design.

You should also have a basic understanding of computer
programming before reading much further. If you’ve never
done any programming, check out the Processing pro-
gramming environment at www.processing.org. Processing
is a simple language designed to teach nonprogrammers
how to program, yet it’s powerful enough to do a number
of advanced tasks. It will be used throughout this book
whenever graphic interface programming is needed.

This book includes code examples in a few different pro-
gramming languages. They’re all fairly simple examples,
so if you don’t want to work in the languages provided, you
can use the comments in these examples to rewrite them
in your favorite language.
X

x MAKING THINGS TALK

Jameco (http://jameco.com), Digi-Key (www.digikey.
com), and Farnell (www.farnell.com) are general electron-
ics parts retailers, and they sell many of the same things.
Others, like Maker Shed (www.makershed.com), SparkFun
(www.sparkfun.com), and Adafruit (http://adafruit.com)
carry specialty components, kits, and bundles that make
it easy to do popular projects. A full list of suppliers is
included in the Appendix. Feel free to substitute parts for
things with which you are familiar.

Because it’s easy to order goods online, you might be
tempted to communicate with vendors entirely through
their websites. Don’t be afraid to pick up the phone as well.
Particularly when you’re new to this type of project, it
helps to talk to someone about what you’re ordering and to
ask questions. You’re likely to find helpful people at the end
of the phone line for most of the retailers listed here. I’ve
listed phone numbers wherever possible—use them.
X

On Buying Parts
You’ll need a lot of parts for all of the projects in this book. As a result, you’ll learn about

a lot of vendors. Because there are no large electronics parts retailers in my city, I buy

parts online all the time. If you’re lucky enough to live in an area where you can buy from

a brick-and-mortar store, good for you! If not, get to know some of these online vendors.

Chapter 3 introduces a more complex network: the
Internet. It discusses the basic devices that hold it
together, as well as the basic relationships among those
devices. You’ll see the messages that underlie some of the
most common tasks you do on the Internet every day, and
learn how to send those messages. You’ll write your first
set of programs to send data across the Net based on a
physical activity in your home.

In Chapter 4, you’ll build your first embedded device. You’ll
get more experience with command-line connections to
the Net, and you’ll connect a microcontroller to a web
server without using a desktop or laptop computer as an
intermediary.

Chapter 5 takes the Net connection a step further by
explaining socket connections, which allow for longer
interaction. You’ll learn how to write your own server
program that you can connect to anything connected to
the Net. You’ll connect to this server program from the
command line and from a microcontroller, so that you can
understand how different types of devices can connect to
each other through the same server.

Chapter 6 introduces wireless communication. You’ll learn
some of the characteristics of wireless, along with its pos-
sibilities and limitations. Several short examples in this
chapter enable you to say “Hello World!” over the air in a
number of ways.

Chapter 7 offers a contrast to the socket connections of
Chapter 5, by introducing message-based protocols like
UDP on the Internet, and ZigBee and 802.15.4 for wireless
networks. Instead of using the client-server model from
earlier chapters, here you’ll learn how to design conversa-
tions where each object in a network is equal to the others,
exchanging information one message at a time.

Chapter 8 is about location. It introduces a few tools to
help you locate things in physical space, and it offers some
thoughts on the relationship between physical location and
network relationships.

Chapter 9 deals with identification in physical space and
network space. You’ll learn a few techniques for generat-
ing unique network identities based on physical charac-
teristics. You’ll also learn a bit about how to determine a
networked device’s characteristics.

Chapter 10 introduces mobile telephony networks, covering
many of the things that you can now do with phones and
phone networks.

Chapter 11 provides a look back at the different types of
protocols covered in this book, and gives you a framework
to fit them all into for future reference.
X

PREFACE xi

For example, writing a program that uses several chunks of
code from this book does not require permission. Selling
or distributing a CD-ROM of examples from Maker Media
books does require permission. Answering a question
by citing this book and quoting example code does not
require permission. Incorporating a significant amount of
example code from this book into your product’s docu-
mentation does require permission.

We appreciate attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Making
Things Talk: Practical Methods for Connecting Physical
Objects, by Tom Igoe. Copyright 2011 Maker Media, 978-1-
4493-9243-7.” If you feel that your use of code examples
falls outside fair use or the permission given above, feel
free to contact us at permissions@oreilly.com.
X

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in

this book in your programs and documentation. You do not need to contact us for

permission unless you’re reproducing a significant portion of the code.

Even though we want you to be adventurous, we also want
you to be safe. Please don’t take any unnecessary risks
when building this book’s projects. Every set of instruc-
tions is written with safety in mind; ignore the safety
instructions at your own peril. Be sure you have the appro-
priate level of knowledge and experience to get the job
done in a safe manner.

Using Circuit Examples
In building the projects in this book, you’re going to break things and void warranties.

If you’re averse to this, put this book down and walk away. This is not a book for those

who are squeamish about taking things apart without knowing whether they’ll go back

together again.

Please keep in mind that the projects and circuits shown
in this book are for instructional purposes only. Details like
power conditioning, automatic resets, RF shielding, and
other things that make an electronic product certifiably
ready for market are not included here. If you’re designing
real products to be used by people other than yourself,
please do not rely on this information alone.
X

xii MAKING THINGS TALK

The Interactive Telecommunications Program in the Tisch
School of the Arts at New York University has been my
home for more than the past decade. It is a lively and
warm place to work, crowded with many talented people.
This book grew out of a class, Networked Objects, that I
have taught there for several years. I hope that the ideas
herein represent the spirit of the place and give you a
sense of my enjoyment in working there.

Red Burns, the department’s founder, has supported
me since I first entered this field. She indulged my many
flights of fancy and brought me firmly down to earth when
needed. On every project, she challenges me to make sure
that I use technology not for its own sake, but always so it
empowers people.

Dan O’Sullivan, my colleague and now chair of the program,
introduced me to physical computing and then generously
allowed me to share in teaching it and shaping its role at
ITP. He is a great advisor and collaborator, and offered
constant feedback as I worked. Most of the chapters
started with a rambling conversation with Dan. His finger-
prints are all over this book, and it’s a better book for it.

Clay Shirky, Daniel Rozin, and Dan Shiffman were also
close advisors on this project. Clay watched indulgently as
the pile of parts mounted in our office, and he graciously
interrupted his own writing to give opinions on my ideas.
Daniel Rozin offered valuable critical insight as well, and
his ideas are heavily influential in this book. Dan Shiffman
read many drafts and offered helpful feedback. He also
contributed many great code samples and libraries.

Fellow faculty members Marianne Petit, Nancy Hechinger,
and Jean-Marc Gauthier were supportive throughout this
writing, offering encouragement and inspiration, covering
departmental duties for me, and offering inspiration
through their own work.

The rest of the faculty and staff at ITP also made this
possible. George Agudow, Edward Gordon, Midori Yasuda,
Megan Demarest, Nancy Lewis, Robert Ryan, John Duane,
Marlon Evans, Tony Tseng, and Gloria Sed tolerated all
kinds of insanity in the name of physical computing and

Acknowledgments for the First Edition
This book is the product of many conversations and collaborations. It would not have

been possible without the support and encouragement of my own network.

networked objects, and made things possible for the
other faculty and me, as well as the students. Research
residents Carlyn Maw, Todd Holoubek, John Schimmel,
Doria Fan, David Nolen, Peter Kerlin, and Michael Olson
assisted faculty and students over the past few years
to realize projects that influenced the ones you see in
these chapters. Faculty members Patrick Dwyer, Michael
Schneider, Greg Shakar, Scott Fitzgerald, Jamie Allen,
Shawn Van Every, James Tu, and Raffi Krikorian have used
the tools from this book in their classes, or have lent their
own techniques to the projects described here.

The students of ITP have pushed the boundaries of pos-
sibility in this area, and their work is reflected in many
of the projects. I cite specifics where they come up, but
in general, I’d like to thank all the students who took my
Networked Objects class—they helped me understand
what this is all about. Those from the 2006 and 2007
classes were particularly influential, because they had to
learn the stuff from early drafts of this book. They have
caught several important mistakes in the manuscript.

A few people contributed significant amounts of code,
ideas, or labor to this book. Geoff Smith gave me the
original title for the course, Networked Objects, and intro-
duced me to the idea of object-oriented hardware. John
Schimmel showed me how to get a microcontroller to
make HTTP calls. Dan O’Sullivan’s server code was the
root of all of my server code. All of my Processing code
is more readable because of Dan Shiffman’s coding style
advice. Robert Faludi contributed many pieces of code,
made the XBee examples in this book simpler to read, and
corrected errors in many of them. Max Whitney helped
me get Bluetooth exchanges working and get the cat bed
finished (despite her allergies!). Dennis Crowley made the
possibilities and limitations of 2D barcodes clear to me.
Chris Heathcote heavily influenced my ideas on location.
Durrell Bishop helped me think about identity. Mike
Kuniavsky and the folks at the “Sketching in Hardware”
workshops in 2006 and 2007 helped me see this work
as part of a larger community, and introduced me to a lot
of new tools. Noodles the cat put up with all manner of
silliness in order to finish the cat bed and its photos. No
animals were harmed in the making of this book, though
one was bribed with catnip.

PREFACE xiii

Casey Reas and Ben Fry made the software side of this
book possible by creating Processing. Without Processing,
the software side of networked objects was much more
painful. Without Processing, there would be no simple,
elegant programming interface for Arduino and Wiring. The
originators of Arduino and Wiring made the hardware side
of this book possible: Massimo Banzi, Gianluca Martino,
David Cuartielles, and David Mellis on Arduino; Hernando
Barragán on Wiring; and Nicholas Zambetti bridging the
two. I have been lucky to work with them.

Though I’ve tried to use and cite many hardware vendors
in this book, I must give a special mention to Nathan
Seidle at Spark Fun. This book would not be what it is
without him. While I’ve been talking about object-oriented
hardware for years, Nathan and the folks at SparkFun have
been quietly making it a reality.

Thanks also to the support team at Lantronix. Their
products are good and their support is excellent. Garry
Morris, Gary Marrs, and Jenny Eisenhauer answered my
countless emails and phone calls helpfully and cheerfully.

In this book’s projects, I drew ideas from many colleagues
from around the world through conversations in workshops
and visits. Thanks to the faculty and students I’ve worked
with at the Royal College of Art’s Interaction Design program,
UCLA’s Digital Media | Arts program, the Interaction Design
program at the Oslo School of Architecture and Design,
Interaction Design Institute Ivrea, and the Copenhagen
Institute of Interaction Design.

Many networked object projects inspired this writing.
Thanks to those whose work illustrates the chapters:
Tuan Anh T. Nguyen, Joo Youn Paek, Doria Fan, Mauricio
Melo, and Jason Kaufman; Tarikh Korula and Josh
Rooke-Ley of Uncommon Projects; Jin-Yo Mok, Alex Beim,
Andrew Schneider, Gilad Lotan and Angela Pablo; Mouna
Andraos and Sonali Sridhar; Frank Lantz and Kevin Slavin
of Area/Code; and Sarah Johansson.

Working for MAKE has been a great experience. Dale
Dougherty encouraged of all of my ideas, dealt patiently
with my delays, and indulged me when I wanted to try new
things. He’s never said no without offering an acceptable
alternative (and often a better one). Brian Jepson has gone
above and beyond the call of duty as an editor, building all
of the projects, suggesting modifications, debugging code,
helping with photography and illustrations, and being

endlessly encouraging. It’s an understatement to say that
I couldn’t have done this without him. I could not have
asked for a better editor. Thanks to Nancy Kotary for her
excellent copyedit of the manuscript. Katie Wilson made
this book far better looking and readable than I could ever
have hoped. Thanks also to Tim Lillis for the illustrations.
Thanks to all of the MAKE team.

Thanks to my agents: Laura Lewin, who got the ball rolling;
Neil Salkind, who picked it up from her; and the whole
support team at Studio B. Thanks finally to my family and
friends who listened to me rant enthusiastically or complain
bitterly as this book progressed. Much love to you all.
X

We’d Like to Hear from You
Please address comments and questions concerning this book

to the publisher:

Maker Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a website for this book, where we list errata,

examples, and any additional information. You can access

this page at: www.makezine.com/go/MakingThingsTalk

To comment or ask technical questions about this book,

send email to: bookquestions@oreilly.com

Maker Media, Inc. is devoted entirely to the growing

community of resourceful people who believe that if you can

imagine it, you can make it. Maker Media encourages the

Do-It-Yourself mentality by providing creative inspiration and

instruction.

For more information about Maker Media, Inc., visit us online:

http://makermedia.com

xiv MAKING THINGS TALK

Before any technology is adopted in general use, there
has to be a place for it in the popular imagination. People
with no knowledge of the technology must have some
idea what it is and for what it can be used. Prior to 2005,
I spent a lot of time explaining to people what physical
computing was and what I meant by “networked objects.”
Nowadays, everyone knows the Wii controller or the Kinect
as an example of a device that expands the range of
human physical expression available to computers. These
days, it’s difficult to find an electronic device that isn’t
networked.

While it’s been great to see these ideas gain a general
understanding, what’s even more exciting is seeing them
gain in use. People aren’t just using their Kinects for
gaming, they’re building them into assistive interfaces for
physically challenged clients. They’re not just playing with
the Wii, they’re using it as a musical instrument controller.
People have become accustomed to the idea that they can
modify the use of their electronics—and they’re doing it.

When I joined the project, my hope for Arduino was that
it might fill a need for something more customizable than
consumer electronic devices were at the time, yet be less
difficult to learn than microcontroller systems. I thought
the open source approach was a good way to go because
it meant that hopefully the ideals of the platform would
spread beyond the models we made. That hope has been
realized in the scores of derivative boards, shields, spinoff
products, and accessories that have popped up in the last
several years. It’s wonderful to see so many people not
just making electronics for others to build on, but doing it
in a way that doesn’t demand professional expertise to get
started.

Note on the Second Edition
Two general changes prompted the rewriting of this book: the emergence of an open

source hardware movement, and the growth of participatory culture, particularly around

making interactive things. The community surrounding Arduino, and the open source

hardware movement more generally, has grown quickly. The effects of this are still being

realized, but one thing is clear: object-oriented hardware and physical computing are

becoming an everyday reality. Many more people are making things with electronics

now than I could have imagined in 2005.

The growth of Arduino shields and libraries has been big
enough that I almost could have written this edition so
that you wouldn’t have to do any programming or circuit
building. There’s a shield or a library to do almost every
project in this book. However, you can only learn so much
by fitting premade pieces together, so I’ve tried to show
some of the principles underlying electronic communica-
tions and physical interfaces. Where there is a simple
hardware solution, I’ve indicated it but shown the circuit
it encloses as well. The best code libraries and circuit
designs practice what I think of as “glass-box enclosure”—
they enclose the gory details and give you a convenient
interface, but they let you look inside and see what’s
going on if you’re interested. Furthermore, they’re well-
constructed so that the gory details don’t seem that gory
when you look closely at them. Hopefully, this edition will
work in much the same way.

Software Reference
There have been a number of large changes made to the
Arduino platform since I started this edition. The Arduino
IDE was in beta development, but by the time this book
comes out, version 1.0 will be available. If you’re already
familiar with Arduino, please make sure you’ve downloaded
version 1,0beta1 or later of the IDE. This book was written
using Arduino 1.0 beta1, which is available online at http://
code.google.com/p/arduino/wiki/Arduino1. The final 1.0
version will be available on the Download page at www.
arduino.cc. Check the Arduino site for the latest updates.
The code for this book can be found online on my gitHub
repository at https://github.com/tigoe/MakingThing-
sTalk2 and I’ll write about any changes on the blog, www.
makingthingstalk.com.

PREFACE xv

Hardware Reference
To keep the focus on communications between physical
devices, I’ve chosen to use the Arduino Uno as the
reference hardware design for this edition. Everything in
this book will work on an Arduino Uno with the appropri-
ate accessories or shields. A few projects were made with
specialty Arduino models like the Arduino Ethernet or the
Arduino LilyPad because their form factor was the most
appropriate, but even those projects were tested on the
Uno. Anything that is compatible with the Uno should be
able to run this code and interface with these circuits.

Acknowledgments for the Second
Edition
The network of people who make this book possible
continues to grow.

The changes in this edition are due in no small part to the
work of my partners on the Arduino team. Working with
Massimo Banzi, David Cuartielles, Gianluca Martino, and
David Mellis continues to be enjoyable, challenging, and
full of surprises. I’m lucky to have them as collaborators.

The Interactive Telecommunications Program at NYU
continues to support me in everything I do professionally.
None of this would be possible without the engagement
of my colleagues there. Dan O’Sullivan, as always, was a
valued advisor on many of the projects that follow. Daniel
Shiffman and Shawn Van Every provided assistance with
desktop and Android versions of Processing. Marianne
Petit, Nancy Hechinger, Clay Shirky, and Marina Zurkow
offered critical and moral support. Red Burns, as ever,
continues to inspire me on how to empower people by
teaching them to understand the technologies that shape
their lives.

The cast of resident researchers and adjunct professors at
ITP is ever-changing and ever-helpful. During this edition,
research residents Mustafa Bağdatlı, Caroline Brown,
Jeremiah Johnson, Meredith Hasson, Liesje Hodgson,
Craig Kapp, Adi Marom, Ariel Nevarez, Paul Rothman, Ithai
Benjamin, Christian Cerrito, John Dimatos, Xiaoyang Feng,
Kacie Kinzer, Zannah Marsh, Corey Menscher, Matt Parker,
and Tymm Twillman helped with examples, tried projects,
out, and kept things going at ITP when I was not available.

Adjunct faculty members Thomas Gerhardt, Scott Fitzger-
ald, Rory Nugent, and Dustyn Roberts were valued col-
laborators by teaching this material in the Introduction to
Physical Computing course.

Rob Faludi remains my source on all things XBee- and Digi-
related.

Thanks to Antoinette LaSorsa and Lille Troelstrup at the
Adaptive Design Association for permission to use their tilt
board design in Chapter 5.

Many people contributed to the development of Arduino
through our developers mailing list and teachers list. In
particular, Mikal Hart, Michael Margolis, Adrian McEwen,
and Limor Fried influenced this book through their work on
key communication libraries like SoftwareSerial, Ethernet,
and TextFinder, and also through their personal advice
and good nature in answering my many questions off-list.
Michael Margolis’ Arduino Cookbook (O’Reilly) was a
reference for some of the code in this book as well. Thanks
also to Ryan Mulligan and Alexander Brevig for their
libraries, which I’ve used and adapted in this book.

Limor Fried and Phillip Torrone, owners of Adafruit, were
constant advisors, critics, and cheerleaders throughout
this book. Likewise, Nathan Seidle at SparkFun continues
to be one of my key critics and advisors. Adafruit and
SparkFun are my major sources of parts, because they
make stuff that works well.

This edition looks better graphically thanks to Fritzing,
an open source circuit drawing tool available at http://
fritzing.org. Reto Wettach, André Knörig, and Jonathan
Cohen created a great tool to make circuits and sche-
matics more accessible. Thanks also to Ryan Owens at
SparkFun for giving me advance access to some of its
parts drawings. Thanks to Giorgio Olivero and Jody Culkin
for additional drawings in this edition.

Thanks to David Boyhan, Jody Culkin, Zach Eveland, and
Gabriela Gutiérrez for reading and offering feedback on
sections of the manuscript.

xvi MAKING THINGS TALK

Thanks to Keith Casey at Twilio; Bonifaz Kaufmann,
creator of Amarino; Andreas Göransson for his help on
Android; and Casey Reas and Ben Fry for creating Pro-
cessing’s Android mode, and for feedback on the Android
section.

New projects have inspired the new work in this edition.
Thanks to Benedetta Piantella and Justin Downs of
Groundlab, and to Meredith Hasson, Ariel Nevarez, and
Nahana Schelling, creators of SIMbalink. Thanks to Timo
Arnall, EInar Sneve Martinussen, and Jørn Knutsen at
www.nearfield.org for their RFID inspiration and collabo-
ration.Thanks to Daniel Hirschmann for reminding me
how exciting lighting is and how easy DMX-512 can be.
Thanks to Mustafa Bağdatlı for his advice on Poker Face,
and thanks to Frances Gilbert and Jake for their role in the
CatCam 2 project. Apologies to Anton Chekhov. Thanks to
Tali Padan for the comedic inspiration.

Thanks to Giana Gonzalez, Younghui Kim, Jennifer
Magnolfi, Jin-Yo Mok, Matt Parker, Andrew Schneider,
Gilad Lotan, Angela Pablo, James Barnett, Morgan
Noel, Noodles, and Monski for modeling projects in the
chapters.

Thanks, as ever, to the MAKE team, especially my editor
and collaborator Brian Jepson. His patience and persis-
tence made another edition happen. Thanks to technical
editor Scott Fitzgerald, who helped pull all the parts
together as well. If you can find a part on the Web from this
book, thank Scott. Thanks also to my agent Neil Salkind
and everyone at Studio B.

In the final weeks of writing this edition, a group of close
friends came to my assistance and made possible what
I could not have done on my own. Zach Eveland, Denise
Hand, Jennifer Magnolfi, Clive Thompson, and Max
Whitney donated days and evenings to help cut, solder,
wire, and assemble many of the final projects, and they
also kept me company while I wrote. Joe Hobaica, giving
up several days, provided production management to
finish the book. He orchestrated the photo documentation
of most of the new projects, organized my workflow, kept
task lists, shopped for random parts, checked for conti-
nuity, and reminded me to eat and sleep. Together, they
reminded me that making things talk is best done with
friends.
X

The Tools
This book is a cookbook of sorts, and this chapter covers the key ingre-

dients. The concepts and tools you’ll use in every chapter are intro-

duced here. There’s enough information on each tool to get you to the

point where you can make it say “Hello World!” Chances are you’ve

used some of the tools in this chapter before—or ones just like them.

Skip past the things you know and jump into learning the tools that are

new to you. You may want to explore some of the less-familiar tools

on your own to get a sense of what they can do. The projects in the

following chapters only scratch the surface of what’s possible for most

of these tools. References for further investigation

are provided.

1
MAKE: PROJECTS

Happy Feedback Machine by Tuan Anh T . Nguyen

The main pleasure of interacting with this piece comes from the feel of flipping the switches and turning the knobs.

The lights and sounds produced as a result are secondary, and most people who play with it remember how it feels

rather than its behavior.

2 MAKING THINGS TALK

It Starts with the Stuff You Touch
All of the objects that you’ll encounter in this book—tangible or intangible—will have

certain behaviors. Software objects will send and receive messages, store data, or both.

Physical objects will move, light up, or make noise. The first question to ask about any

object is: what does it do? The second is: how do I make it do what it’s supposed to do?

Or, more simply, what is its interface?

An object’s interface is made up of three elements. First,
there’s the physical interface. This is the stuff you touch—
such as knobs, switches, keys, and other sensors—that
react to your actions. The connectors that join objects
are also part of the physical interface. Every network of
objects begins and ends with a physical interface. Even
though some objects in a network (such as software
objects) have no physical interface, people construct
mental models of how a system works based on the
physical interface. A computer is much more than the
keyboard, mouse, and screen, but that’s what we think of it
as, because that’s what we see and touch. You can build all
kinds of wonderful functions into your system, but if those
functions aren’t apparent in the things people see, hear,
and touch, they will never be used. Remember the lesson
of the VCR clock that constantly blinks 12:00 because no
one can be bothered to learn how to set it? If the physical
interface isn’t good, the rest of the system suffers.

Second, there’s the software interface—the commands
that you send to the object to make it respond. In some
projects, you’ll invent your own software interface; in
others, you’ll rely on existing interfaces to do the work for
you. The best software interfaces have simple, consistent
functions that result in predictable outputs. Unfortunately,

not all software interfaces are as simple as you’d like them
to be, so be prepared to experiment a little to get some
software objects to do what you think they should do.
When you’re learning a new software interface, it helps
to approach it mentally in the same way you approach
a physical interface. Don’t try to use all the functions
at once; first, learn what each function does on its own.
You don’t learn to play the piano by starting with a Bach
fugue—you start one note at a time. Likewise, you don’t
learn a software interface by writing a full application with
it—you learn it one function at a time. There are many
projects in this book; if you find any of their software
functions confusing, write a simple program that demon-
strates just that function, then return to the project.

Finally, there’s the electrical interface—the pulses of electri-
cal energy sent from one device to another to be interpreted
as information. Unless you’re designing new objects or the
connections between them, you never have to deal with
this interface. When you’re designing new objects or the
networks that connect them, however, you have to under-
stand a few things about this interface, so that you know
how to match up objects that might have slight differences
in their electrical interfaces.
X

It’s About Pulses
In order to communicate with each other, objects use communications protocols.

A protocol is a series of mutually agreed-upon standards for communication between

two or more objects.

THE TOOLS 3

Serial protocols like RS-232, USB, and IEEE 1394 (also
known as FireWire and i.Link) connect computers to
printers, hard drives, keyboards, mice, and other periph-
eral devices. Network protocols like Ethernet and TCP/
IP connect multiple computers through network hubs,
routers, and switches. A communications protocol usually
defines the rate at which messages are exchanged, the
arrangement of data in the messages, and the grammar of
the exchange. If it’s a protocol for physical objects, it will
also specify the electrical characteristics, and sometimes
even the physical shape of the connectors. Protocols
don’t specify what happens between objects, however.
The commands to make an object do something rely on
protocols in the same way that clear instructions rely on
good grammar—you can’t give useful instructions if you
can’t form a good sentence.

One thing that all communications protocols have in
common—from the simplest chip-to-chip message to the
most complex network architecture—is this: it’s all about
pulses of energy. Digital devices exchange information

by sending timed pulses of energy across a shared con-
nection. The USB connection from your mouse to your
computer uses two wires for transmission and reception,
sending timed pulses of electrical energy across those
wires. Likewise, wired network connections are made up of
timed pulses of electrical energy sent down the wires. For
longer distances and higher bandwidth, the electrical wires
may be replaced with fiber optic cables , which carry timed
pulses of light. In cases where a physical connection is
inconvenient or impossible, the transmission can be sent
using pulses of radio energy between radio transceivers (a
transceiver is two-way radio, capable of transmitting and
receiving). The meaning of data pulses is independent of
the medium that’s carrying them. You can use the same
sequence of pulses whether you’re sending them across
wires, fiber optic cables, or radios. If you keep in mind that
all of the communication you’re dealing with starts with
a series of pulses—and that somewhere there’s a guide
explaining the sequence of those pulses—you can work
with any communication system you come across.
X

The second type of computer you’ll encounter in this book,
the microcontroller, has no physical interface that humans
can interact with directly. It’s just an electronic chip with
input and output pins that can send or receive electrical
pulses. Using a microcontroller is a three-step process:

1. You connect sensors to the inputs to convert physical
energy like motion, heat, and sound into electrical energy.

2. You attach motors, speakers, and other devices to the
outputs to convert electrical energy into physical action.

3. Finally, you write a program to determine how the input
changes affect the outputs.

In other words, the microcontroller’s physical interface is
whatever you make of it.

