sparkfun

TART SOMETHING

Page 1 of 16

ZX Distance and Gesture Sensor SMD Hookup

Guide

Introduction

The ZX Distance and Gesture Sensor is a collaboration product with XYZ
Interactive. The innovative people at XYZ Interactive have created a unique
technology that allows for simple infrared (IR) beams to be used to detect
an object’s location in two dimensions.

The ZX Sensor is a touchless sensor that is capable of looking for simple
gestures in the air above the sensor (e.g. swipe left or swipe right).
Additionally, the sensor can also recognize the distance of an object away
from the sensor at distances up to about 12 inches (30 cm), referred to as
the “Z” axis, and the location of the object from side to side across the
sensor in about a 6 inch (15 cm) span, referred to as the “X” axis.

ZX Distance and Gesture Sensor
® SEN-13162

Covered in This Tutorial

We can use I2C or UART to communicate with the ZX Sensor. In this
tutorial, we will show you how to connect the sensor to an Arduino or
Arduino-compatible board as well as a computer so you can start creating
gestures to handle all our your daily tasks or add some interactive flair to
your project.

Materials Used

In addition to the sensor itself, you will need a few extra components to
follow along with the Arduino examples:

ZX Gesture and Distance Sensor Hookup Guide SparkFun Wish

List

ZX Distance and Gesture Sensor
SEN-13162
The ZX Distance and Gesture Sensor is a touchless sensor that is ca...

SparkFun RedBoard - Programmed with Arduino
DEV-13975
At SparkFun we use many Arduinos and we're always looking for the...

CAB-11301
This is a USB 2.0 type A to Mini-B 5-pin cable. You know, the mini-B...

Breadboard - Mini Modular (White)
PRT-12043
This white Mini Breadboard is a great way to prototype your small proj...

Q SparkFun USB Mini-B Cable - 6 Foot

‘{:}:% Jumper Wires Premium 6" M/M Pack of 10
—r PRT-08431
o This is a SparkFun exclusive! These are 155mm long jumpers with m...

Break Away Headers - Straight
PRT-00116
A row of headers - break to fit. 40 pins that can be cut to any size. Us...

If you would like to try the ZX Sensor on a Windows-based PC, you will
need an FTDI Breakout:

SparkFun FTDI Basic
Breakout - 5V
@ DEV-09716

Recommended Reading

There are a few concepts that you should be familiar with before getting
started with the ZX Sensor. Consider reading some of these tutorials before
continuing:

« What is an Arduino? — Two of the examples use an Arduino to
control the ZX Sensor

« |12C — I2C is the one of the protocols used by the ZX Sensor

« Serial Communication — We use serial communications to program
the Arduino, view debugging information, and transmit data from the
ZX Sensor

* How to Use a Breadboard — The breadboard ties the Arduino to the
ZX Sensor

Page 2 of 16

» How to Install FTDI Drivers — If you are programming an Arduino or
using the ZX Sensor demo app, chances are you will need to use an
FTDI

Board Overview

The ZX Sensor works by bouncing infrared (IR) beams of light from the two
LEDs on either side off of an object above the sensor. The bounced light
returns to the receiver in the center of the sensor, and a microcontroller on
the back of the sensor interprets the data. We can read the results using an
I2C or UART connection.

Pin Descriptions

The ZX Sensor gives us two ports to connect to: I°C and UART. You can
see both ports are broken out to the 0.1" thru holes. See the table below for
a list of each pin and its function.

L]
Z2X Gesture Sensor g

Pin Label Description
GRN Not used
TXO UART transmit out from the ZX Sensor
RXI UART receive. Not used at this time.
VCC 3.3 -5V power supply
GND Connect to ground
BLK Not used, but connected to GND
DR Data Ready. High when there is data to be read via I1°C
CL 12C clock
DA I2C data

Setting the Jumpers

The ZX Sensor has a couple of jumpers on the back of the board that can
be opened or closed with a soldering iron.

D e o

S E88068666 6T P

12C Pullups

The ZX Sensor, by default, comes with 4.7 kQ pull-up resistors on the SDA
and SCL I2C lines. Remove the solder on this jumper using solder wick to
disconnect the pull-ups.

12C Addr

By default, this jumper is open. Close it to change the I2C address of the
sensor.

|Jumper I2C Address

Page 3 of 16

Page 4 of 16

Open 0x10 I

Closed 0x11 |

Hardware Hookup

Add Headers

Solder a row of male headers to the nine headers holes on the board.

To keep the board from tilting while soldering, place the unused break away
headers sideways under the board.

Heads up! Do not solder headers to the row of holes at the top of the
board. Those are for programming the PIC micrcontroller.

Connect the Breakout Board

For the Arduino examples, we will be using I?C. Connect the breakout
board to the following RedBoard pins:

fritzing
ZX Sensor | RedBoard
VCC 5V
GND GND
DR 2
CL A5
DA Ad

Note that we connect the DR pin, but we will only use it in the Arduino:
Gesture Example. DR stands for “Data Ready,” which is active high
whenever data is ready to be read from the ZX Sensor. We can attach this
to an Arduino interrupt so we don’t have to continuously poll the sensor.

Arduino Library Installation

All of the hard work for the ZX Sensor is being accomplished in the
microcontroller on the sensor itself. All we need to do is read the results!
We have created an Arduino library to make that even easier for you. Click
the button to download the latest version of the ZX Sensor Arduino Library.
You can also find the latest files in the GitHub repository.

DOWNLOAD THE ZX SENSOR ARDUINO LIBRARY!
Unzip the downloaded file. Follow this guide on installing Arduino libraries

to install the files as an Arduino library.
https://github.com/sparkfun/SparkFun_zX_Distance_and_Gesture_Sensor_Arduino_Library/archive/master.zip

Page 5 of 16

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text
https://github.com/sparkfun/SparkFun_ZX_Distance_and_Gesture_Sensor_Arduino_Library/archive/master.zip

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

Page 6 of 16

Arduino: ZX Example

Load the ZX Demo

Open up the Arduino program and select File — Examples —
SparkFun_ZX_Distance_and_Gesture_Sensor — 12C_ZX_Demo.

Attach a USB mini cable from your computer to the RedBoard. If you have
not previously done so, install the FTDI drivers.

For reference, here is the 12C_ZX_Demo.ino sketch.

/***

Fok kK KKK

I2C_ZX_Demo.ino

XYZ Interactive ZX Sensor

Shawn Hymel @ SparkFun Electronics

May 6, 2015
https://github.com/sparkfun/SparkFun_zZX_Distance_and_Gestu

re_Sensor_Arduino_Library

Tests the ZX sensor's ability to read ZX data over I2C. Th

is demo

configures the ZX sensor and periodically polls for Z-axi

s and X-axis data.

Hardware Connections:

Arduino Pin ZX Sensor Board Function

5V vcce Power

GND GND Ground

A4 DA I2C Data
A5 CL I2C Clock
Resources:

Include Wire.h and ZX_Sensor.h
Development environment specifics:
Written in Arduino 1.6.3

Tested with a SparkFun RedBoard

This code is beerware; if you see me (or any other SparkFu

n

employee) at the local, and you've found our code helpfu
1, please

buy us a round!

Distributed as-is; no warranty is given.

3K 3k 3k 3k 3k 3k >k 3k 3k >k 3k 3k 3k 3k >k 3k 3k >k 3k 3k 3k 3k >k 3k 3k >k 3k 3k >k 3k >k 3k 5k >k 3k 3k 3k 3k >k 3k 5k >k 3k >k 3k 3k >k 3k 3k >k 3k >k k kK k ok k
ook koK /

D)

#include <Wire.h>
#include <ZX_Sensor.h>

// Constants
const int ZX_ADDR = 0x10; // ZX Sensor I2C address

// Global Variables

ZX_Sensor zx_sensor = ZX_Sensor(ZX_ADDR);
uint8_t x_pos;

uint8_t z_pos;

void setup() {
uint8_t ver;
// Initialize Serial port

Serial.begin(9600);
Serial.println();

Serial.println("---=-=-=---cc-cmcme oo ")
Serial.println("SparkFun/GestureSense - I2C ZX Demo");
Serial.println("---=-=-=---ccccmcmmm oo ")

// Initialize zZX Sensor (configure I2C and read model I

Page 7 of 16

if (zx_sensor.init()) {
Serial.println("zX Sensor initialization complete");
} else {
Serial.println("Something went wrong during ZX Sensor
init!");

}

// Read the model version number and ensure the library
will work
ver = zx_sensor.getModelVersion();
if (ver == ZX_ERROR) {
Serial.println("Error reading model version number");
} else {
Serial.print("Model version: ");
Serial.println(ver);
}
if (ver != ZX_MODEL_VER) {
Serial.print("Model version needs to be ");
Serial.print(ZX_MODEL_VER);
Serial.print(" to work with this library. Stopping.");
while(1);

// Read the register map version and ensure the library
will work
ver = zx_sensor.getRegMapVersion();
if (ver == ZX_ERROR) {
Serial.println("Error reading register map version num
ber");
} else {
Serial.print("Register Map Version: ");
Serial.println(ver);
}
if (ver != ZX_REG_MAP_VER) {
Serial.print("Register map version needs to be ");
Serial.print(ZX_REG_MAP_VER);
Serial.print(" to work with this library. Stopping.");
while(1);

void loop() {
// If there is position data available, read and print i

if (zx_sensor.positionAvailable()) {

X_pos = zx_sensor.readX();

if (x_pos != ZX_ERROR) {
Serial.print("X: ");
Serial.print(x_pos);

¥

z_pos = zx_sensor.readZ();

if (z_pos != ZX_ERROR) {
Serial.print(" z: ");
Serial.println(z_pos);

Run

Make sure you have the correct serial port selected under Tools — Serial
Port and “Arduino Uno” selected under Tools — Board. If you have never
used the Arduino IDE before, this turoial should get you started.

Page 8 of 16

Click the Upload button and wait for the program to finish uploading to the
Arduino. Select Tools — Serial Monitor to open up the serial terminal. More
info on the Serial Terminal can be found here. Note that the Serial Monitor
settings are the default settings (9600, 8, n, 1). You should see a couple of
messages noting that “ZX Sensor initialization complete.”

7] tunemred Holneendng » 900Basd .

Hover your hand 4 to 10 inches (10 to 25 cm) above the sensor.

Move your hand around above the sensor, and you should see Z (height
above the sensor) and X (position side to side) appear in the serial terminal.

7] tunemred Holneendng » 900Basd .

NOTE: Z- and X- data is given as an unsigned integer between 0 and
240 (inclusive).

Arduino: Gesture Example

Load the Gesture Interrupt Demo

In addition to providing Z- and X- axis data about an object, the ZX Sensor
is also capable of detecting simple gestures. To see an example of this,
open File — Examples — SparkFun_zZX_Distance_and_Gesture_Sensor
— |12C_Gesture_Interrupt.

Page 9 of 16

Page 10 of 16

Here is the 12C_Gesture_Interrupt.ino sketch for reference.

/***
EXT3

I2C_Gesture_Interrupt.ino

XYZ Interactive ZX Sensor

Shawn Hymel @ SparkFun Electronics

May 6, 2015
https://github.com/sparkfun/SparkFun_zX_Distance_and_Gesture_S
ensor_Arduino_Library

Tests the ZX sensor's ability to read gesture data over I2C us
ing

an interrupt pin. This program configures I2C and sets up an
interrupt to occur whenever the ZX Sensor throws its DR pin hi
gh.

The gesture is displayed along with its "speed" (how long it t
akes

to complete the gesture). Note that higher numbers of "speed"
indicate a slower speed.

Hardware Connections:

Arduino Pin ZX Sensor Board Function

5V vccC Power

GND GND Ground

A4 DA I2C Data
A5 CL I2C Clock
2 DR Data Ready
Resources:

Include Wire.h and ZX_Sensor.h

Development environment specifics:
Written in Arduino 1.6.3
Tested with a SparkFun RedBoard

This code is beerware; if you see me (or any other SparkFun
employee) at the local, and you've found our code helpful, ple
ase

buy us a round!

Distributed as-is; no warranty is given.
sk 3k 3 5k 5k 3K 3k 3 3k 5k 3K 3k 3k 3 3k 5K 3K 3k 3 3k 5k 5k ok 3k 3 5k 5k 5k 3k 3k 3k 3k 5k 3K 3k 3 3k 5k 5K ok 3k 3 3k 5K 5k K 3k 3 ok 5k >k 3k 3k 3k ok ok ok %k kK kK

**/

#include <Wire.h>
#include <ZX_Sensor.h>

// Constants
const int ZX_ADDR = 0x10; // ZX Sensor I2C address
const int INTERRUPT_NUM = @; // Pin 2 on the UNO

// Global Variables

ZX_Sensor zx_sensor = ZX_Sensor(ZX_ADDR);
volatile GestureType gesture;

volatile bool interrupt_flag;

uint8_t gesture_speed;

void setup() {
uint8_t ver;

// Initialize gesture to no gesture
gesture = NO_GESTURE;

Page 11 of 16

// Initialize Serial port

Serial.begin(9600);

Serial.println();
Serial.println("-------------oooooiioooi oo

-");

Serial.println("SparkFun/GestureSense - I2C Gesture Interrup

t");

Serial.println("Note: higher 'speed' numbers mean slower");
Serial.println("--------------""-"--eme oo

"
>

// Initialize zZX Sensor (configure I2C and read model ID)
if (zx_sensor.init(GESTURE_INTERRUPTS)) {

Serial.println("zX Sensor initialization complete");
} else {
Serial.println("Something went wrong during ZX Sensor ini
t");
}
// Read the model version number and ensure the library wil
1 work
ver = zx_sensor.getModelVersion();
if (ver == ZX_ERROR) {
Serial.println("Error reading model version number");
} else {
Serial.print("Model version: ");
Serial.println(ver);
}
if (ver != ZX_MODEL_VER) {
Serial.print("Model version needs to be ");
Serial.print(ZX_MODEL_VER);
Serial.print(" to work with this library. Stopping.");
while(1);
¥
// Read the register map version and ensure the library wil
1 work
ver = zx_sensor.getRegMapVersion();
if (ver == ZX_ERROR) {
Serial.println("Error reading register map version numbe
r");
} else {
Serial.print("Register Map Version: ");
Serial.println(ver);
}
if (ver != ZX_REG_MAP_VER) {
Serial.print("Register map version needs to be ");
Serial.print(ZX_REG_MAP_VER);
Serial.print(" to work with this library. Stopping.");
while(1);
¥

// Initialize interrupt service routine

interrupt_flag = false;

zx_sensor.clearInterrupt();

attachInterrupt(INTERRUPT_NUM, interruptRoutine, RISING);
Serial.println("Interrupts now configured. Gesture away!");

}

void loop() {

// If we

have an interrupt, read and print the gesture

if (interrupt_flag) {

Page 12 of 16

Page 13 of 16

// Clear the interrupt flag
interrupt_flag = false;

// You MUST read the STATUS register to clear interrupt!
zx_sensor.clearInterrupt();

// Read last gesture
gesture = zx_sensor.readGesture();
gesture_speed = zx_sensor.readGestureSpeed();
switch (gesture) {
case NO_GESTURE:
Serial.println("No Gesture");
break;
case RIGHT_SWIPE:
Serial.print("Right Swipe. Speed: ");
Serial.println(gesture_speed, DEC);
break;
case LEFT_SWIPE:
Serial.print("Left Swipe. Speed: ");
Serial.println(gesture_speed, DEC);
break;
case UP_SWIPE:
Serial.print("Up Swipe. Speed: ");
Serial.println(gesture_speed, DEC);
break;
default:
break;

void interruptRoutine() {
interrupt_flag = true;

}

Run

Upload the sketch, and open the Serial Monitor. You should see a message
stating that initialization is complete.

7] tunemred Holneendng » 900Basd .

Start with your hand off to one side (a “side” being the one of the infrared
LEDs with the brass covers) about 4 to 10 inches (10 to 25 cm) above the
sensor. Swipe your hand horizontally across the sensor so that your hand
passes over the one infrared LED and then the next infrared LED.

If you performed the gesture correctly, you should see a message appear in
the Serial Monitor.

7] tunemred Holneendng » 900Basd .

NOTE: The "Speed" of the gesture is a measure of how fast the
gesture occurred. Note that the lower the number, the faster the
gesture occurred (e.g. 3 being very fast and 25 being very slow).

Supported Gestures

Here is a list of the currently supported gestures. Make sure each gesture
begins outside of the range of the sensor, moves into the range of the
sensor, and ends outside the range of the sensor.

Gesture Description

A swipe from the left side of the board to the right and out of
range of the sensor. Make sure that your wrist/arm is not in the
sensor's range at the end of the swipe!

Right
Swipe

Left A swipe from the right side of the board to the left and out of

Swipe range of the sensor.
) Object starts near the sensor, hovers for at least 1 second,
Up Swipe
and then moves up above and out of range of the sensor.
No The sensor could not correctly determine the gesture being
Gesture performed.

PC: ZX Example

The ZX Sensor, in addition to responding to 1°C commands, continually
transmits ZX data over its UART port. We can connect an FTDI Breakout
directly to the ZX Sensor and read the output. You can use serial
applications or the screen command (Linux or Mac) to view the output.

NOTE: You can use either 3.3V or 5V FTDI. 5V gives you a bit
better range with the sensor.

If you are on a Windows computer, you can use the demo application
(linked below) provided by XYZ Interactive to test the ZX Sensor.

Page 14 of 16

Setup

Connect the FTDI Breakout board to the ZX Sensor. Ensure the pins on the
FTDI Brekaout line up with the pins on the ZX Sensor (e.g. GRN connects
to GRN and BLK connects to BLK). Connect the FTDI Breakout to your
computer with a USB cable.

Download the ZX Demo application, and unzip it.

DOWNLOAD THE ZX DEMO APPLICATION

Run

Double-click to run the ZX Demo application. Under “Input:” on the right
side, drop down the list and select the COM port that corresponds to your
FTDI Breakout (if you need a refresher on find the right COM port, check
out this section of the Terminal Basics tutorial). You do not need to choose
an “Output:” port.

Click Open to connect to the FTDI Breakout.

sl Cortes J. GO | Gk

T | Sedsl Porty:

WCREMENTAL CONTROL. et
E1ace yoas handt or Enghe v ihe 1anSr BRG hovar o Cne wide ——
The geuge ber posscn [Fall
Hiohe Tes will WO SvEn W PO ANQ8! 10UCING T Surface oo
Gauge: 35
P e
= POSITION + o

Move your hand around above the sensor, and you should see the red ball
move.

Try out the other tabs in the application! The Z-Control tab lets your try
moving your hand toward and away from the sensor, and the Gestures tab
computes a few different gestures based on the Z- and X- data.

Resources and Going Further

After trying the basic ZX and gesture demos, you can try the other
examples in the Arduino library. A description of each of the examples is
given below:

Page 15 of 16

have occurred.

12C_Gesture_Demo — Poll the sensor over I°C to see if any gestures

12C_Gesture_Interrupt — The DR pin will go from low to high when a

gesture is detected. This example reads the gesture over 12C and

tells the sensor to clear DR.

axis data.

valid ZX data is ready.

12C_ZX_Demo — Poll the sensor periodically over I2C for Z- and X-
12C_ZX_Interrupt — The ZX Sensor will throw DR high whenever

UART_Gesture_Demo — NOTE: Gestures over UART are not

supported at this time. This demo is a placeholder for the time being.

UART_ZX_Demo — Read Z- and X- axis data from a software serial

port and display them on the Serial Monitor.

Resources

Here are some additional resources to help you with the ZX Sensor:

« ZX Sensor Datasheet

* Using the ZX Sensor with Arduino

* ZX Sensor Schematic

» ZX Sensor GitHub Repository
» ZX Sensor 12C Register Map

Other Tutorials

What will you make with the ZX Sensor? If you need some inspiration,

check out these related tutorials:

Connecting Arduino to
Processing

Send serial data from Arduino to
Processing and back - even at the
same time!

RGB Panel Hookup Guide
Make bright, colorful displays using
the 32x32 and 32x16 RGB LED
panels. This hookup guide shows
how to hook up these panels and
control them with an Arduino.

Serial Graphic LCD Hookup
Learn how to use the Serial Graphic
LCD.

APDS-9960 RGB and
Gesture Sensor Hookup
Guide

Getting started guide for the Avago
APDS-9960 color, proximity, and
gesture sensor.

Page 16 of 16

https://learn.sparkfun.com/tutorials/zx-distance-and-gesture-sensor-smd-hookup-guide? ga... 6/6/2017

