
Copyright © Parallax, Inc. LCD Terminal AppMod (#29121) v1.2 8/1/2008 Page 1 of 9

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

General: info@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com
Educational: www.stampsinclass.com

LCD Terminal AppMod (#29121)
2 Line x 8 Character LCD Module with User Buttons

Introduction

The LCD Terminal AppMod provides a simple and convenient method of adding a standard character LCD
and 4 user-input buttons to BASIC Stamp projects. Its 20-pin male header plugs into the 2x10 AppMod
Header socket on the Parallax Board of Education (#28150, #28850) or Super Carrier Board (#27130).

Features

 2 x 8 LCD module, HD44780-compatible
 Parallel LCD uses 7 I/O pins
 Contrast control pot
 4 buttons for user input
 +5 VDC, supplied through AppMod Vdd

 Appmod Header Pinout
(Board of Education and Super Carrier Board)

 LCD Terminal AppMod Pinout

Copyright © Parallax, Inc. LCD Terminal AppMod (#29121) v1.2 8/1/2008 Page 2 of 9

Board Installation

The LCD Terminal AppMod’s 20-pin male header plugs directly into the 2x10 socket. Before installation,
be sure to check the board silkscreen labels for proper orientation. The photos below show the proper
orientation on a Super Carrier Board (left) and a Board of Education (right). Use caution: reversing the
connection could result in applying power to the LCD’s ground pins and could damage your unit.

Schematic

D7

D6

D5

D4

RS

R/W

Vss

P7

P6

P5

P4

P1

2 x 8 LCD

10 k

14

13

12

11

4

5

1 2 3

6

Vdd Vo

RW

1 k

P2

P3

10 k

Vdd

Vdd

RS

D4

D5

D6

D7

E

Copyright © Parallax, Inc. LCD Terminal AppMod (#29121) v1.2 8/1/2008 Page 3 of 9

Circuit Notes

The resistor values are important for the proper operation of the circuit. You may be wondering if the
LCD will be adversely affected if a button is pressed while the BASIC Stamp is writing to it. The answer is
no. When no buttons are pressed, the signals from the BASIC Stamp microcontroller are felt "across" the
10K resistors, hence there is no concern. When a button is pressed, a high level will be exerted on the
bus. If the state of that buss line is supposed to be low, the BASIC Stamp overcomes the button press
and a small amount of current will flow through the 1K resistor and the low exerted by the BASIC Stamp
pin will be seen by the LCD.

BASIC Stamp 2 Application

The following BASIC Stamp program demonstrates many of the capabilities of the LCD and how the user
is able to read and debounce the module's user buttons. This program is somewhat unique in that it is
compatible with every BASIC Stamp 2 module; no changes are required. If you attempt to run the
program on something other than a standard BS2, the compiler will ask if you want to run on the
installed Stamp (BS2e, BS2sx, BS2p, or BS2pe). If you do, the program will run without problems.

In order to allow this program to take advantage of the built-in LCD features of the BS2p family,
conditional compilation directives are used. Conditional compilation directives are evaluated before the
program is compiled and downloaded to the BASIC Stamp, so only those portions that pertain to the
installed BASIC Stamp will be downloaded; not the entire listing.

The program is quite straightforward, and uses a simple software trick to scroll a string through the small
window (eight characters) of the LCD. Entry and exit of the string is facilitated by padding the string with
spaces on either end.

' ===

'

' File....... LCD_AppMod_Demo.BS2

' Purpose.... Demonstrates the LCD Terminal AppMod

' Author..... Parallax, Inc. (Copyright 2003-04, All Rights Reserved)

' E-mail..... support@parallax.com

' Started....

' Updated.... 13 JAN 2004

'

' {$STAMP BS2}

' {$PBASIC 2.5}

'

' ===

' -----[Program Description]---

'

' This program demonstrates the use of the Parallax LCD Terminal AppMod

' with any BS2-series microcontroller. This program uses conditional

' compilation techniques which make it completely BS2-agnostic. Custom

' character generation and animation is demonstrated.

' -----[I/O Definitions]---

Copyright © Parallax, Inc. LCD Terminal AppMod (#29121) v1.2 8/1/2008 Page 4 of 9

E PIN 1 ' LCD Enable (1 = enabled)

RW PIN 2 ' Read/Write\

RS PIN 3 ' Reg Select (1 = char)

LcdDirs VAR DIRB ' dirs for I/O redirection

LcdBusOut VAR OUTB

LcdBusIn VAR INB

' -----[Constants]---

#DEFINE _LcdReady = ($STAMP = BS2P) OR ($STAMP = BS2PE)

LcdCls CON $01 ' clear the LCD

LcdHome CON $02 ' move cursor home

LcdCrsrL CON $10 ' move cursor left

LcdCrsrR CON $14 ' move cursor right

LcdDispL CON $18 ' shift chars left

LcdDispR CON $1C ' shift chars right

LcdDDRam CON $80 ' Display Data RAM control

LcdCGRam CON $40 ' Character Generator RAM

LcdLine1 CON $80 ' DDRAM address of line 1

LcdLine2 CON $C0 ' DDRAM address of line 2

LcdScrollTm CON 250 ' LCD scroll timing (ms)

' -----[Variables]---

addr VAR Word ' address pointer

crsrPos VAR Byte ' cursor position

char VAR Byte ' character sent to LCD

idx VAR Byte ' loop counter

scan VAR Byte ' loop counter

buttons VAR Nib

btnA VAR buttons.BIT0 ' left-most button

btnB VAR buttons.BIT1

btnC VAR buttons.BIT2

btnD VAR buttons.BIT3 ' right-most

btnDemo VAR Byte ' loop counter

' -----[EEPROM Data]---

CC0 DATA $0E, $1F, $1C, $18, $1C, $1F, $0E, $00 ' char 0

CC1 DATA $0E, $1F, $1F, $18, $1F, $1F, $0E, $00 ' char 1

Copyright © Parallax, Inc. LCD Terminal AppMod (#29121) v1.2 8/1/2008 Page 5 of 9

CC2 DATA $0E, $1F, $1F, $1F, $1F, $1F, $0E, $00 ' char 2

Smiley DATA $00, $0A, $0A, $00, $11, $0E, $06, $00 ' smiley

Msg1 DATA "PARALLAX", 0

Msg2 DATA " BASIC STAMP ", 3, " ", 0

Msg3 DATA "Type =", 0

Msg4 DATA "Buttons:", 0

StampId0 DATA " BS2", 0

StampId1 DATA " BS2e", 0

StampId2 DATA "BS2sx", 0

StampId3 DATA " BS2p", 0

StampId4 DATA "BS2pe", 0

' -----[Initialization]--

Initialize:

 NAP 5 ' let LCD self-initialize

 DIRL = %11111110 ' setup pins for LCD

LCD_Init:

 #IF _LcdReady #THEN

 LCDCMD E, %00110000 : PAUSE 5 ' 8-bit mode

 LCDCMD E, %00110000 : PAUSE 0

 LCDCMD E, %00110000 : PAUSE 0

 LCDCMD E, %00100000 : PAUSE 0 ' 4-bit mode

 LCDCMD E, %00101000 : PAUSE 0 ' 2-line mode

 LCDCMD E, %00001100 : PAUSE 0 ' no crsr, no blink

 LCDCMD E, %00000110 ' inc crsr, no disp shift

 #ELSE

 LcdBusOut = %0011 ' 8-bit mode

 PULSOUT E, 3 : PAUSE 5

 PULSOUT E, 3 : PAUSE 0

 PULSOUT E, 3 : PAUSE 0

 LcdBusOut = %0010 ' 4-bit mode

 PULSOUT E, 3

 char = %00101000 ' 2-line mode

 GOSUB LCD_Command

 char = %00001100 ' on, no crsr, no blink

 GOSUB LCD_Command

 char = %00000110 ' inc crsr, no disp shift

 GOSUB LCD_Command

 #ENDIF

Download_Chars: ' download custom chars

 char = LcdCGRam ' point to CG RAM

 GOSUB LCD_Command ' prepare to write CG data

 FOR idx = CC0 TO (Smiley + 7) ' build 4 custom chars

Copyright © Parallax, Inc. LCD Terminal AppMod (#29121) v1.2 8/1/2008 Page 6 of 9

 READ idx, char ' get byte from EEPROM

 GOSUB LCD_Write_Char ' put into LCD CG RAM

 NEXT

' -----[Program Code]--

Main:

 char = LcdCls ' clear the LCD

 GOSUB LCD_Command

 PAUSE 500

Write_Parallax:

 addr = Msg1 ' point to message

 GOSUB LCD_Put_String ' write it

Scroll_Message:

 crsrPos = LcdLine2 ' scroll on line 2

 addr = Msg2 ' point to msg

 GOSUB LCD_Scroll_String ' scroll it

Pac_Man: ' Pac-Man animation

 FOR idx = 0 TO 7 ' cover 8 characters

 FOR scan = 0 TO 4 ' 5 characters in animation

 char = LcdLine1 + idx ' position cursor

 GOSUB LCD_Command

 LOOKUP scan, [0, 1, 2, 1, " "], char ' select "frame"

 GOSUB LCD_Write_Char ' write animation character

 PAUSE 75 ' delay between chars

 NEXT

 NEXT

Show_Stamp_Type:

 char = LcdCls ' clear the LCD

 GOSUB LCD_Command

 PAUSE 100

 addr = Msg3 ' display "Type ="

 GOSUB LCD_Put_String

 char = LcdLine2 + 3 ' move cursor to 2nd line

 GOSUB LCD_Command

 #SELECT $STAMP ' check type at compile

 #CASE BS2

 addr = StampId0

 #CASE BS2E

 addr = StampId1

 #CASE BS2SX

 addr = StampId2

 #CASE BS2P

Copyright © Parallax, Inc. LCD Terminal AppMod (#29121) v1.2 8/1/2008 Page 7 of 9

 addr = StampId3

 #CASE BS2PE

 addr = StampId4

 #ENDSELECT

 GOSUB LCD_Put_String ' display type on LCD

 PAUSE 2000

Show_Buttons:

 char = LcdCls ' clear the LCD

 GOSUB LCD_Command

 PAUSE 100

 addr = Msg4 ' write "Buttons:"

 GOSUB LCD_Put_String

 FOR btnDemo = 1 TO 100

 GOSUB LCD_Get_Buttons ' read/debounce buttons

 char = LcdLine2 + 2 ' show on 2nd line

 GOSUB LCD_Command

 FOR idx = 0 TO 3 ' display buttons

 IF buttons.LOWBIT(idx) THEN

 char = "A" + idx ' button letter if pressed

 ELSE

 char = "-" ' otherwise dash

 ENDIF

 GOSUB LCD_Write_Char

 NEXT

 NEXT

 GOTO Main ' run demo again

 END

' -----[Subroutines]---

' Writes stored (in DATA statement) zero-terminated string to LCD

' -- position LCD cursor

' -- point to 0-terminated string (first location in 'addr')

LCD_Put_String:

 DO

 READ addr, char

 IF (char = 0) THEN EXIT

 GOSUB LCD_Write_Char

 addr = addr + 1

 LOOP

 RETURN

' Scroll a message across LCD line

Copyright © Parallax, Inc. LCD Terminal AppMod (#29121) v1.2 8/1/2008 Page 8 of 9

' -- set starting position in 'crsrPos'

' -- point to 0-terminated string (first location in 'addr')

' -- strings should be padded with eight spaces on each end

LCD_Scroll_String:

 DO

 char = crsrPos ' move to start of window

 GOSUB LCD_Command

 FOR idx = 0 TO 7 ' write chars in window

 READ (addr + idx), char

 IF (char = 0) THEN EXIT ' stop if end of string

 GOSUB LCD_Write_Char

 NEXT

 IF (char = 0) THEN EXIT

 addr = addr + 1 ' scroll

 PAUSE LcdScrollTm

 LOOP

 RETURN

' Send command to LCD

' -- put command byte in 'char'

LCD_Command: ' write command to LCD

 #IF _LcdReady #THEN

 LCDCMD E, char

 RETURN

 #ELSE

 LOW RS

 GOTO LCD_Write_Char

 #ENDIF

' Write character to current cursor position

' -- but byte to write in 'char'

LCD_Write_Char: ' write character to LCD

 #IF _LcdReady #THEN

 LCDOUT E, 0, [char]

 #ELSE

 LcdBusOut = char.HIGHNIB ' output high nibble

 PULSOUT E, 3 ' strobe the Enable line

 LcdBusOut = char.LOWNIB ' output low nibble

 PULSOUT E, 3

 HIGH RS ' return to character mode

 #ENDIF

 RETURN

Copyright © Parallax, Inc. LCD Terminal AppMod (#29121) v1.2 8/1/2008 Page 9 of 9

' Reads byte from LCD

' -- put byte address in 'addr'

' -- returns byte read in 'char'

LCD_Read_Char: ' read character from LCD

 #IF _LcdReady #THEN

 LCDIN E, addr, [char]

 #ELSE

 char = addr ' move cursor

 GOSUB LCD_Command

 HIGH RS ' data command

 HIGH RW ' read

 LcdDirs = %0000 ' make LCD bus inputs

 HIGH E

 char.HIGHNIB = LcdBusIn ' get high nibble

 LOW E

 HIGH E

 char.LOWNIB = LcdBusIn ' get low nibble

 LOW E

 LcdDirs = %1111 ' return data lines to outputs

 LOW RW

 #ENDIF

 RETURN

' Read and debounce the LCD AppMod buttons

LCD_Get_Buttons:

 LcdDirs = %0000 ' make LCD bus inputs

 buttons = %1111 ' assume all pressed

 FOR scan = 1 TO 10

 buttons = buttons & LcdBusIn ' make sure button held

 PAUSE 5 ' debounce 10 x 5 ms

 NEXT

 LcdDirs = %1111 ' return bus to outputs

 RETURN

Additional Resources
The following resources are available from www.parallax.com

 BASIC Stamp Manual or BASIC Stamp Editor Help file: syntax and reference for the LCDCMD,
LCDIN, and LCDOUT commands for the BS2p-family of microcontroller modules.

 StampWorks Projects 11 – 14; more parallel LCD programming topics
 Nuts & Volts Stamp Applications #31: Demystifying Character-based LCDs
 BASIC Stamp 1 program version (limited features due to code space restrictions)
 Javelin Stamp program version, complete with LcdTerminal class file
 Hitachi HD44780 Datasheet

