Dual D Type Master-Slave Flip-Flop

Description

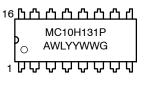
The MC10H131 is a MECL $10H^{\text{TM}}$ part which is a functional/pinout duplication of the standard MECL $10K^{\text{TM}}$ family part, with 100% improvement in clock speed and propagation delay and no increase in power-supply current.

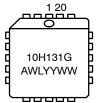

Features

- Propagation Delay, 1.0 ns Typical
- Power Dissipation, 235 mW Typical
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K Compatible
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com





PLLC-20 FN SUFFIX CASE 775-02

MARKING DIAGRAMS*

A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10H131FNG	PLCC-20 (Pb-Free)	46 Units/Tube
MC10H131FNR2G	PLCC-20 (Pb-Free)	500/Tape & Reel
MC10H131PG	PDIP-16 (Pb-Free)	25 Units/Tube

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}For additional marking information, refer to Application Note AND8002/D.

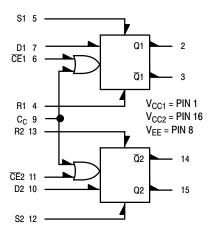
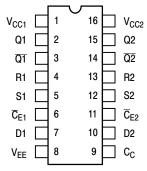



Figure 1. Logic Diagram

Pin assignment is for Dual-in-Line Package.

Figure 2. Pin Assignment

Table 1. RS TRUTH TABLE

R	s	Q _{n+1}
L	L	Q _n
L	Н	Н
Н	L	L
Н	Н	ND

ND = Not Defined

Table 2. CLOCKED TRUTH TABLE

С	D	Q _{n+1}
L	Х	Q _n
Н	L	L
Н	Н	Н

 $C = \overline{C}E + C_C$

A clock H is a clock transition from a low to a high state.

Table 3. MAXIMUM RATINGS

Symbol	Characteristic	Rating	Unit
V _{EE}	Power Supply (V _{CC} = 0)	-8.0 to 0	Vdc
VI	Input Voltage (V _{CC} = 0)	0 to V _{EE}	Vdc
l _{out}	Output Current Continuous Surge	50 100	mA
T _A	Operating Temperature Range	0 to +75	°C
T _{stg}	Storage Temperature Range Plastic Ceramic	–55 to +150 –55 to +165	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. ELECTRICAL CHARACTERISTICS (V_{EE} = -5.2 V ±5%) (Note 1)

		0	0 °		5°	75 °		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit
Ι _Ε	Power Supply Current	-	62	-	56	_	62	mA
l _{inH}	Input Current High Pins 6, 11 Pin 9 Pins 7, 10 Pins 4, 5, 12, 13	- - - -	530 660 485 790	1 1 1 1	310 390 285 465	1 1 1	310 390 285 465	μΑ
I _{inL}	Input Current Low	0.5	-	0.5	-	0.3	-	μΑ
V _{OH}	V _{OH} High Output Voltage		-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
V _{OL}	Low Output Voltage	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
V _{IH}	High Input Voltage	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
V _{IL}	Low Input Voltage	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been
established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
Outputs are terminated through a 50 Ω resistor to -2.0 V.

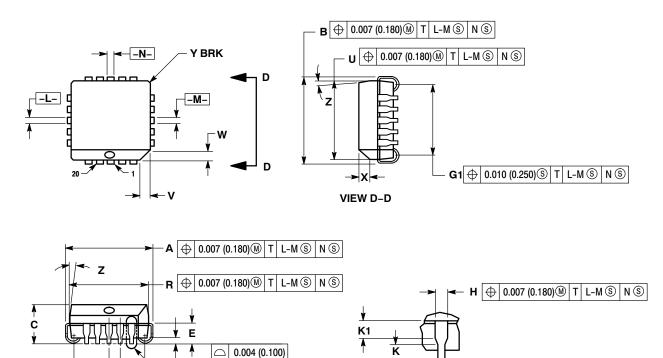
Table 5. AC CHARACTERISTICS

		0 °		25 °		75 °		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit
t _{pd}	Propagation Delay Clock, CE Set, Reset	0.8 0.6	1.6 1.6	0.8 0.7	1.7 1.7	0.8 0.7	1.8 1.8	ns
t _r	Rise Time	0.6	2.0	0.6	2.0	0.6	2.2	ns
t _f	Fall Time	0.6	2.0	0.6	2.0	0.6	2.2	ns
t _{set}	Set-up Time	0.7	-	0.7	-	0.7	-	ns
t _{hold}	Hold Time	0.8	-	0.8	-	0.8	-	ns
f _{tog}	Toggle Frequency	250	-	250	-	250	-	MHz

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

APPLICATION INFORMATION

The MC10H131 is a dual master-slave type D flip-flop. Asynchronous Set (S) and Reset (R) override Clock (C_C) and Clock Enable (\overline{CE}) inputs. Each flip-flop may be clocked separately by holding the common clock in the new low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the flip-flop, the Clock Enable inputs must be in the low state.


In this case, the enable inputs perform the function of controlling the common clock.

The output states of the flip-flop change on the positive transition of the clock. A change in the information present at the data (D) input will not affect the output information at any other time due to master slave construction.

PACKAGE DIMENSIONS

20 LEAD PLLC

CASE 775-02 **ISSUE F**

G1

0.010 (0.250) T L-M N N

1. DIMENSIONS AND TOLERANCING PER ANSI Y14.5M,

-T-

J

VIEW S

- 2. DIMENSIONS IN INCHES.
 3. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD

 OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.

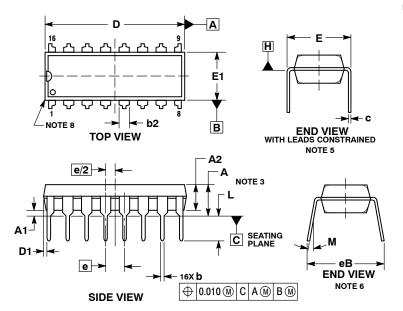
- PARTING LINE.

 4. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

 5. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.

 6. DIMENSIONS IN THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE
- MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).


	INCHES		MILLIM	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.385	0.395	9.78	10.03	
В	0.385	0.395	9.78	10.03	
С	0.165	0.180	4.20	4.57	
E	0.090	0.110	2.29	2.79	
F	0.013	0.021	0.33	0.53	
G	0.050	BSC	1.27	BSC	
н	0.026	0.032	0.66	0.81	
J	0.020		0.51	-	
K	0.025	0.64			
R	0.350	0.356	8.89	9.04	
U	0.350	0.356	8.89	9.04	
V	0.042	0.048	1.07	1.21	
W	0.042	0.048	1.07	1.21	
Х	0.042	0.056	1.07	1.42	
Υ		0.020		0.50	
Z	2 °	10 °	2 °	10 °	
G1	0.310	0.330	7.88	8.38	
K1	0.040		1.02		

VIEW S

F | \oplus | 0.007 (0.180) \omega | T | L-M \omega | N \omega

PACKAGE DIMENSIONS

PDIP-16 CASE 648-08 **ISSUE V**

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
- DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH
- DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C
- DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
 DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
- LEADS, WHERE THE LEADS EXIT THE BODY.
 PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS)

	INCHES DIM MIN MAX		MILLIM	ETERS
DIM			MIN	MAX
Α		0.210		5.33
A 1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060	TYP	1.52	TYP
С	0.008	0.014	0.20	0.36
D	0.735	0.775	18.67	19.69
D1	0.005		0.13	
Е	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100	BSC	2.54	BSC
eВ	0.430			10.92
L	0.115	0.150	2.92	3.81
М		10°		10°

STYLE 1:			STYLE 2	:
	PIN 1.	CATHODE	PIN 1.	COMMON DRAIN
	2.	CATHODE	2.	COMMON DRAIN
	3.	CATHODE	3.	COMMON DRAIN
	4.	CATHODE	4.	COMMON DRAIN
	5.	CATHODE	5.	COMMON DRAIN
	6.	CATHODE	6.	COMMON DRAIN
	7.	CATHODE	7.	COMMON DRAIN
	8.	CATHODE	8.	COMMON DRAIN
	9.	ANODE	9.	GATE
	10.	ANODE	10.	SOURCE
	11.	ANODE	11.	GATE
	12.	ANODE	12.	SOURCE
	13.	ANODE	13.	GATE
	14.	ANODE	14.	SOURCE
	15.	ANODE	15.	GATE
	16.	ANODE	16.	SOURCE

MECL is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative