

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

74LVT16374 • 74LVTH16374 Low Voltage 16-Bit D-Type Flip-Flop with 3-STATE Outputs

General Description

Features

- Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs (74LVTH16374), also available without bushold feature (74LVT16374)
- Live insertion/extraction permitted
- Power Up/Power Down high impedance provides glitch-free bus loading
- Outputs source/sink –32 mA/+64 mA
- Functionally compatible with the 74 series 16374
- Latch-up performance exceeds 500 mA
- ESD performance: Human-body model > 2000V Machine model > 200V
 - Charged-device model > 1000V
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

Ordering Code:

FAIRCH SEMICONDU 74LVT163 Low Volta with 3-ST	стоя 374 • 74L\ age 16-Bit	D-Type Fl	January 1999 Revised June 2005		
General Des The LVT16374 and ing D-type flip-flops for bus oriented app A buffered clock (C mon to each byte ar operation. The LVTH16374 da the need for exter inputs. These flip-flops are applications, but wit face to a 5V environ are fabricated with achieve high spee maintaining a low po	LVTH16374 contair with 3-STATE outp blications. The devic CP) and Output Ena ad can be shorted to ata inputs include to rnal pull-up resisto e designed for low- th the capability to p ment. The LVT163 an advanced BiCI d operation similar	uts and is intended e is byte controlled. bble (\overline{OE}) are com- gether for full 16-bit rushold, eliminating rs to hold unused voltage (3.3V) V _{CC} provide a TTL inter- 74 and LVTH16374 MOS technology to	January 1999 Revised June 2005		
Ordering Co	Dde: Package Number		Package Description		
74LVT16374G	BGA54A	54-Ball Fine-Pitch Ba	Il Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide		
(Note 1)(Note 2) 74LVT16374MEA (Note 2)	(Preliminary) MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide			
74LVT16374MTD (Note 2)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide			
74LVTH16374G (Note 1)(Note 2)	BGA54A	54-Ball Fine-Pitch Ba			
74LVTH16374MEA (Note 2)	MS48A	48-Lead Small Shrinl	K Outline Package (SSOP), JEDEC MO-118, 0.300" Wide		
74LVTH16374MTD (Note 2)	MTD48	48-Lead Thin Shrink	Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide		

Note 1: Ordering code "G" indicates Trays.

Note 2: Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagrams					
Pin Assign	nent for S	SOP a	nd TSSOP		
OE ₁ -		48	— CP1		
0 ₀ –	2	47	- 10		
0 ₁ -	3	46	– ů		
GND -	4	45	— GND		
0 ₂ -	5	44	- I ₂		
0 ₃ -	6	43	-1 ₃		
v _{cc} –	7	42	— v _{cc}		
°cc 0 ₄ –	8	41			
	9	40			
0 ₅ -	9 10		- 1 ₅		
GND -		39	— GND		
0 ₆ —	11	38	— I ₆		
0 ₇ -	12	37	- 1 ₇		
0 ₈ –	13	36	— 1 ₈		
0 ₉ -	14	35	- I ₉		
GND —	15	34	— GND		
0 ₁₀ —	16	33	— 4 ₀		
0 ₁₁ -	17	32	— I ₁₁		
v _{cc} –	18	31	— v _{cc}		
0 ₁₂ —	19	30	— I ₁₂		
0 ₁₃ —	20	29	— 4 ₃		
GND —	21	28	— GN D		
0 _{1.4}	22	27	— I ₁₄		
0 ₁₅ -	23	26	-45		
OE ₂ -	24	25	- CP2		
-					
Pin A	ssignmen	t for F	BGA		
_	123	45	6		
<	000	იი	പ		
m	000		ŏl		
- 0	000	T T	хI		
ů o	000		XI		
			×1		
ш	000				
ш	000		O		
J	000	00	0		
т	000	00	0		
¬	000	00	0		
L					
(Top Thru	View)			
Eunctional D	oscrin	tion			

Functional Description

The LVT16374 and LVTH16374 consist of sixteen edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte.

Pin Descriptions

Pin Names Description			
0E _n	Output Enable Input (Active LOW)		
CPn	Clock Pulse Input		
I ₀ -I ₁₅	Inputs		
O ₀ -O ₁₅	3-STATE Outputs		
0 ₀ –0 ₁₅ NC	No Connect		

FBGA Pin Assignments

	1	2	3	4	5	6
Α	O ₀	NC	OE ₁	CP ₁	NC	I ₀
В	0 ₂	0 ₁	NC	NC	I ₁	l ₂
С	O ₄	O ₃	V _{CC}	V _{CC}	l ₃	I ₄
D	0 ₆	O ₅	GND	GND	I ₅	I ₆
E	0 ₈	0 ₇	GND	GND	۱ ₇	I ₈
F	O ₁₀	O ₉	GND	GND	l ₉	I ₁₀
G	O ₁₂	O ₁₁	V _{CC}	V _{CC}	I ₁₁	I ₁₂
н	0 ₁₄	0 ₁₃	NC	NC	I ₁₃	I ₁₄
J	0 ₁₅	NC	\overline{OE}_2	CP ₂	NC	I ₁₅

Truth Tables

	Inputs		Outputs
CP ₁	OE ₁	I ₀ –I ₇	0 ₀ –0 ₇
~	L	Н	н
~	L	L	L
L	L	Х	Oo
х	Н	Х	Z
	Inputs		Outputs
	1		•
CP2		I ₈ -I ₁₅	0 ₈ –0 ₁₅
CP ₂		I₈-I₁₅ Н	-
	0E2		0 ₈ –0 ₁₅
	OE ₂	Н	0₈-0₁₅ Н

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

Z = HIGH Impedance

 $O_0 = Previous O_0$ before HIGH to LOW of CP

Each flip-flop will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP_n) transition. With the Output Enable (\overline{OE}_n) LOW, the contents of the flip-flops are available at the outputs. When \overline{OE}_n is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE}_n input does not affect the state of the flip-flops.