The third type of computer in this book, the network
server, is basically the same as a desktop computer—it
may even have a keyboard, screen, and mouse. Even
though it can do all the things you expect of a personal
computer, its primary function is to send and receive data
over a network. Most people don’t think of servers as
physical things because they only interact with them over
a network, using their local computers as physical inter-
faces to the server. A server’s most important interface for
most users’ purposes is its software interface.

Computers of All Shapes and Sizes
You’ll encounter at least four different types of computers in this book, grouped

according to their physical interfaces. The most familiar of these is the personal

computer. Whether it’s a desktop or a laptop, it’s got a keyboard, screen, and mouse,

and you probably use it just about every working day. These three elements—the

keyboard, the screen, and the mouse—make up its physical interface.

4 MAKING THINGS TALK

The fourth group of computers is a mixed bag: mobile
phones, music synthesizers, and motor controllers, to
name a few. Some of them will have fully developed
physical interfaces, some will have minimal physical inter-
faces but detailed software interfaces, and most will have
a little of both. Even though you don’t normally think of

these devices as computers, they are. When you think of
them as programmable objects with interfaces that you
can manipulate, it’s easier to figure out how they can all
communicate, regardless of their end function.
X

Good Habits
Networking objects is a bit like love. The fundamental problem in both is that when

you’re sending a message, you never really know whether the receiver understands

what you’re saying, and there are a thousand ways for your message to get lost or

garbled in transmission.

You may know how you feel but your partner doesn’t.
All he or she has to go on are the words you say and the
actions you take. Likewise, you may know exactly what
message your local computer is sending, how it’s sending
it, and what all the bits mean, but the remote computer
has no idea what they mean unless you program it to
understand them. All it has to go on are the bits it receives.
If you want reliable, clear communications (in love or net-
working), there are a few simple things you have to do:

•	 Listen more than you speak.
•	 Never assume that what you said is what they heard.
•	 Agree on how you’re going to say things in advance.
•	 Ask politely for clarification when messages aren’t clear.

Listen More Than You Speak
The best way to make a good first impression, and to main-
tain a good relationship, is to be a good listener. Listening
is more difficult than speaking. You can speak anytime you
want, but since you never know when the other person
is going to say something, you have to listen all the time.
In networking terms, this means you should write your
programs such that they’re listening for new messages most
of the time, and sending messages only when necessary.
It’s often easier to send out messages all the time rather
than figure out when it’s appropriate, but it can lead to all
kinds of problems. It usually doesn’t take a lot of work to
limit your sending, and the benefits far outweigh the costs.

Never Assume
What you say is not always what the other person hears.
Sometimes it’s a matter of misinterpretation, and other
times, you may not have been heard clearly. If you assume
that the message got through and continue on oblivi-
ously, you’re in for a world of hurt. Likewise, you may be
inclined to first work out all the logic of your system—and
all the steps of your messages before you start to connect
things—then build it, and finally test it all at once. Avoid
that temptation.

It’s good to plan the whole system out in advance, but
build it and test it in baby steps. Most of the errors that
occur when building these projects happen in the com-
munication between objects. Always send a quick “Hello
World!” message from one object to the others, and make
sure that the message got there intact before you proceed
to the more complex details. Keep that “Hello World!”
example on hand for testing when communication fails.

Getting the message wrong isn’t the only misstep you can
make. Most of the projects in this book involve building the
physical, software, and electrical elements of the interface.
One of the most common mistakes people make when
developing hybrid projects like these is to assume that
the problems are all in one place. Quite often, I’ve sweated
over a bug in the software transmission of a message,
only to find out later that the receiving device wasn’t even
connected, or wasn’t ready to receive messages. Don’t

THE TOOLS 5

assume that communication errors are in the element of
the system with which you’re most familiar. They’re most
often in the element with which you’re least familiar, and
therefore, are avoiding. When you can’t get a message
through, think about every link in the chain from sender
to receiver, and check every one. Then check the links you
overlooked.

Agree on How You Say Things
In good relationships, you develop a shared language
based on shared experience. You learn the best ways to
say things so that your partner will be most receptive,
and you develop shorthand for expressing things that you
repeat all the time. Good data communications also rely
on shared ways of saying things, or protocols. Sometimes
you make up a protocol for all the objects in your system,
and other times you have to rely on existing protocols.
If you’re working with a previously established protocol,
make sure you understand all the parts before you start
trying to interpret it. If you have the luxury of making
up your own protocol, make sure you’ve considered the
needs of both the sender and receiver when you define
it. For example, you might decide to use a protocol that’s
easy to program on your web server, but that turns out to
be impossible to handle on your microcontroller. A little
thought to the strengths and weaknesses on both sides of
the transmission, and a bit of compromise before you start
to build, will make things flow much more smoothly.

Ask Politely for Clarification
Messages get garbled in countless ways. Perhaps you hear
something that may not make much sense, but you act
on it, only to find out that your partner said something
entirely different from what you thought. It’s always best
to ask nicely for clarification to avoid making a stupid
mistake. Likewise, in network communications, it’s wise
to check that any messages you receive make sense.
When they don’t, ask for a repeat transmission. It’s also
wise to check, rather than assume, that a message was
sent. Saying nothing can be worse than saying something
wrong. Minor problems can become major when no one
speaks up to acknowledge that there’s an issue. The same
thing can occur in network communications. One device
may wait forever for a message from the other side, not
knowing, for example, that the remote device is unplugged.
When you don't receive a response, send another
message. Don’t resend it too often, and give the other
party time to reply. Acknowledging messages may seem
like a luxury, but it can save a whole lot of time and energy
when you’re building a complex system.
X

Tools
As you’ll be working with the physical, software, and electrical interfaces of objects,

you’ll need physical tools, software, and (computer) hardware.

Physical Tools
If you’ve worked with electronics or microcontrollers
before, chances are you have your own hand tools already.
Figure 1-1 shows the ones used most frequently in this
book. They’re common tools that can be obtained from
many vendors. A few are listed in Table 1-1.

In addition to hand tools, there are some common elec-
tronic components that you’ll use all the time. They’re
listed as well, with part numbers from the retailers
featured most frequently in this book. Not all retailers will
carry all parts, so there are many gaps in the table.

NOTE: You’ll find a number of component suppliers in this book. I

buy from different vendors depending on who’s got the best and

the least expensive version of each part. Sometimes it’s easier to

buy from a vendor that you know carries what you need, rather

than search through the massive catalog of a vendor who might

carry it for less. Feel free to substitute your favorite vendors. A list

of vendors can be found in the Appendix.

6 MAKING THINGS TALK

Figure 1-1 . See the list below for number references .

1

23

24

25

26
27

28

29

22

2

3

4

5

14

15

16

17

21

20

19

18

13

9

8

7 6

12

11

10

1 Soldering iron Middle-of-the-line is best
here. Cheap soldering irons die fast, but
a mid-range iron like the Weller WLC-100
works great for small electronic work.
Avoid the Cold Solder irons. They solder
by creating a spark, and that spark
can damage static-sensitive parts like
microcontrollers. Jameco (http://jameco.
com): 146595; Farnell (www.farnell.com):
1568159; RadioShack (http://radioshack.
com): 640-2801 and 640-2078

2 Solder 21-23 AWG solder is best. Get
lead-free solder if you can; it’s healthier
for you. Jameco: 668271; Farnell: 419266;
RadioShack: 640-0013

3 Desoldering pump This helps when you
mess up while soldering. Jameco: 305226;
Spark Fun (www.SparkFun.com): TOL-
00082; Farnell: 3125646

4 Wire stripper, Diagonal cutter, Needle-
nose pliers Avoid the 3-in-1 versions
of these tools. They’ll only make you
grumpy. These three tools are essential
for working with wire, and you don’t
need expensive ones to have good ones.
Wire stripper: Jameco: 159291; Farnell:
609195; Spark Fun: TOL-00089;
RadioShack: 640-2129A

Diagonal cutter: Jameco: 161411; Farnell:
3125397; Spark Fun: TOL-00070;
RadioShack: 640-2043
Needlenose pliers: Jameco: 35473;
Farnell: 3127199; Spark Fun: TOL-00079;
RadioShack: 640-2033

5 Mini-screwdriver Get one with both
Phillips and slotted heads. You’ll use it all
the time. Jameco: 127271; Farnell: 4431212;
RadioShack: 640-1963

6 Safety goggles Always a good idea when
soldering, drilling, or other tasks. Spark
Fun:SWG-09791; Farnell: 1696193

7 Helping hands These make soldering
much easier. Jameco: 681002; Farnell:
1367049

8 Multimeter You don’t need an
expensive one. As long as it measures
voltage, resistance, amperage, and con-
tinuity, it’ll do the job. Jameco: 220812;
Farnell: 7430566; Spark Fun: TOL-00078;
RadioShack: 22-182

9 Oscilloscope Professional oscilloscopes
are expensive, but the DSO Nano is
only about $100 and a valuable aid
when working on electronics. Spark Fun:

TOL-10244 (v2); Seeed Studio (www.seeed-
studio.com): (TOL114C3M; Maker SHED
(www.makershed.com): MKSEEED11

10 9–12V DC power supply You’ll use this
all the time, and you’ve probably got a
spare from some dead electronic device.
Make sure you know the polarity of the
plug so you don’t reverse polarity on
a component and blow it up! Most of
the devices shown in this book have a
DC power jack that accepts a 2.1mm
inner diameter/5.5mm outer diameter
plug, so look for an adapter with the
same dimensions. Jameco: 170245 (12V,
1000mA); Farnell: 1176248 (12V, 1000mA);
Spark Fun: TOL-00298; RadioShack: 273-355
(9V 800mA)

11 Power connector, 2.1mm inside
diameter/5.5mm outside diameter You’ll
need this to connect your microcon-
troller module or breadboard to a DC
power supply. This size connector is the
most common for the power supplies
that will work with the circuits you’ll be
building here. Jameco: 159610; Digi-Key
(www.digikey.com): CP-024A-ND; Farnell:
3648102

Handy hand tools for networking objects.

THE TOOLS 7

12 9V Battery snap adapter and 9V battery
When you want to run a project off
battery power, these adapters are a
handy way to do it. Spark Fun: PRT-
09518; Adafruit (http://adafruit.com):
80; Digi-Key: CP3-1000-ND and 84-4K-ND;
Jameco: 28760 and 216452; Farnell: 1650675
and 1737256; RadioShack: 270-324 and
274-1569

13 USB cables You’ll need both USB
A-to-B (the most common USB cables)
and USB A-to-mini-B (the kind that’s
common with digital cameras) for the
projects in this book. Spark Fun: CAB-
00512, CAB-00598; Farnell: 1838798,
1308878

14 Alligator clip test leads It’s often hard
to juggle the five or six things you have
to hold when metering a circuit. Clip
leads make this much easier. Jameco:
10444; RS (www.rs-online.com): 483-859;
Spark Fun: CAB-00501; RadioShack:
278-016

15 Serial-to-USB converter This converter
lets you speak TTL serial from a USB
port. Breadboard serial-to-USB modules,
like the FT232 modules shown here, are
cheaper than the consumer models and
easier to use in the projects in this book.
Spark Fun: BOB-00718; Arduino Store
(store.arduino.cc): A000014

16 Microcontroller module The microcon-
troller shown here is an Arduino Uno.
Available from Spark Fun and Maker
SHED (http://store.arduino.cc/ww/) in
the U.S., and from multiple distributors
internationally. See http://arduino.cc/en/
Main/Buy for details about your region.

17 Voltage regulator Voltage regulators
take a variable input voltage and output
a constant (lower) voltage. The two most
common you’ll need for these projects
are 5V and 3.3V. Be careful when using a
regulator that you’ve never used before.
Check the data sheet to make sure you
have the pin connections correct.
3.3V: Digi-Key: 576-1134-ND; Jameco:
242115; Farnell: 1703357; RS: 534-3021
5V: Digi-Key: LM7805CT-ND; Jameco: 51262;
Farnell: 1703357; RS: 298-8514

18 TIP120 Transistor Transistors act as
digital switches, allowing you to control
a circuit with high current or voltage
from one with lower current and voltage.
There are many types of transistors, the
TIP120 is one used in a few projects in
this book. Note that the TIP120 looks
just like the voltage regulator next to
it. Sometimes electronic components
with different functions come in the
same physical packages, so you need to
check the part number written on the
part. Digi-Key: TIP120-ND; Jameco: 32993;
Farnell: 9804005

19 Prototyping shields These are add-on
boards for the Arduino microcontroller
module that have a bare grid of holes to
which you can solder. You can build your
own circuits on them by soldering, or you
can use a tiny breadboard (also shown)
to test circuits quickly. These are handy
for projects where you need to prototype
quickly, as well as a compact form to the
electronics. Adafruit: 51; Arduino Store:
A000024; Spark Fun: DEV-07914; Maker
SHED: MSMS01
Breadboards for protoshields: Spark Fun:
PRT-08802; Adafruit: included with board;
Digi-Key: 923273-ND

20 Solderless breadboard Having a few
around can be handy. I like the ones
with two long rows on either side so that
you can run power and ground on both
sides. Jameco: 20723 (2 bus rows per side);
Farnell: 4692810; Digi-Key: 438-1045-ND;
Spark Fun: PRT-00137; RadioShack: 276-002

21 Spare LEDs for tracing signals LEDs
are to the hardware developer what
print statements are to the software
developer. They let you see quickly
whether there’s voltage between two
points, or whether a signal is going
through. Keep spares on hand. Jameco:
3476; Farnell: 1057119; Digi-Key: 160-1144-
ND; RadioShack: 278-016

22 Resistors You’ll need resistors of
various values for your projects. Common
values are listed in Table 1-1.

23 Header pins You’ll use these all the
time. It’s handy to have female ones
around as well. Jameco: 103377; Digi-Key:
A26509-20-ND; Farnell: 1593411

24 Analog sensors (variable resistors)
There are countless varieties of variable
resistors to measure all kinds of physical
properties. They’re the simplest of
analog sensors, and they’re very easy
to build into test circuits. Flex sensors

and force-sensing resistors are handy
for testing a circuit or a program. Flex
sensors: Jameco: 150551; Images SI (www.
imagesco.com): FLX-01
Force-sensing resistors: Parallax (www.
parallax.com): 30056; Images SI: FSR-400,
402, 406, 408

25 Pushbuttons There are two types
you’ll find handy: the PCB-mount type,
like the ones you find on Wiring and
Arduino boards, used here mostly as
reset buttons for breadboard projects;
and panel-mount types used for
interface controls for end users. But you
can use just about any type you want.
PCB-mount type: Digi-Key: SW400-ND;
Jameco: 119011; Spark Fun: COM-00097
Panel-mount type: Digi-Key: GH1344-ND;
Jameco: 164559PS

26 Potentiometers You’ll need potentiom-
eters to let people adjust settings in your
project. Jameco: 29081; Spark Fun: COM-
09939; RS: 91A1A-B28-B15L; RadioShack:
271-1715; Farnell: 1760793

27 Ethernet cables A couple of these
will come in handy. Jameco: 522781;
RadioShack: 55010852

28 Black, red, blue, yellow wire 22 AWG
solid-core hook-up wire is best for
making solderless breadboard connec-
tions. Get at least three colors, and
always use red for voltage and black for
ground. A little organization of your wires
can go a long way.
Black: Jameco: 36792
Blue: Jameco: 36767
Green: Jameco: 36821
Red: Jameco: 36856;
RadioShack: 278-1215
Yellow: Jameco: 36919
Mixed: RadioShack: 276-173

29 Capacitors You’ll need capacitors
of various values for your projects.
Common values are listed in Table 1-1.

 You're going to run across some hardware in the following chapters

that was brand new when this edition was written, including the

Arduino Ethernet board, the Arduino WiFi shield, wireless shield, RFID

shield, USB-to-Serial adapter, and more. The distributors listed here didn't

have part numbers for them as of this writing, so check for them by name.

By the time you read this, distributors should have them in stock.

!

http://www.rs-online.com

8 MAKING THINGS TALK

RESISTORS
100Ω D 100QBK-ND, J 690620, F 9337660,

R 707-8625
220Ω D 220QBK-ND, J 690700, F 9337792,

R 707-8842
470Ω D 470QBK-ND, J 690785, F 9337911,

R 707-8659
1K D 1.0KQBK, J 29663, F 1735061,

R 707-8669
10K D 10KQBK-ND, J 29911, F 9337687,

R 707-8906
22K D 22KQBK-ND, J 30453, F 9337814,

R 707-8729
100K D 100KQBK-ND, J 29997, F 9337695,

R 707-8940
1M D 1.0MQBK-ND, J 29698, F 9337709,

R 131-700

CAPACITORS
0.1µF ceramic D 399-4151-ND, J 15270, F 3322166,

R 716-7135
1µF electrolytic D P10312-ND, J 94161, F 8126933,

R 475-9009
10µF electrolytic D P11212-ND, J 29891, F 1144605,

R 715-1638
100µF electrolytic D P10269-ND, J 158394, F 1144642,

R 715-1657

VOLTAGE REGuLATORS
3.3V D 576-1134-ND, J 242115, F 1703357,

R 534-3021
5V D LM7805CT-ND, J 51262, F 1860277,

R 298-8514

ANALOG SENSORS
Flex sensors D 905-1000-ND, J 150551, R 708-1277
FSRs D 1027-1000-ND, J 2128260

Table 1-1 . Common components for electronic

and microcontroller work .

LED
T1, Green clear D 160-1144-ND, J 34761, F 1057119, R 247-1662
T1, Red, clear D 160-1665-ND, J 94511, F 1057129,

R 826-830

TRANSISTORS
2N2222A D P2N2222AGOS-ND, J 38236, F 1611371,

R 295-028
TIP120 D TIP120-ND, J 32993, F 9804005
DIODES
1N4004-R D 1N4004-E3, J 35992, F 9556109,

R 628-9029
3.3V zener (1N5226) D 1N5226B-TPCT-ND, J 743488, F 1700785

PuSHbuTTONS
PCB D SW400-ND, J 119011, F 1555981
Panel Mount D GH1344-ND, J 164559PS, F 1634684,

R 718-2213

SOLDERLESS bREADbOARDS
various D 438-1045-ND, J 20723, 20600, F 4692810

HOOKuP WIRE
red D C2117R-100-ND, J 36856, F 1662031
black D C2117B-100-ND, J 36792, F 1662027
blue J 36767, F 1662034
yellow J 36920, F 1662032

POTENTIOMETER
10K D 29081

HEADER PINS
straight D A26509-20-ND, J 103377, S PRT-00116
right angle D S1121E-36-ND, S PRT-00553

HEADERS
female S PRT-00115

bATTERy SNAP
9V D 2238K-ND, J 101470PS, S PRT-00091

D Digi-Key (http://digikey.com)
J Jameco (http://jameco.com)

R RS (www.rs-online.com)
F Farnell (www.farnell.com)

THE TOOLS 9

Figure 1-2

The Processing editor window.

Software Tools

Processing
The multimedia programming environment used in this
book is called Processing. Based on Java, it's made for
designers, artists, and others whowant to get something
done without having to know all the gory details of pro-
gramming. It’s a useful tool for explaining programming
ideas because it takes relatively little Processing code to
make big things happen, such as opening a network con-
nection, connecting to an external device through a serial
port, or controlling a camera. It’s a free, open source tool
available at www.processing.org. Because it’s based on
Java, you can include Java classes and methods in your

It’s not too flashy a program, but it’s a classic. It
should print Hello World! in the message box at
the bottom of the editor window. It’s that easy.

Programs in Processing are called sketches, and all the
data for a sketch is saved in a folder with the sketch’s
name. The editor is very basic, without a lot of clutter to

println("Hello World!");Here’s your first Processing
program. Type this into the editor
window, and then press the Run button
on the top lefthand side of the toolbar.

8

get in your way. The toolbar has buttons to run and stop
a sketch, create a new file, open an existing sketch, save
the current sketch, or export to a Java applet. You can also
export your sketch as a standalone application from the
File menu. Files are normally stored in a subdirectory of
your Documents folder called Processing, but you can save
them wherever you like.

Processing programs. It runs on Mac OS X, Windows,
and Linux, so you can run Processing on your favorite
operating system. There's also Processing for Android
phones and Processing for JavaScript, so you can use
it in many ways. If you don’t like working in Processing,
you should be able to use this book's code samples and
comments as pseudocode for whatever multimedia envi-
ronment you prefer. Once you’ve downloaded and installed
Processing on your computer, open the application. You’ll
get a screen that looks like Figure 1-2.

10 MAKING THINGS TALK

/*

 Triangle drawing program

 Context: Processing

 Draws a triangle whenever the mouse button is not pressed.

 Erases when the mouse button is pressed.

*/

// declare your variables:

float redValue = 0; // variable to hold the red color

float greenValue = 0; // variable to hold the green color

float blueValue = 0; // variable to hold the blue color

// the setup() method runs once at the beginning of the program:

void setup() {

 size(320, 240); // sets the size of the applet window

 background(0); // sets the background of the window to black

 fill(0); // sets the color to fill shapes with (0 = black)

 smooth(); // draw with antialiased edges

}

// the draw() method runs repeatedly, as long as the applet window

// is open. It refreshes the window, and anything else you program

// it to do:

void draw() {

 // Pick random colors for red, green, and blue:

 redValue = random(255);

 greenValue = random(255);

 blueValue = random(255);

 // set the line color:

 stroke(redValue, greenValue, blueValue);

 // draw when the mouse is up (to hell with conventions):

 if (mousePressed == false) {

 // draw a triangle:

 triangle(mouseX, mouseY, width/2, height/2,pmouseX, pmouseY);

 }

 // erase when the mouse is down:

 else {

 background(0);

 fill(0);

 }

}

Here’s a second program that’s
a bit more exciting. It illustrates

some of the main programming struc-
tures in Processing.

8

NOTE: All code examples in this book

will have comments indicating the

context in which they're to be used:

Processing, Processing Android mode,

Arduino, PHP, and so forth.

THE TOOLS 11

Processing is a fun language to play with
because you can make interactive graphics
very quickly. It’s also a simple introduction to

Java for beginning programmers. If you’re a Java pro-
grammer already, you can include Java directly in your
Processing programs. Processing is expandable through
code libraries. You’ll be using two of the Processing code
libraries frequently in this book: the serial library and the
networking library.

For more on the syntax of Processing, see the language
reference guide at www.processing.org. To learn more
about programming in Processing, check out Processing:
A Programming Handbook for Visual Designers and
Artists, by Casey Reas and Ben Fry (MIT Press), the
creators of Processing, or their shorter book, Getting
Started with Processing (O'Reilly). Or, read Daniel
Shiffman's excellent introduction, Learning Processing
(Morgan Kaufmann). There are dozens of other Processing
books on the market, so find one whose style you like best.

for (int myCounter = 0; myCounter <=10; myCounter++) {

 println(myCounter);

}

Here’s a typical for-next loop.
Try this in a sketch of its own (to
start a new sketch, select New from
Processing’s File menu).

8

Every Processing program has two main routines, setup()
and draw(). setup() happens once at the beginning of the
program. It’s where you set all your initial conditions, like
the size of the applet window, initial states for variables,
and so forth. draw() is the main loop of the program. It
repeats continuously until you close the applet window.

In order to use variables in Processing, you have to declare
the variable’s data type. In the preceding program, the
variables redValue, greenValue, and blueValue are all
float types, meaning that they’re floating decimal-point
numbers. Other common variable types you’ll use are ints

(integers), booleans (true or false values), Strings of text,
and bytes.

Like C, Java, and many other languages, Processing uses
C-style syntax. All functions have a data type, just like
variables (and many of them are the void type, meaning
that they don’t return any values). All lines end with a
semicolon, and all blocks of code are wrapped in curly
braces. Conditional statements (if-then statements),
for-next loops, and comments all use the C syntax as
well. The preceding code illustrates all of these except the
for-next loop.

Remote-Access Applications
One of the most effective debugging tools you’ll use
when making the projects in this book is a command-line
remote-access program, which gives you access to the
command-line interface of a remote computer. If you’ve
never used a command-line interface before, you’ll find it
a bit awkward at first, but you get used to it pretty quickly.
This tool is especially important when you need to log into
a web server, because you’ll need the command line to
work with PHP scripts that will be used in this book.

Most web hosting providers are based on Linux, BSD,
Solaris, or some other Unix-like operating system. So,
when you need to do some work on your web server, you
may need to make a command-line connection to your
web server.

NOTE: If you already know how to create PHP and HTML
documents and upload them to your web server, you
can skip ahead to the “PHP” section.

bASIC users: If you’ve never used a C-style for-next loop, it can seem forbidding. What this bit

of code does is establish a variable called myCounter. As long as a number is less than or equal

to 10, it executes the instructions in the curly braces. myCounter++ tells the program to add

one to myCounter each time through the loop. The equivalent BASIC code is:

for myCounter = 0 to 10

 Print myCounter

next

12 MAKING THINGS TALK

Figure 1-3

The main PuTTY window.

Although this is the most direct way to work with PHP,
some people prefer to work more indirectly, by writing text
files on their local computers and uploading them to the
remote computer. Depending on how restrictive your web
hosting service is, this may be your only option (however,
there are many inexpensive hosting companies that offer
full command-line access). Even if you prefer to work this
way, there are times in this book when the command line
is your only option, so it’s worth getting to know a little bit
about it now.

On Windows computers, there are a few remote access
programs available, but the one that you’ll use here is
called PuTTY. You can download it from www.puttyssh.org.
Download the Windows-style installer and run it. On Mac
OS X and Linux, you can use OpenSSH, which is included
with both operating systems, and can be run in the
Terminal program with the command ssh.

Before you can run OpenSSH, you’ll need to launch a
terminal emulation program, which gives you access to
your Linux or Mac OS X command line. On Mac OS X,
the program is called Terminal, and you can find it in the
Utilities subdirectory of the Applications directory. On Linux,
look for a program called xterm, rxvt, Terminal, or Konsole.

NOTE: ssh is a more modern cousin of a longtime Unix remote-

access program called telnet. ssh is more secure; it scrambles

all data sent from one computer to another before sending it, so

it can’t be snooped on en route. telnet sends all data from one

computer to another with no encryption. You should use ssh to

connect from one machine to another whenever you can. Where

telnet is used in this book, it’s because it’s the only tool that will

do what’s needed for the examples in question. Think of telnet as

an old friend: maybe he's not the coolest guy on the block, maybe

he’s a bit of a gossip, but he's stood by you forever, and you know

you can trust him to do the job when everyone else lets you down.

X

Mac OS X and Linux
Open your terminal program. These Terminal
applications give you a plain-text window with a
greeting like this:

Last login: Wed Feb 22 07:20:34 on ttyp1

ComputerName:~ username$

Type ssh username@myhost.com at the command
line to connect to your web host. Replace username
and myhost.com with your username and host
address.

Windows
On Windows, you’ll need to start up PuTTY (see Figure
1-3). To get started, type myhost.com (your web
host’s name) in the Host Name field, choose the SSH
protocol, and then click Open.

The computer will try to connect to the remote host,
asking for your password when it connects. Type it
(you won’t see what you type), followed by the Enter key.

Making the SSH Connection

THE TOOLS 13

Once you’ve connected to the remote web server, you
should see something like this:

Last login: Wed Feb 22 08:50:04 2006 from 216.157.45.215

[userid@myhost ~]$

Now you’re at the command prompt of your web host’s
computer, and any command you give will be executed on
that computer. Start off by learning what directory you’re
in. To do this, type:

pwd

which stands for “print working directory.” It asks the
computer to list the name and pathname of the directory
in which you’re currently working. (You’ll see that many
Unix commands are very terse, so you have to type less.
The downside of this is that it makes them harder to
remember.) The server will respond with a directory path,
such as:

/home/igoe

This is the home directory for your account. On many
web servers, this directory contains a subdirectory called
public_html or www, which is where your web files belong.
Files that you place in your home directory (that is, outside
of www or public_html) can’t be seen by web visitors.

NOTE: You should check with your web host to learn how the files

and directories in your home directory are set up.

To find out what files are in a given directory, use the list
(ls) command, like so:

ls –l .

NOTE: The dot is shorthand for “the current working directory.”

Similarly, a double dot is shorthand for the directory (the parent

directory) that contains the current directory.

The -l means “list long.” You’ll get a response like this:

total 44

drwxr-xr-x 13 igoe users 4096 Apr 14 11:42 public_html

drwxr-xr-x 3 igoe users 4096 Nov 25 2005 share

This is a list of all the files and subdirectories of the
current working directories, as well as their attributes. The
first column lists who’s got permissions to do what (read,
modify, or execute/run a file). The second lists how many
links there are to that file elsewhere on the system; most
of the time, this is not something you’ll have much need
for. The third column tells you who owns it, and the fourth
tells you the group (a collection of users) to which the file
belongs. The fifth lists its size, and the sixth lists the date it
was last modified. The final column lists the filename.

In a Unix environment, all files whose names begin with a
dot are invisible. Some files, like access-control files that
you’ll see later in the book, need to be invisible. You can get
a list of all the files, including the invisible ones, using the
–a modifier for ls, this way:

ls -la

To move around from one directory to another, there’s a
“change directory” command, cd. To get into the public_
html directory, for example, type:

cd public_html

To go back up one level in the directory structure, type:

cd ..

To return to your home directory, use the ~ symbol, which
is shorthand for your home directory:

cd ~

If you type cd on a line by itself, it also takes you to your
home directory.

If you want to go into a subdirectory of a directory,
for example the cgi-bin directory inside the public_html
directory, you’d type cd public_html/cgi-bin. You can type
the absolute path from the main directory of the server
(called the root) by placing a / at the beginning of the file’s
pathname. Any other file pathname is called a relative path.

To make a new directory, type:

mkdir directoryname

Using the Command Line

14 MAKING THINGS TALK

This command will make a new directory in the current
working directory. If you then use ls -l to see a list of files
in the working directory, you’ll see a new line with the new
directory. If you then type cd directoryname to switch to
the new directory and ls -la to see all of its contents, you’ll
see only two listings:

drwxr-xr-x 2 tqi6023 users 4096 Feb 17 10:19 .

drwxr-xr-x 4 tqi6023 users 4096 Feb 17 10:19 ..

The first file, . , is a reference to this directory itself. The
second, .. , is a reference to the directory that contains it.
Those two references will exist as long as the directory
exists. You can’t change them.

To remove a directory, type:

rmdir directoryname

You can remove only empty directories, so make sure that
you’ve deleted all the files in a directory before you remove
it. rmdir won’t ask you if you’re sure before it deletes your
directory, so be careful. Don’t remove any directories or
files that you didn’t make yourself.

Controlling Access to Files
Type ls –l to get a list of files in your current directory
and to take a closer look at the permissions on the files.
For example, a file marked drwx------ means that it’s a
directory, and that it’s readable, writable, and executable
by the system user who created the directory (also known
as the owner of the file). Or, consider a file marked -rw-rw-
rw. The - at the beginning means it’s a regular file (not a
directory) and that the owner, the group of users to which
the file belongs (usually, the owner is a member of this
group), and everyone else who accesses the system can
read and write to this file. The first rw- refers to the owner,
the second refers to the group, and the third refers to
the rest of the world. If you're the owner of a file, you can
change its permissions using the chmod command:

chmod go–w filename

The options following chmod refer to which users you want
to affect. In the preceding example, you’re removing write
permission (-w) for the group (g) that the file belongs
to, and for all others (o) besides the owner of the file. To
restore write permissions for the group and others, and to
also give them execute permission, you’d type:

chmod go +wx filename

A combination of u for user, g for group, and o for others,
and a combination of + and - and r for read, w for write,
and x for execute gives you the capability to change
permissions on your files for anyone on the system. Be
careful not to accidentally remove permissions from
yourself (the user). Also, get in the habit of not leaving files
accessible to the group and others unless you need to—
on large hosting providers, it’s not unusual for you to be
sharing a server with hundreds of other users!

Creating, Viewing, and Deleting Files
Two other command-line programs you’ll find useful are
nano and less. nano is a text editor. It’s very bare-bones,
so you may prefer to edit your files using your favorite
text editor on your own computer and then upload them
to your server. But for quick changes right on the server,
nano is great. To make a new file, type:

nano filename.txt

The nano editor will open up. Figure 1-4 shows how it looks
like after I typed in some text.

All the commands to work in nano are keyboard
commands you type using the Ctrl key. For example, to
exit the program, type Ctrl-X. The editor will then ask
whether you want to save, and prompt you for a filename.
The most common commands are listed along the bottom
of the screen.

While nano is for creating and editing files, less is for
reading them. less takes any file and displays it to the
screen one screenful at a time. To see the file you just
created in nano, for example, type:

less filename.txt

You’ll get a list of the file's contents, with a colon (:)
prompt at the bottom of the screen. Press the space bar
for the next screenful. When you’ve read enough, type q to
quit. There’s not much to less, but it’s a handy way to read
long files. You can even send other commands through
less (or almost any command-line program) using the pipe
(|) operator. For example, try this:

ls –la . | less

THE TOOLS 15

Once you’ve created a file, you can delete it using the rm
command, like this:

rm filename

Like rmdir, rm won’t ask whether you’re sure before it
deletes your file, so use it carefully.

There are many other commands available in the Unix
command shell, but these will suffice to get you started.
For more information, type help at the command prompt
to get a list of commonly used commands. For any
command, you can get its user manual by typing man
commandname. When you’re ready to close the con-
nection to your server, type: logout. For more on getting
around Unix and Linux systems using the command line,
see Learning the unix Operating System by Jerry Peek,
Grace Todino-Gonguet, and John Strang (O'Reilly).

PHP
The server programs in this book are mostly in PHP. PHP
is one of the most common scripting languages for appli-
cations that run on the web server (server-side scripts).
Server-side scripts are programs that allow you to do
more with a web server than just serve fixed pages of text
or HTML. They allow you to access databases through a
browser, save data from a web session to a text file, send
mail from a browser, and more. You’ll need a web hosting
account with an Internet service provider for most of the
projects in this book, and it’s likely that your host already
provides access to PHP.

To get started with PHP, you’ll need to make a remote
connection to your web hosting account using ssh as you
did in the last section. Some of the more basic web hosts
don’t allow ssh connections, so check to see whether
yours does (and if not, look around for an inexpensive
hosting company that does; it will be well worth it for the
flexibility of working from the command line). Once you’re
connected, type:

php -v

You should get a reply like this:

PHP 5.3.4 (cli) (built: Dec 15 2010 12:15:07)

Copyright (c) 1997-2010 The PHP Group

Zend Engine v2.3.0, Copyright (c) 1998-2010 Zend

Technologies

This tells what version of PHP is installed on your server.
The code in this book was written using PHP5, so as long
as you’re running that version or later, you’ll be fine. PHP
makes it easy to write web pages that can display results
from databases, send messages to other servers, send
email, and more.

Most of the time, you won’t be executing your PHP scripts
directly from the command line. Instead, you’ll be calling
the web server application on your server—most likely a
program called Apache—and asking it for a file (this is all
accomplished simply by opening a web browser, typing
in the address of a document on your web server, and
pressing Enter—just like visiting any other web page). If

Figure 1-4

The nano text editor.

16 MAKING THINGS TALK

the file you ask for is a PHP script, the web server applica-
tion will look for your file and execute it. It’ll then send a
message back to you with the results.

For more on this, see Chapter 3. For now, let’s get a
simple PHP program or two working. Here’s your first
PHP program. Open your favorite text editor, type in the
following code, and save it on the server with the name hello.
php in your public_html directory (your web pages may be
stored in a different directory, such as www or web/public):

<?php

echo "<html><head></head><body>\n";

echo "hello world!\n";

echo "</body></html>\n";

?>

Now, back at the command line, type the following to see
the results:

php hello.php

You should get the following response:

<html><head></head><body>

hello world!

</body></html>

Now, try opening this file in a browser. To see this program
in action, open a web browser and navigate to the file's
address on your website. Because you saved it in public_
html, the address is http://www.example.com/hello.php

Figure 1-5

The results of your first PHP script,

in a browser.

(replace example.com with your website and any addi-
tional path info needed to access your home files, such as
http://tigoe.net/~tigoe/hello.php). You should get a web
page like the one shown in Figure 1-5.

If it still doesn’t work, your web server may not be configured
for PHP. Another possibility is that your web server uses a
different extension for php scripts, such as .php4. Consult
with your web hosting provider for more information.

You may have noticed that the program is actually printing
out HTML text. PHP was made to be combined with HTML.
In fact, you can even embed PHP in HTML pages, by using
the <? and ?> tags that start and end every PHP script. If
you get an error when you try to open your PHP script in a
browser, ask your system administrator whether there are
any requirements as to which directories PHP scripts need
to be in on your server, or on the file permissions for your
PHP scripts.

If you see the PHP source code instead of what’s

shown in Figure 1-5, you may have opened up the

PHP script as a local file (make sure your web browser’s

location bar says http:// instead of file://).

!

THE TOOLS 17

Here’s a slightly more complex PHP script. Save it to your
server in the public_html directory as time.php:

<?php

/*

 Date printer

 Context: PHP

 Prints the date and time in an HTML page.

*/

// Get the date, and format it:

$date = date("Y-m-d h:i:s\t");

// print the beginning of an HTML page:

echo "<html><head></head><body>\n";

echo "hello world!
\n";

// Include the date:

echo "Today’s date: $date
\n";

// finish the HTML:

echo "</body></html>\n";

?>

To see it in action, type http://www.example.com/
time.php into your browser (replacing example.com as
before). You should get the date and time. You can see
this program uses a variable, $date, and calls a built-in
PHP function, date(), to fill the variable. You don’t have to
declare the types of your variables in PHP. Any simple, or
scalar, variable begins with a $ and can contain an integer,
a floating-point number, or a string. PHP uses the same
C-style syntax as Processing, so you’ll see that if-then
statements, repeat loops, and comments all look familiar.

Variables in PHP
PHP handles variables a little differently than Process-
ing and Arduino. In the latter two, you give variables any
name you like, as long as you don't use words that are
commands in the language. You declare variables by
putting the variable type before the name the first time
you use it. In PHP, you don't need to declare a variable's
type, but you do need to put a $ at the beginning of the
name. You can see it in the PHP script above. $date is a
variable, and you're putting a string into it using the date()
command.

There are a number of commands for checking variables
that you'll see in PHP. For example, isset() checks whether
the variable's been given a value yet, or is_bool(), is_int(),
and is_string() check to see whether the variable contains
those particular data types (boolean, integer, and string,
respectively).

In PHP, there are three important built-in variables, called
environment variables, with which you should be familiar:
$_REQUEST, $_GET, and $_POST. These give you the
results of an HTTP request. Whether your PHP script was
called by a HTML form or by a user entering a URL with a
string of variables afterwards, these variables will give you
the results. $_GET gives you the results if the PHP script
was called using an HTTP GET request, $_POST gives the
results of an HTTP POST request, and $_REQUEST gives
you the results regardless of what type of request was
made.

Since HTTP requests might contain a number of
different pieces of information (think of all the fields
you might fill out in a typical web form), these are all
array variables. To get at a particular element, you can
generally ask for it by name. For example, if the form
you filled out had a field called Name, the name you
fill in would end up in the $_REQUEST variable in an
element called $_REQUEST['Name']. If the form made an
HTTP POST request, you could also get the name from
$_POST['Name']. There are other environment variables
you'll learn about as well, but these three are the most
useful for getting information from a client—whether it's a
web browser or a microcontroller. You'll learn more about
these, and see them in action, later in the book.

For more on PHP, check out www.php.net, the main source
for PHP, where you’ll find some good tutorials on how to
use it. You can also read Learning PHP 5 by David Sklar
(O'Reilly) for a more in-depth treatment.

Serial Communication Tools
The remote-access programs in the earlier section were
terminal emulation programs that gave you access to
remote computers through the Internet, but that’s not all
a terminal emulation program can do. Before TCP/IP was
ubiquitous as a way for computers to connect to networks,
connectivity was handled through modems attached to
the serial ports of computers. Back then, many users con-
nected to bulletin boards (BBSes) and used menu-based
systems to post messages on discussion boards,
down-load files, and send mail to other users of the same
BBS.

Nowadays, serial ports are used mainly to connect to
some of your computer's peripheral devices. In micro-
controller programming, they’re used to exchange data
between the computer and the microcontroller. For the
projects in this book, you’ll find that using a terminal

18 MAKING THINGS TALK

Serial ports aren’t easily shared between applica-

tions. In fact, only one application can have control

of a serial port at a time. If PuTTY, CoolTerm, or the

screen program has the serial port open to an Arduino

module, for example, the Arduino IDE can’t download

new code to the module. When an application tries to

open a serial port, it requests exclusive control of it

either by writing to a special file called a lock file, or by

asking the operating system to lock the file on its behalf.

When it closes the serial port, it releases the lock on

the serial port. Sometimes when an application crashes

while it’s got a serial port open, it can forget to close

the serial port, with the result that no other application

can open the port. When this happens, the only thing

you can do to fix it is to restart the operating system,

which clears all the locks (alternatively, you could wait

for the operating system to figure out that the lock

should be released). To avoid this problem, make sure

that you close the serial port whenever you switch from

one application to another. Linux and Mac OS X users

should get in the habit of closing down screen with

Ctrl-A then Ctrl-\ every time, and Windows users should

disconnect the connection in PuTTY. Otherwise, you may

find yourself restarting your machine a lot.

Who’s Got the Port?
program to connect to your serial ports is indispens-
able. There are several freeware and shareware terminal
programs available. CoolTerm is an excellent piece of
freeware by Roger Meier available from http://freeware.
the-meiers.org. It works on Mac OS X and Windows, and
it's my personal favorite these days. If you use it, do the
right thing and make a donation because it's developed in
the programmer's spare time. For Windows users, PuTTY
is a decent alternative because it can open both serial and
ssh terminals. PuTTY is also available for Linux. Alterna-
tively, you can keep it simple and stick with a classic: the
GNU screen program running in a terminal window. OS X
users can use screen as well, though it's less full-featured
than CoolTerm.

Windows serial communication
To get started, you'll need to know the serial port name.
Click Start→Run (use the Search box on Windows 7), type
devmgmt.msc, and press Enter to launch Device Manager.
If you’ve got a serial device such as a Wiring or Arduino
board attached, you’ll see a listing for Ports (COM & LPT).
Under that listing, you’ll see all the available serial ports.
Each new Wiring or Arduino board you connect will get a
new name, such as COM5, COM6, COM7, and so forth.

Once you know the name of your serial port, open PuTTY.
In the Session category, set the Connection Type to Serial,
and enter the name of your port in the Serial Line box,
as shown in Figure 1-6. Then click the Serial category at
the end of the category list, and make sure that the serial
line matches your port name. Configure the serial line for
9600 baud, 8 data bits, 1 stop bit, no parity, and no flow
control. Then click the Open button, and a serial window
will open. Anything you type in this window will be sent out
the serial port, and any data that comes in the serial port
will be displayed here as ASCII text.

NOTE: Unless your Arduino is running a program that communi-

cates over the serial port (and you’ll learn all about that shortly),

you won’t get any response yet.

Mac OS X serial communication
To get started, open CoolTerm and click the Options icon.
In the Options tab, you'll see a pulldown menu for the port.
In Mac OS X, the port names are similar to this: /dev/tty.
usbmodem241241. To find your port for sure, check the
list when your Arduino is unplugged, then plug it in and
click Re-scan Serial Ports in the Options tab. The new
port listed is your Arduino's serial connection. To open the
serial port, click the Connect button in the main menu. To
disconnect, click Disconnect.

Adventurous Mac OS X users can take advantage of the
fact that it’s Unix-based and follow the Linux instructions.

Linux serial communication
To get started with serial communication in Linux (or Mac
OS X), open a terminal window and type:

ls /dev/tty.* # Mac OS X

ls /dev/tty* # Linux

This command will give you a list of available serial ports.
The names of the serial ports in Mac OS X and Linux are
more unique, but they're more cryptic than the COM1,
COM2, and so on that Windows uses. Pick your serial port
and type:

screen portname datarate.

THE TOOLS 19

Figure 1-6

Configuring a serial connection in PuTTY.

20 MAKING THINGS TALK

For example, to open the serial port on an Arduino board
(discussed shortly) at 9600 bits per second, you might
type screen /dev/tty.usbmodem241241 9600 on Mac OS
X. On Linux, the command might be screen /dev/ttyUSB0
9600. The screen will be cleared, and any characters you
type will be sent out the serial port you opened. They won’t
show up on the screen, however. Any bytes received in the
serial port will be displayed in the window as characters. To
close the serial port, type Ctrl-A followed by Ctrl-\.

In the next section, you’ll use a serial communications
program to communicate with a microcontroller.

Hardware

Arduino, Wiring, and Derivatives
The main microcontroller used in this book is the Arduino
module. Arduino and Wiring, another microcontroller
module, both came out of the Institute for Interaction
Design in Ivrea, Italy, in 2005. They're based on the same

microcontroller family, Atmel's ATmega series (www.
atmel.com), and they're both programmed in C/C++.
The "dialect" they speak is based on Processing, as is the
software integrated development environments (IDEs)
they use. You'll see that some Processing commands
have made their way into Arduino and Wiring, such as the
setup() and loop() methods (Processing's draw() method
was originally called loop()), the map() function, and more.

When this book was first written, there was one Wiring
board, four or five variants of Arduino, and almost no deriv-
atives. Now, there are several Arduino models, two new
Wiring models coming out shortly, and scores of Arduino-
compatible derivatives, most of which are compatible
enough that you can program them directly from the
Arduino IDE. Others have their own IDEs and will work with
some (but not all) of the code in this book. Still others are
compatible in their physical design but are programmed
with other languages. The derivatives cover a wide range
of applications.

Figure 1-7

The CoolTerm serial terminal program.

THE TOOLS 21

The following projects have been tested extensively on
Arduino boards and, when possible, on the classic Wiring
board. Though you'll find some differences, code written
for a Wiring board should work on an Arduino board,
and vice versa. For Arduino derivatives, check with the
manufacturer of your individual board. Many of them are
very active in the Arduino forums and are happy to lend
support.

You’ll find that the editors for Arudino and Wiring look very
similar. These free and open source programming environ-
ments are available through their respective websites:
www.arduino.cc and www.wiring.org.co.

The hardware for both is also open source, and you can
buy it from various online retailers, listed on the sites
above. Or, if you’re a hardcore hardware geek and like to
make your own printed circuit boards, you can download
the plans to do so. I recommend purchasing them online,

as it’s much quicker (and more reliable, for most people).
Figure 1-8 shows some of your options.

One of the best things about Wiring and Arduino is that
they are cross-platform; they work well on Mac OS X,
Windows, and Linux. This is a rarity in microcontroller
development environments.

Another good thing about these environments is that, like
Processing, they can be extended. Just as you can include
Java classes and methods in your Processing programs,
you can include C/C++ code, written in AVR-C, in your
Wiring and Arduino programs. For more on how to do this,
visit their respective websites.

For an excellent introduction to Arduino, see Massimo
Banzi’s book Getting Started with Arduino (O’Reilly).
X

Figure 1-8 . Varieties of Arduino, as well as a Wiring board: 1 . LilyPad Arduino 2 . Arduino uno SMD 3 . Arduino Fio 4 . Arduino

Pro Mini 5 . Arduino Mini 6 . Arduino Nano 7 . Arduino Mega 2560 8 . Arduino uno 9 . Wiring board 10 . Arduino Pro 11 . Arduino

Ethernet 12 . Arduino bluetooth 13 . Arduino Duemilanove .

1
2 3

10

5

6

7

4

12 13

98

11

22 MAKING THINGS TALK

One of the features that makes Arduino easy to work with

are the add-on modules called shields, which allow you to

add preassembled circuits to the main module. For most

applications you can think of, there's a third-party company

or individual making a shield to do it. Need a MIDI synthe-

sizer? There's a shield for that. Need NTSC video output?

There's a shield for that. Need WiFi or Ethernet? There's a

shield for that, and you'll be using them extensively in this

book.

The growth of shields has been a major factor in the spread

of Arduino, and the well-designed and documented ones

make it possible to build many projects with no electronic

experience whatsoever. You'll be using some shields in this

book, and for other projects, building the actual circuit

yourself.

The shields you'll see most commonly in this book are the

Ethernet shield, which gives you the ability to connect your

controller to the Internet; the wireless shield, which lets you

interface with Digi's XBee radios and other radios with the

same footprint; and some prototyping shields, which make it

easy to design a custom circuit for your project.

The shield footprint, like the board designs, is available

online at www.arduino.cc. If you've got experience making

printed circuit boards, try your hand at making your own

shield—it's fun.

Until recently, shields for Arduino weren't physically com-

patible with Wiring boards. However, Rogue Robotics (www.

roguerobotics.com) just started selling an adapter for the

Wiring board that allows it to take shields for Arduino.

Beware! Not every shield is compatible with every board.

Some derivative boards do not operate on the same voltage

as the Arduino boards, so they may not be compatible with

shields designed to operate at 5 volts. If you're using a

different microcontroller board, check with the manufac-

turer of your board to be sure it works with your shields.

X

Arduino Shields

Figure 1-9 . A sampling of shields for Arduino: 1 . Arduino prototyping shield 2 . Adafruit prototyp-

ing shield 3 . Arduino Ethernet shield 4 . TinkerKit DMX shield 5 . Arduino wireless shield

 6 . Oomlout Arduino/breadboard mount, manufactured by Adafruit 7 . Spark Fun microSD card

shield 8 . Adafruit motor driver shield 9 . Spark Fun musical instrument shield .

1

2 3

5

6

7

4

9

8

THE TOOLS 23

Though the examples in this book focus on Arduino,

there are many other microcontroller platforms that

you can use to do the same work. Despite differences

among the platforms, there are some principles that

apply to them all. They're basically small computers.

They communicate with the world by turning on or off

the voltage on their output pins, or reading voltage

changes on their input pins. Most microcontrollers can

read variable voltage changes on a subset of their I/O

pins. All microcontrollers can communicate with other

computers using one or more forms of digital communi-

cation. Listed below are a few other microcontrollers on

the market today.

8-bit controllers
The Atmel microcontrollers that are at the heart of both

Arduino and Wiring are 8-bit controllers, meaning that

they can process data and instructions in 8-bit chunks.

8-bit controllers are cheap and ubiquitous, and they can

sense and control things in the physical world very effec-

tively. They can sense simple physical characteristics at

a resolution and speed that exceeds our senses. They

show up in nearly every electronic device in your life,

from your clock radio to your car to your refrigerator.

There are many other 8-bit controllers that are great for

building physical devices. Parallax (www.parallax.com)

Basic Stamp and Basic Stamp 2 (BS-2) are probably

the most common microcontrollers in the hobbyist

market. They are easy to use and include the same basic

functions as Wiring and Arduino. However, the language

they're programmed in, PBASIC, lacks the ability to pass

parameters to functions, which makes programming

many of the examples shown in this book more difficult.

Revolution Education's PICAXE environment (www.

rev-ed.co.uk) is very similar to the PBASIC of the Basic

Stamp, but it's a less expensive way to get started than

the Basic Stamp. Both the PICAXE and the Stamp are

capable of doing the things shown in this book, but their

limited programming language makes the doing a bit

more tedious.

PIC and AVR
Microchip’s PIC (www.microchip.com) and Atmel’s AVR

are excellent microcontrollers. You’ll find the AVRs at the

heart of Arduino and Wiring, and the PICs at the heart

of the Basic Stamps and PICAXEs. The Basic Stamp,

PICAXE, Wiring, and Arduino environments are essen-

tially wrappers around these controllers, making them

easier to work with. To use PICs or AVRs on their own,

you need a hardware programmer that connects to your

computer, and you need to install a programming envi-

ronment and a compiler.

Though the microcontrollers themselves are cheap

(between $1 and $10 apiece), getting all the tools set

up for yourself can cost you some money. There’s also

a pretty significant time investment in getting set up,

as the tools for programming these controllers from

scratch assume a level of technical knowledge—both

in software and hardware—that's higher than the other

tools listed here.

32-bit controllers
Your personal computer is likely using a 64-bit processor,

and your mobile phone is likely using a 32-bit processor.

These processors are capable of more complex tasks,

such as multitasking and media control and playback.

Initially, 32-bit processors were neither affordable nor

easy to program, but that has been changing rapidly in

the last couple of years, and there are now several 32-bit

microcontroller platforms on the market. Texas Instru-

ments' BeagleBoard (http://beagleboard.org) is a 32-bit

processor board with almost everything you need to

make a basic personal computer: HDMI video out, USB,

SD card and connections for mass storage devices, and

more. It can run a minimal version of the Linux operating

system. Netduino (www.netduino.com) is a 32-bit

processor designed to take Arduino shields, but it's pro-

grammed using an open source version of Microsoft's

.NET programming framework. LeafLabs' Maple (http://

leaflabs.com) is another 32-bit processor that uses the

same footprint as the Arduino Uno, and is programmed

in C/C++ like the Arduino and Wiring boards. In addition

to these, there are several others coming on the market

in the near future.

The increasing ease-of-use of 32-bit processors is

bringing exciting changes for makers of physical inter-

faces, though not necessarily in basic input and output.

8-bit controllers can already sense simple physical

Other Microcontrollers

24 MAKING THINGS TALK

Getting Started
Because the installation process for Wiring and Arduino
is similar, I’ll detail only the Arduino process here. Wiring
users can follow along and do the same steps, substituting
“Wiring” for “Arduino” in the instructions. Download
the software from the appropriate site, then follow the
instructions below. Check the sites for updates on these
instructions.

Setup on Mac OS X
Double-click the downloaded file to unpack it, and you'll
get a disk image that contains the Arduino application
and an installer for FTDI USB-to-Serial drivers. Drag the
application to your Applications directory. If you're using
an Arduino Uno or newer board, you won't need the FTDI
drivers, but if you're using a Duemilanove or older board,
or a Wiring board, you'll need the drivers. Regardless of the
board you have, there's no harm in installing them—even
if you don't need them. Run the installer and follow the
instructions to install the drivers.

Like all microcontrollers, the Arduino and Wiring
modules are just small computers. Like every
computer, they have inputs, outputs, a power

supply, and a communications port to connect to other
devices. You can power these modules either through a
separate power supply or through the USB connection
to your computer. For this introduction, you’ll power the
module from the USB connection. For many projects,
you’ll want to disconnect them from the computer once
you’ve finished programming them. When you do, you'll
power the board from the external power supply.

Figure 1-10 shows the inputs and outputs for the Arduino
Uno. The other Arduino models and the Wiring module are
similar. Each module has the same standard features as
most microcontrollers: analog inputs, digital inputs and
outputs, and power and ground connections. Some of the
I/O pins can also be used for serial communication. Others
can be used for pulse-width modulation (PWM), which is a
way of creating a fake analog voltage by turning the pin on
and off very fast. The Wiring and Arduino boards also have
a USB connector that's connected to a USB-to-Serial con-
troller, which allows the main controller to communicate
with your computer serially over the USB port. They also
have a programming header to allow you to reprogram the
firmware (which you’ll never do in this book) and a reset
button. You’ll see these diagrams repeated frequently, as
they are the basis for all the microcontroller projects in the
book.

 Updates to the Arduino and Wiring software occur

frequently. The notes in this book refer to Arduino version

1.0 and Wiring version 1.0. By the time you read this, the

specifics may be slightly different, so check the Arduino and

Wiring websites for the latest details.

!

changes and control outputs at resolutions that exceed

human perception. However, complex-sensing features—

such as gesture recognition, multitasking, simpler

memory management, and the ability to interface

with devices using the same methods and libraries as

personal computers—will make a big difference. 32-bit

processors give physical interface makers the ability to

use or convert code libraries and frameworks developed

on servers and personal computers. There is where the

real excitement of these processors lies.

These possibilities are just beginning to be realized and

will easily fill another book, or several. However, basic

sensing and networked communications are still well

within the capabilities of 8-bit controllers, so I've chosen

to keep the focus of this book on them.

Other Microcontrollers (cont'd)

THE TOOLS 25

RX

RESET ICSP

DIGITAL (PWM~)

ANALOG IN

TX
23456

A
0

A
1

A
2

A
3

A
4

A
5

78910111213
G
N
D

Vi
n

AR
EF

RE
SE
T

3.
3V

5V

POWER

G
N
D

G
N
D

01

M A D E
I N I TA LY

ARDUINO

UNO- +
ONTX

RX

RE
SE

T-
EN

W
W

W
.A

R
D

U
IN

O
.C

C

L

Pins 0, 1:
Serial

Pins A0 - A5:
Analog inputs

(can also function
as digital I/O)

Pins 0 - 13:
Digital inputs

or outputs

Pins 3,5,6,9,10,11:
Analog Outputs

(PWM)Analog
Reference

input

Reset
(connect to ground

to reset)

Reset button

Voltage
outputs

Ground

Ground

Connected directly
to 9-15V DC

voltage input

R
ec

ei
ve

Tr
an

sm
it

USB

9-15V DC
voltage input

5V Voltage
regulator

USB-to-
serial

controller

Microcontroller

Figure 1-10

Functional parts of an Arduino.

Most microcontrollers have the

same or similar parts: power

connections, digital and analog

inputs, and serial communications.

You'll see a lot of circuit diagrams in this book, as well as

flowcharts of programs, system diagrams, and more. The

projects you'll make with this book are systems with many

parts, and you'll find it helps to keep diagrams of what's

involved, which parts talk to which, and what protocols they

use to communicate. I used three drawing tools heavily in

this book, all of which I recommend for documenting your

work:

Adobe Illustrator (www.adobe.com/products/illustrator.

html). You really can't beat it for drawing things, even

though it's expensive and takes time to learn well. There

are many libraries of electronic schematic symbols freely

available on the Web.

Inkscape (www.inkscape.org). This is an open source tool for

vector drawing. Though the GUI is not as well developed as

Illustrator, it's pretty darn good. The majority of the sche-

matics in this book were done in Illustrator and Inkscape.

Fritzing (www.fritzing.org). Fritzing is an open source tool for

documenting, sharing, teaching, and designing interactive

electronic projects. It's a good tool for learning how to read

schematics, because you can draw circuits as they physical-

ly look, and then have Fritzing generate a schematic of what

you drew. Fritzing also has a good library of vector graphic

electronics parts that can be used in other vector programs.

This makes it easy to move from one program to another in

order to take advantage of all three.

Figure 1-10 was cobbled together from all three tools,

combining the work of Jody Culkin and Giorgio Olivero,

with a few details from André Knörig and Jonathan Cohen's

Fritzing drawings. You'll see it frequently throughout the

book.

It's a good idea to keep notes on what you do as well, and

share them publicly so others can learn from them. I rely on

a combination of three note-taking tools: blogs powered by

Wordpress (www.wordpress.org) at www.makingthingstalk.

com, http://tigoe.net/blog, and http://tigoe.net/pcomp/

code; a github repository (https://github.com/tigoe); and a

stack of Maker’s Notebooks (www.makershed.com, part no.

9780596519414).

Document What You Make

26 MAKING THINGS TALK

 Figure 1-11

Toolbars for Arduino version 0022, Arduino 1.0, and Wiring

1.0.

Once you're installed, open the Arduino application and
you're ready to go.

Setup on Windows 7
Unzip the downloaded file. It can go anywhere on your
system. The Program Files directory is a good place. Next,
you'll need to install drivers, whether you have an Arduino
Uno board or an older board, or a Wiring board.

Plug in your Arduino and wait for Windows to begin its
driver installation process. If it's a Duemilanove or earlier,
it will need the FTDI drivers. These should install automati-
cally over the Internet when you plug your Duemilanove
in; if not, there is a copy in the drivers directory of the
Arduino application directory. If it's an Uno or newer, click
on the Start Menu and open up the Control Panel. Open
the "System and Security" tab. Next, click on System,

then open the Device Manager. Under Ports (COM & LPT),
you should see a port named Arduino UNO (COMxx).
Right-click on this port and choose the Update Driver
Software option. Click the "Browse my computer for Driver
software" option. Finally, navigate to and select the Uno's
driver file, named ArduinoUNO.inf, located in the drivers
directory. Windows will finish up the driver installation
from there.

Setup on Linux
Arduino for Linux depends on the flavor of Linux you're
using. See www.arduino.cc/playground/Learning/Linux
for details on several Linux variants. For Ubuntu users, it's
available from the Ubuntu Software Update tool.

Now you’re ready to launch Arduino. Connect the module
to your USB port and double-click the Arduino icon to
launch the software. The editor looks like Figure 1-12.

The environment is based on Processing and has New,
Open, and Save buttons on the main toolbar. In Arduino
and Wiring, the Run function is called Verify, and there is

THE TOOLS 27

Figure 1-12

The Arduino programming environment.

The Wiring environment looks similar,

except the color is different.

Figure 1-13

LED connected to pin 13 of an

Arduino board. Add 220-ohm cur-

rent-limiting resistor in series with

this if you plan to run it for more

than a few minutes.

an Upload button as well. Verify compiles your program
to check for any errors, and Upload both compiles
and uploads your code to the microcontroller module.
There’s an additional button, Serial Monitor, that you can
use to receive serial data from the module while you’re
debugging.

Changes to version 1.0
For Arduino users familiar with previous versions, you'll
see some changes in version 1.0. The toolbar has changed
a bit. Figure 1-11 compares the toolbars of Arduino version
0022 (pre-1.0), Arduino 1.0, and Wiring 1.0. Arduino 1.0
now saves files with the extension .ino instead of .pde, to
avoid conflict with Processing, which uses .pde. Wiring 1.0
still uses .pde. In addition, you can now upload sketches in
Arduino 1.0 using an external hardware programmer. The
Programmer submenu of the Tools menu lets you set your
programmer.
X

28 MAKING THINGS TALK

/* Blink

 Context: Arduino

 Blinks an LED attached to pin 13 every half second.

 Connections:

 Pin 13: + leg of an LED (- leg goes to ground)

*/

int LEDPin = 13;

void setup() {

 pinMode(LEDPin, OUTPUT); // set pin 13 to be an output

}

void loop() {

 digitalWrite(LEDPin, HIGH); // turn the LED on pin 13 on

 delay(500); // wait half a second

 digitalWrite(LEDPin, LOW); // turn the LED off

 delay(500); // wait half a second

}

Here’s your first program.

In order to see this run, you’ll need to connect an
LED from pin 13 of the board to ground (GND),
as shown in Figure 1-13. The positive (long) end

of the LED should go to 13, and the short end to ground.

Then type the code into the editor. Click on Tools→Board
to choose your Arduino model, and then Tools→Serial
Port to choose the serial port of the Arduino module. On
the Mac or Linux, the serial port will have a name like this:
/dev/tty.usbmodem241241. If it's an older board or a
Wiring board, it will be more like this: /dev/tty.usbserial-
1B1 (the letters and numbers after the dash will be slightly
different each time you connect it). On Windows, it should
be COMx, where x is some number (for example, COM5).

NOTE: On Windows, COM1–COM4 are generally reserved for

built-in serial ports, regardless of whether your computer has

them.

Once you’ve selected the port and model, click Verify
to compile your code. When it’s compiled, you’ll get
a message at the bottom of the window saying Done
compiling. Then click Upload. This will take a few
seconds. Once it’s done, you’ll get a message saying
Done uploading, and a confirmation message in the serial
monitor window that says:

 Try It

Binary sketch size: 1010 bytes (of a 32256 byte maximum)

Once the sketch is uploaded, the LED you wired to the
output pin will begin to blink. That’s the microcontroller
equivalent of “Hello World!”

NOTE: If it doesn't work, you might want to seek out some external

help. The Arduino Learning section has many tutorials (www.arduino.

cc/en/Tutorial). The Arduino (www.arduino.cc/forum) and Wiring

(http://forum.wiring.co) forums are full of helpful people who love

to hack these sort of things.

Serial communication
One of the most frequent tasks you’ll use a microcontroller
for in this book is to communicate serially with another
device, either to send sensor readings over a network or
to receive commands to control motors, lights, or other
outputs from the microcontroller. Regardless of what
device you’re communicating with, the commands you’ll
use in your microcontroller program will be the same. First,
you’ll configure the serial connection for the right data
rate. Then, you’ll read bytes in, write bytes out, or both,
depending on what device you’re talking to and how the
conversation is structured.

THE TOOLS 29

The USB serial port that’s associated with the Arduino

or Wiring module is actually a software driver that loads

every time you plug in the module. When you unplug,

the serial driver deactivates and the serial port will

disappear from the list of available ports. You might also

notice that the port name changes when you unplug

and plug in the module. On Windows machines, you may

get a new COM number. On Macs, you’ll get a different

alphanumeric code at the end of the port name.

Never unplug a USB serial device when you’ve got its

serial port open; you must exit the Wiring or Arduino

software environment before you unplug anything.

Otherwise, you’re sure to crash the application, and

possibly the whole operating system, depending on how

well behaved the software driver is.

Where’s My Serial Port?

/*

 Simple Serial

 Context: Arduino

 Listens for an incoming serial byte, adds one to the byte

 and sends the result back out serially.

 Also blinks an LED on pin 13 every half second.

 */

int LEDPin = 13; // you can use any digital I/O pin you want

int inByte = 0; // variable to hold incoming serial data

long blinkTimer = 0; // keeps track of how long since the LED

 // was last turned off

int blinkInterval = 1000; // a full second from on to off to on again

void setup() {

 pinMode(LEDPin, OUTPUT); // set pin 13 to be an output

 Serial.begin(9600); // configure the serial port for 9600 bps

 // data rate.

}

void loop() {

 // if there are any incoming serial bytes available to read:

 if (Serial.available() > 0) {

 // then read the first available byte:

 inByte = Serial.read();

 // and add one to it, then send the result out:

This next Arduino program listens for
incoming serial data. It adds one to
whatever serial value it receives, and
then sends the result back out. It also
blinks an LED on pin regularly—on the
same pin as the last example—to let
you know that it’s still working.

»

NOTE: If you’ve got experience with the Basic Stamp or PicBasic

Pro, you will find Arduino serial communications a bit different

than what you are used to. In PBasic and PicBasic Pro, the

serial pins and the data rate are defined each time you send a

message. In Wiring and Arduino, the serial pins are unchangeable,

and the data rate is set at the beginning of the program. This

way is a bit less flexible than the PBasic way, but there are some

advantages, as you’ll see shortly.

 Try It

30 MAKING THINGS TALK

Continued from previous page .

 Serial.write(inByte+1);

 }

 // Meanwhile, keep blinking the LED.

 // after a half of a second, turn the LED on:

 if (millis() - blinkTimer >= blinkInterval / 2) {

 digitalWrite(LEDPin, HIGH); // turn the LED on pin 13 on

 }

 // after a half a second, turn the LED off and reset the timer:

 if (millis() - blinkTimer >= blinkInterval) {

 digitalWrite(LEDPin, LOW); // turn the LED off

 blinkTimer = millis(); // reset the timer

 }

}

To send bytes from the computer to the micro-
controller module, first compile and upload this
program. Then click the Serial Monitor icon (the

rightmost icon on the toolbar). The screen will change to
look like Figure 1-14. Set the serial rate to 9600 baud.

Type any letter in the text entry box and press Enter or
click Send. The module will respond with the next letter in
sequence. For every character you type, the module adds
one to that character’s ASCII value, and sends back the
result.

Connecting Components to the
Module
The Arduino and Wiring modules don’t have many sockets
for connections other than the I/O pins, so you’ll need to
keep a solderless breadboard handy to build subcircuits
for your sensors and actuators (output devices). Figure 1-15
shows a standard setup for connections between the two.

Basic Circuits
There are two basic circuits that you’ll use a lot in this
book: digital input and analog input. If you’re familiar with
microcontroller development, you’re already familiar with
them. Any time you need to read a sensor value, you can
start with one of these. Even if you’re using a custom
sensor in your final object, you can use these circuits as
placeholders, just to see any changing sensor values.

Digital input
A digital input to a microcontroller is nothing more than a
switch. The switch is connected to voltage and to a digital
input pin of the microcontroller. A high-value resistor (10
kilohms is good) connects the input pin to ground. This is
called a pull-down resistor. Other electronics tutorials may
connect the switch to ground and the resistor to voltage. In
that case, you’d call the resistor a pull-up resistor. Pull-up
and pull-down resistors provide a reference to power
(pull-up) and ground (pull-down) for digital input pins.
When a switch is wired as shown in Figure 1-16, closing the
switch sets the input pin high. Wired the other way, closing
the switch sets the input pin low.

Analog input
The circuit in Figure 1-17 is called a voltage divider. The
variable resistor and the fixed resistor divide the voltage
between them. The ratio of the resistors’ values deter-
mines the voltage at this connection. If you connect the
analog-to-digital converter of a microcontroller to this
point, you’ll see a changing voltage as the variable resistor
changes. You can use any kind of variable resistor: pho-
tocells, thermistors, force-sensing resistors, flex-sensing
resistors, and more.

The potentiometer, shown in Figure 1-18, is a special
type of variable resistor. It’s a fixed resistor with a wiper
that slides along its conductive surface. The resistance
changes between the wiper and both ends of the resistor
as you move the wiper. Basically, a potentiometer (pot
for short) is two variable resistors in one package. If you
connect the ends to voltage and ground, you can read a
changing voltage at the wiper.

THE TOOLS 31

 Figure 1-14

The Serial monitor in Arduino, running the

previous sketch. The user typed BCDEFGH.

RX

RESET
ICSP

D
IG

ITAL
 (PW

M
~)

AN
ALO

G
 IN

TX
2
3
4
5
6

A 0
A 1
A 2
A 3
A 4
A 5

7

8
9

10
11
12
13

GND

Vin

AREF

RESET

3.3V

5V
PO

W
ER

GND

GND

0
1

M
A

D
E

IN
 ITA

LY

A
R
D
U
IN

O

U
N
O

-
+

O
N

TXRX

RESET-EN

W W W.ARDUINO.CC

L
1

5
10

15
20

25
30

1
5

10
15

20
25

30

ABCDEFGHIJ
Figure 1-15

Arduino connected to a breadboard. +5V and

ground run from the module to the long rows of

the board. This way, all sensors and actuators can

share the +5V and ground connections of the board.

Control or signal connections from each sensor

or actuator run to the appropriate I/O pins. In this

example, two pushbuttons are attached to digital

pins 2 and 3 as digital inputs.

32 MAKING THINGS TALK

There are many other circuits you’ll learn in the projects
that follow, but these are the staples of all the projects in
this book.

Specialty circuits and modules
You'll see a number of specialty circuits and modules
throughout this book, like the Bluetooth Mate and the
XBee radios. These are devices that allow you to send
serial data wirelessly. You'll also build a few of your own
circuits for specific projects. All of the circuits will be
shown on a breadboard like these, but you can build them
any way you like. If you're familiar with working on printed
circuit boards and prefer to build your circuits that way,
feel free to do so.

Update to the Second Printing
As this edition's first printing went to press, the Arduino
Ethernet and WiFi libraries were in transition. Since then,
they have stabilized, and there may be some minor changes
to the code examples you'll find for them. The TextFinder
library mentioned in some examples has also been included
in Arduino's core Stream class, with a slightly different
interface. For up-to-date versions of the examples found
here, see the GitHub repository for this book's code, at
https://github.com/tigoe/MakingThingsTalk2.
X

1
5

10
15

20
25

30

1
5

10
15

20
25

30

ABCDEFGHIJ

To Microcontroller
digital input

To ground

To +V

Figure 1-16

Digital input to a microcontroller.

Top: breadboard view.

Bottom: schematic view.

Input voltage

To microcontroller
digital input

You will encounter variations on many of the

modules and components used in this book. For

example, the Arduino module has several variations, as

shown in Figure 1-8. The FTDI USB-to-Serial module used in

later chapters has at least three variations. Even the voltage

regulators used in this book have variations. Be sure to

check the data sheet on whatever component or module

you’re using, as your version may vary from what is shown

here.

!

THE TOOLS 33

1
5

10
15

20
25

30

1
5

10
15

20
25

30

ABCDEFGHIJ

To Microcontroller
analog input

To ground

To +V
1

5
10

15
20

25
30

1
5

10
15

20
25

30

ABCDEFGHIJ

To Microcontroller
analog input

To ground

To +V

Figure 1-17

Voltage divider used as analog input to a microcontroller.

Top: breadboard view.

Bottom: schematic view.

Figure 1-18

Potentiometer used as analog input to a microcontroller.

Top: breadboard view.

Bottom: schematic view.

Input voltage

To microcontroller
analog input

Variable resistor
(photocell, flex
sensor, etc.)

Fixed resistor

Input voltage

To microcontroller
analog inputPotentiometer

34 MAKING THINGS TALK

Most of what you'll be building in this book involves
computer circuits that read a changing voltage over time.
Whether your microcontroller is reading a digital or analog
input, controlling the speed of a motor, or sending data to
a personal computer, it's either reading a voltage or gener-
ating a voltage that changes over time. The time intervals
it works in are much faster than yours. For example, the
serial communication you just saw involved an electrical
pulse changing at about 10,000 times per second. You
can't see anything that fast on a multimeter. This is when
an oscilloscope is useful.

An oscilloscope is a tool for viewing the changes in an
electrical signal over time. You can change the sensitivity
of its voltage reading (in volts per division of the screen)
and of the time interval (in seconds, milliseconds, or
microseconds per division) at which it reads. You can
also change how it displays the signal. You can show it in
real time, starting or stopping it as you need, or you can
capture it when a particular voltage threshold (called a
trigger) is crossed.

Oscilloscopes were once beyond the budget of most
hobbyists, but lately, a number of inexpensive ones have
come on the market. The DSO Nano from Seeed Studio,
shown in Figure 1-19, is a good example. At about $100,
it's a really good value if you're a dedicated electronic
hobbyist. It doesn't have all the features that a full profes-
sional 'scope has, but it does give you the ability to change
the volts per division and seconds per division, and to set
a voltage trigger for taking a snapshot. It can sample up
to 1 million times a second, which is more than enough to
measure most serial applications. The image you see in
Figure 1-19 shows the output of an Arduino sending the
message "Hello World!" Each block represents one bit of

Using an Oscilloscope

Figure 1-19

DSO Nano oscilloscope reading a

serial data stream.

data. The vertical axis is the voltage measurement, and the
horizontal measurement is time. The Nano was sampling
at 200 microseconds per division in this image, and 1 volt
per division vertically. The 'scopes leads are attached to
the ground pin of the Arduino and to digital pin 1, which is
the serial transmit pin.

Besides inexpensive hardware 'scopes, there are also
many software 'scopes available, both as freeware and
as paid software. These typically use the audio input
of your computer to sample the incoming voltage. The
danger, of course, is that if you send in too much voltage
you can damage your computer. For this reason, I prefer
a hardware 'scope. But if you're interested in software
'scopes, a web search on software oscilloscope and your
operating system will yield plenty of useful results.
X

THE TOOLS 35

It Ends with the Stuff You Touch
Though most of this book is about the fascinating world of making things talk to each

other, it’s important to remember that you’re most likely building your project for the

enjoyment of someone who doesn’t care about the technical details under the hood.

Even if you’re building it only for yourself, you don’t want
to have to fix it all the time. All that matters to the person
using your system are the parts that she can see, hear,
and touch. All the inner details are irrelevant if the physical
interface doesn’t work. So don’t spend all of your time
focusing on the communication between devices and
leave out the communication with people. In fact, it’s best
to think about the specifics of what the person does and
sees first.

There are a number of details that are easy to overlook
but are very important to humans. For example, many
network communications can take several seconds or
more. In a screen-based operating system, progress bars
acknowledge a person’s input and keep him informed as to
the task's progress. Physical objects don’t have progress
bars, but they should incorporate some indicator as to
what they’re doing—perhaps as simple as playing a tune
or pulsing an LED gently while the network transfer’s
happening.

Find your own solution, but make sure you give some
physical indication as to the invisible activities of your
objects.

Don’t forget the basic elements, either. Build in a power
switch or a reset button. Include a power indicator. Design
the shape of the object so that it’s clear which end is up.
Make your physical controls clearly visible and easy to
operate. Plan the sequence of actions you expect a person
to take, and lay out the physical affordances for those
actions sensibly. You can’t tell people what to think about
your object—you can only show them how to interact with
it through its physical form. There may be times when you
violate convention in the way you design your controls—
perhaps in order to create a challenging game or to make
the object seem more “magical"—but make sure you’re
doing it intentionally. Always think about the participant’s
expectations first.

By including the person’s behavior in your system planning,
you solve some problems that are computationally difficult
but easy for human intelligence. Ultimately, the best reason
to make things talk to each other is to give people more
reasons to talk to each other.
X

	Preface
	Who This Book Is For
	What You Need to Know
	Contents of This Book
	On Buying Parts
	Using Code Examples
	Using Circuit Examples
	Acknowledgments for the First Edition
	Note on the Second Edition

	Chapter 1. The Tools
	It Starts with the Stuff You Touch
	It’s About Pulses
	Computers of All Shapes and Sizes
	Good Habits
	Tools
	Using the Command Line
	Using an Oscilloscope
	It Ends with the Stuff You Touch

	Chapter 2. The Simplest Network
	Supplies for Chapter 2
	Layers of Agreement
	Making the Connection: The Lower Layers
	Type Brighter
	Monski Pong

	Flow Control
	Wireless Monski Pong
	Negotiating in Bluetooth

	Conclusion

	Chapter 3. A More Complex Network
	Supplies for Chapter 3
	Network Maps and Addresses
	Networked Cat

	Conclusion

	Chapter 4. Look, Ma, No Computer! Microcontrollers on the Internet
	Supplies for Chapter 4
	Introducing Network Modules
	Hello Internet!

	An Embedded Network Client Application
	Networked Air-Quality Meter

	Programming and Troubleshooting Tools for Embedded Modules
	Conclusion

	Chapter 5. Communicating in (Near) Real Time
	Supplies for Chapter 5
	Interactive Systems and Feedback Loops
	Transmission Control Protocol: Sockets & Sessions
	Networked Pong

	The Clients
	Conclusion

	Chapter 6. Wireless Communication
	Supplies for Chapter 6
	Why Isn’t Everything Wireless?
	Two Flavors of Wireless: Infrared and Radio
	Infrared Control of a Digital Camera

	How Radio Works
	Duplex Radio Transmission
	Bluetooth Transceivers

	Buying Radios
	What About WiFi?
	Hello WiFi!

	Conclusion

	Chapter 7. Sessionless Networks
	Supplies for Chapter 7
	Sessions vs. Messages
	Who’s Out There? Broadcast Messages
	Reporting Toxic Chemicals in the Shop

	Directed Messages
	Relaying Solar Cell Data Wirelessly

	Conclusion

	Chapter 8. How to Locate (Almost) Anything
	Supplies for Chapter 8
	Network Location and Physical Location
	Determining Distance
	Infrared Distance Ranger Example
	Ultrasonic Distance Ranger Example
	Reading Received Signal Strength Using XBee Radios
	Reading Received Signal Strength Using Bluetooth Radios

	Determining Position Through Trilateration
	Reading the GPS Serial Protocol

	Determining Orientation
	Determining Heading Using a Digital Compass
	Determining Attitude Using an Accelerometer

	Conclusion

	Chapter 9. Identification
	Supplies for Chapter 9
	Physical Identification
	Color Recognition Using a Webcam
	Face Detection Using a Webcam
	2D Barcode Recognition Using a Webcam
	Reading RFID Tags in Processing
	RFID Meets Home Automation
	Tweets from RFID

	Network Identification
	IP Geocoding

	Conclusion

	Chapter 10. Mobile Phone Networks and the Physical World
	Supplies for Chapter 10
	One Big Network
	CatCam Redux
	Phoning the Thermostat

	Text-Messaging Interfaces
	Native Applications for Mobile Phones
	Personal Mobile Datalogger

	Conclusion

	Chapter 11. Protocols Revisited
	Supplies for Chapter 11
	Make the Connections
	Text or Binary?
	MIDI
	Fun with MIDI

	Representational State Transfer
	Fun with REST

	Conclusion

	Appendix. Where to Get Stuff
	Supplies
	Hardware
	Software

	Index