74LVT16374 • 74LVTH16374

Absolute Maximum Ratings(Note 3)

Symbol	Parameter	Value	Conditions	Units	
/ _{cc}	Supply Voltage	-0.5 to +4.6		V	
′ı	DC Input Voltage	-0.5 to +7.0		V	
/o	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V	
	F	-0.5 to +7.0	Output in High or Low State (Note 4)		
К	DC Input Diode Current	-50	V _I < GND	mA	
ок	DC Output Diode Current	-50	V _O < GND	mA	
D	DC Output Current	64	V _O > V _{CC} Output at High State		
		128	V _O > V _{CC} Output at Low State	mA	
сс	DC Supply Current per Supply Pin	±64		mA	
GND	DC Ground Current per Ground Pin	±128		mA	
Г _{STG}	Storage Temperature	-65 to +150		°C	

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
он	High-Level Output Current		-32	mA
OL	Low-Level Output Current		64	mA
Γ _A	Free-Air Operating Temperature	-40	85	°C
∆t/∆V	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 3: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 4: I_Q Absolute Maximum Rating must be observed.

DC Electrical Characteristics

Symbol	Parameter		V _{CC}	$T_A = -40^{\circ}$	C to +85°C	Units	Conditions
Symbol	Farameter		(V)	Min	Мах	Units	Conditions
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA
V _{IH}	Input HIGH Voltage		2.7-3.6	2.0		V	$V_0 \le 0.1V$ or
VIL	Input LOW Voltage		2.7-3.6		0.8	v	$V_O \geq V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltage		2.7–3.6	V _{CC} - 0.2			I _{OH} = -100 μA
			2.7	2.4		V	I _{OH} = -8 mA
			3.0	2.0			I _{OH} = -32 mA
V _{OL}	Output LOW Voltage		2.7		0.2		I _{OL} = 100 μA
			2.7		0.5		I _{OL} = 24 mA
			3.0		0.4	V	I _{OL} = 16 mA
			3.0		0.5		I _{OL} = 32 mA
			3.0		0.55		$I_{OL} = 64 \text{ mA}$
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75		μA	$V_I = 0.8V$
(Note 5)			5.0	-75		μΑ	$V_{I} = 2.0V$
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μΑ	(Note 6)
(Note 5)	Current to Change State		5.0	-500			(Note 7)
l _l	Input Current		3.6		10		$V_I = 5.5V$
	Γ	Control Pins	3.6		±1	μA	$V_I = 0V \text{ or } V_{CC}$
		Data Pins	3.6		-5	μΑ	$V_I = 0V$
		Data Tina	5.0		1	1	$V_I = V_{CC}$
I _{OFF}	Power Off Leakage Current		0		±100	μA	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power Up/Down 3-STATE		0–1.5V		±100	μA	$V_{O} = 0.5V$ to 3.0V
	Output Current		0-1.07		± 100	μΛ	$V_{I} = GND \text{ or } V_{CC}$
I _{OZL}	3-STATE Output Leakage Current	t	3.6		-5	μA	V _O = 0.5V
I _{OZH}	3-STATE Output Leakage Current	t	3.6		5	μA	V _O = 3.0V
I _{OZH} +	3-STATE Output Leakage Current	t	3.6		10	μΑ	$V_{CC} < V_O \le 5.5V$

DC Electrical Characteristics (Continued)

Symbol	Parameter	V _{CC}	V_{CC} T _A = -40°C to +85		Units	Conditions	
Symbol	i arameter	(V)	Min	Max	onita	Conditions	
I _{CCH}	Power Supply Current	3.6		0.19	mA	Outputs HIGH	
I _{CCL}	Power Supply Current	3.6		5	mA	Outputs LOW	
I _{CCZ}	Power Supply Current	3.6		0.19	mA	Outputs Disabled	
I _{CCZ⁺}	Power Supply Current	3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$,	
						Outputs Disabled	
ΔI_{CC}	Increase in Power Supply Current	3.6		0.2	mA	One Input at V _{CC} – 0.6V	
	(Note 8)					Other Inputs at V _{CC} or GND	

Note 5: Applies to bushold versions only (74LVTH16374).

Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 9)

Symbol	Parameter	V _{CC} $T_A = 25^{\circ}C$ (V)MinTypMax		Units	Conditions		
Cymbol	i alamotor			Тур	Max	onno	$\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 10)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 10)

Note 9: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 10: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics

		T _A = -				
Symbol	Parameter	V _{CC} = 3.	$3V \pm 0.3V$	V _{CC}	Units	
		Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	160		160		MHz
t _{PHL}	Propagation Delay	1.9	4.3	1.9	4.6	
t _{PLH}	CP to O _n	1.6	4.5	1.6	5.2	ns
t _{PZL}	Output Enable Time	1.3	4.4	1.3	5.0	
t _{PZH}		1.0	4.5	1.0	5.4	ns
t _{PLZ}	Output Disable Time	1.5	4.6	1.5	4.8	ns
t _{PHZ}		2.0	5.0	2.0	5.4	115
t _S	Setup Time	1.8		2.0		ns
t _H	Hold Time	0.8		0.1		ns
t _W	Pulse Width	3.0		3.0		ns
t _{OSHL}	Output to Output Skew (Note 11)		1.0		1.0	
t _{OSLH}			1.0		1.0	ns

Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units			
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	4	pF			
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	8	pF			
Note 12: Capacitanc	Note 12: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.						

74LVT16374 • 74LVTH16374 Low Voltage 16-Bit D-Type Flip-Flop with 3-STATE Outputs

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC