
SparkFun Line Follower Array Hookup Guide




Introduction
The Line Follower Array is is an array of eight IR sensors that are
configured and read as digital bits! In our laboratories, the RedBot shadow
chassis was used as a test platform, but this product was designed as an
add-on for any bot. The array features visible LEDs, so you can see what
the robot sees, brightness control right on the board, and an I C interface
for reading and power control.

Features

• 8 sensor eyes (QRE1113, like in our line sensor breakout)
• I C interface
• Adjust IR brightness on the fly with a knob
• Switch IR on and off with software
• Switch visual indicators on and off with software
• Invert dark/light sight with software
• Based on the SX1509 I/O expander

Covered In this Tutorial

This tutorial will help get the line follower array connected to your bot with
the Arduino IDE over I C. It is split into the following sections:

• Hardware Overview – An overview of the physical board and
electrical characteristics.

• Hardware Assembly – Attaching the sensor to a 328p based micro.
◦ Setting the Jumpers – Describes the board’s jumper

configurations.
• Installing the SparkFun Line Follower Array Arduino Library – Where

to get the library for the array.
◦ Core Functions of the Arduino Library – Describes the basic

reading and configuration of the array.

2

2

2

Page 1 of 12

◦ Extra Library Function: The Circular Buffer – The library has a
hidden feature! Use a circular buffer to log data for
computation.

• Example Sketches – Test out the sensor on your desk or try a line
following example on your robot.

Suggested Reading

The array acts as a stand alone I C device pretty well. If you want to learn
more about I C or are using the RedBot kits, check out this additional
material.

• I C Communication – The array is controlled over an I C interface.
Learn what that is here.

• RedBot Experiment Guide – Using the RedBot with red or black
chassis? Work through some experiments first in order to get going.

◦ Line following experiment – One of the experiments for the
RedBot is line following with only three sensors. Working
through this experiment revels why eight sensors is better.

• Counting and Converting in Binary – The sensors correspond to bit
positions in a byte. Rusty on conversions? Take a look here.

Hardware Overview
The array PCB has a few pieces to note.

1. IR brightness control and indicator – The IR PWR led shows the
strength of the IR LEDs. Brighter means more IR emitted.

2. Polarity marking – Shows getPosition() polarity.
3. Robot vision indicators – See what the IR sensors are picking up.

Note: these are not inverted by the library’s set/clearInvertBits()
functions. Usage covered in Setting the Brightness

4. Digital interface – Described in the Assembly section.
5. I2C pull option jumper – Defaulted to 3.3V pull-up. Can be

converted to 5V if necessary. See Setting the Jumpers.
6. Mounting holes – The inner two holes fit the Shadow chassis.

Others are general purpose.
7. The IR transducers – These emit and detect IR radiation.
8. I C address selection – Set the jumpers in accordance with the

table for a desired address.

Electrical Specifications

Parameter Conditons Min Typ. Max

Supply
Current

Vcc = 5.0v
Strobing disabled

25 185 mA

2

2

2 2

2

Page 2 of 12

Vcc = 5.0v
Strobing enabled

Running
‘MostBasicFollower’

16 100 160 mA

Read
Cycle
TIme

Vcc = 5.0v
Strobing Enabled

3.2 ms

Vcc = 5.0v
Strobing Disabled

250 us

Setting the Jumpers
The array has two configurable options: I C address and I C pull-up
voltage.

I C address

If you need to change the address of the array, move the solder jumper to
set A0 and A1. The silkscreen table gives a reference. Seen in the photo,
the default address is 0x3E. For example, if you want to use address 0x70,
move A1 to the ‘1’ position and leave A0 at ‘0’.

I C pull-up voltage

The I C bus of the array is pulled up to 3.3V by default. This should work for
3.3V and 5V boards, but if you need to change it explicitly to 5V, cut the
copper bridge and add a solder jumper to the “5V” side. The other jumper is
included if you need to disconnect the I C bus from the pull-ups entirely.
This will only be used in specific situations, for instance if the
microcontroller side has strong pull-ups and the array’s resistors need to be
disabled.

Assembly
Assembly is super easy! Make the following connections with your
microcontroller.

Signal/Description Line
Follower
Silkscreen

RedBot
Mainboard
Silkscreen

RedBoard
Silkscreen

Power - 5v DC 5V 5V 5V

Ground GND GND GND

I2C Data SDA/A4 A4 A4 or SDA

I2C Clock A5/SCL A5 A5 or SCL

INT(*) NC NC NC

* Note: INT pin is not required but can be connected to any input if the

2 2

2

2

2

2

Page 3 of 12

interrupt functionality is programmed into the SX1509 expander.

Using I C via pins A4 and A5.

Using I C via the dedicated SDA and SCL pins.

Connections are pin compatible with the RedBot Mainboard.

Mechanical Attachment to a Shadow Chassis

Attaching to the Shadow Chassis happens through the slot where the
original three line following sensors were placed. Put 4-40 hardware
through the array and hold with a finger. Hold the bolts through the slot in
the shadow chassis, thumb on the 4-40 nuts, then make the electrical
connections.

Hold the bolts in place with a finger

2

2

Page 4 of 12

Thumb on the attaching nuts, then torque by hand or with a screwdriver

Make the electrical connections

Installing the Arduino Library
The sensor bar is basically an I C expander with sensors, but to simplify
implementation we’ve created a set of drivers to collect the data in a
convenient way. Visit the GitHub repository to download the most recent
version of the library, or click the link below:

DOWNLOAD THE LINE FOLLOWER ARRAY ARDUINO LIBRARY

For help installing the library, check out our How To Install An Arduino
Library tutorial. You’ll need to move the
SparkFun_Line_Follower_Array_Arduino_Library folder into a libraries
folder within your Arduino sketchbook.

Run a test example

To verify that your hookup works, load up the “RedBot Line Follower Bar
Arduino Library\ReadBarOnly” by going to File > Examples > RedBot Line
Follower Bar Arduino Library > ReadBarOnly.

The default values set by this sketch should work for a fresh, out-of-the-box
sensor. Set the baud rate to 9600, and run the sketch. You should see the
Arduino output data every second in a few different formats. If the sketch
only says that the IC communication failed, double check your wiring
connections.

Setting the Brightness
The knob on the sensor array is used to set the brightness of the IR LEDs.
Because silly humans can’t see IR, the “IR PWR” LED is provided to give
feedback for how bright the LEDs are operating, and to indicate that the
regulator is functioning. This indicates what the brightness will be even if
the IR illuminators are disabled in firmware.

Remember: Brighter is not always better. Calibrate your robot in the
field before running.

2

Page 5 of 12

Follow these three steps to configure the IR brightness.

Step 1: Turn the brightness down until light areas stop picking up.

Vision indicators will show above light areas when the shouldn’t. Notice B7
and B0 have illuminated.

Step 2: Turn the brightness up until dark areas start falsely picking up.

Vision indicators above dark areas will stop showing. Notice B3 has
stopped illuminating

Step 3: Set the brightness somewhere between those two points.

B3 and B4 are illuminated over the line and knob’s arrow now shows a
setting between the two limits. It’s ready to follow!

Core Functions of the Arduino Library
The basic library has the following parts

Object construction

Each instance of the SensorBar library needs to be constructed in the
global scope for all to access.

Arguments:

Page 6 of 12

Pass the device address in HEX (unsigned 8 bit).

Example:

For the default address of 0x3E:

SensorBar mySensorBar(0x3E);

begin()

Use begin to start the sensor bar’s I2C expander. This use Wire.h under the
hood.

begin() takes no arguments.

Return:

Returns success message (unsigned 8 bit).

returns 1 if it was able to communicate with the sensor bar or 0 if it had
troubles. In the example ReadBarOnly the sketch is held if the sensor did
not respond.

After .begin(); has been run, the sensor bar is ready to start reading
data. Place it in the setup() section to run once.

Example:

uint8_t returnStatus = mySensorBar.begin();
if(returnStatus)
{
 Serial.println("sx1509 IC communication OK");
}
else
{
 Serial.println("sx1509 IC communication FAILED!");
}
Serial.println();

getRaw()

Get a reading from the array as a single 8 bit word where each bit
represents an IR sensor. If the sensor’s lights show: ON, ON, ON, ON,
OFF, ON, ON, ON, this function will return 0xF7 matching the bit positions
on the silkscreen. If InvertBits has been set though, the result will be
0x08.

Notice that the silkscreen labels b7 through b0 represent the same bits of
this raw data.

getRaw() takes no arguments.

Return:

Returns the states of the IR detectors, as bits of a byte (unsigned 8 bit).

Example:

//Get the data from the sensor bar.
uint8_t rawValue = mySensorBar.getRaw();

Get the states and place in the temporary variable rawValue

getPosition()

Use to get the data as as a vector to the average of detected points.
Returns a signed 8 bit number, -127 to 127.

Page 7 of 12

For example, if the center two bits (b4 and b3) detect line, the average will
be 0, or centered. If the left four (b7 through b4) detect line, the result will
be an average to the left (-79). If only the left most sensor detects line, b7,
the result will be -127. Use the silkscreen axis on the sensor bar to assist
interpretation.

Note that if InvertBits does not match the line/field colors, the result of
getPosition() will not have meaning. This is because multiple detected
positions get averaged to come up with a vector, and an inverted setting
means basically all the positions are detected and average near zero
(center).

getPosition() takes no arguments.

Return:

Position as a signed 8 bit integer, ranged: -127 to 127.

Example:

//Print the position
Serial.print("Position (­127 to 127): ");
Serial.println(mySensorBar.getPosition());

getDensity()

Use to get the number of sensors that are detecting a line.

This is useful for detecting validity of the perceived line or to detect stop
conditions, such as if the robot has been picked up.

getDensity() takes no arguments.

Return:

Returns an 8-bit unsigned integer ranged 0 through 8.

Example:

//Print the density
Serial.print("Density, bits detected (of 8): ");
Serial.println(mySensorBar.getDensity());

setBarStrobe() and clearBarStrobe()

Use to turn on and off the bar’s IR strobing to save power.

Note: If BarStrobe is set, the feedback indicators only show the value
during the time the robot is actively reading the line, but it can save a
bunch of power.

setBarStrobe() and clearBarStrobe take no arguments and return void.

Example:

//For this demo, the IR will only be turned on during reads.
mySensorBar.setBarStrobe();
//Other option: Command to run all the time
//mySensorBar.clearBarStrobe();

Also note that a read operation takes 2-3x longer with BarStrobe set, as the
library has to enable and disable the LEDs. If extremely rapid reads are
required, clear the BarStrobe.

setInvertBits() and clearInvertBits()

Page 8 of 12

Use to reverse the perceived line/field color scheme. With inversion
cleared, the sensor is looking for a dark line on light background. With
inversion set, it looks for a light line on a dark background.

Note: The bar's vision indicators are NOT reversed by this function,
only how the library uses the data.

setInvertBits() and clearInvertBits() take no arguments and return void.

Example:

//Default dark on light surface
mySensorBar.clearInvertBits();
//Other option: light line on dark
//mySensorBar.setInvertBits();

Extra Library Function: The Circular
Buffer
The arduino library actually contains two classes. The first (discussed
above) does all the reading and configuration of the actual sensor. The
second is a data structure for creating and holding a buffer of data.

The structure is a circular buffer where, when full, new data overwrites the
oldest data and all access to the data is referenced from the newest piece
of data.

Object Construction

Construct the buffer objects in the global scope.

Arguments:

Pass the maximum size of the buffer to create. Argument is type unsigned
16 bit integer, but size must be limited to the size of memory available.

getPosition() takes no arguments.

Example:

#define CBUFFER_SIZE 100

//...

CircularBuffer positionHistory(CBUFFER_SIZE);

getElement()

Read the data in the buffer at some depth from newest.

Arguments:

Pass the element number to get as unsigned 16 bit integer. The newest
element is referenced as 0.

Return:

Element value as signed integer.

pushElement()

Add a new piece of data to the buffer.

Arguments:

Pass the value to push into the buffer as signed 16 bit integer.

Page 9 of 12

pushElement returns void.

Example:

//Read data from the sensor and put it in the buffer.
positionHistory.pushElement(mySensorBar.getPosition());

averageLast()

Average some number of the most recent entries.

Arguments:

Pass number of elements to average as unsigned 16 bit integer.

Return:

The mathematical average of the newest elements as signed 16 bit integer.

Example:

//Get an average of the last 'n' readings
int16_t avePos = positionHistory.averageLast(10);

recordLength()

recordLenght() takes no arguments.

Return:

Number of elements currently in the buffer.

When working with a partially filled buffer, this will report how many entries
have been pushed in. When the buffer is full, this reports the total size of
the buffer.

Example Sketches

ReadBarOnly

This example exists to show all the forms of data collection that can be
done with the library.

To use the sketch, select it from the ‘examples’ menu and load it onto an
Uno compatible board. Open a serial terminal at 9600 baud and text of the
raw data, position, and density should appear. Otherwise, it will proclaim
that the communication has failed.

A properly running sketch reporting that the line is centered

Page 10 of 12

If the sensor did not connect properly, the example will let you know

MostBasicFollower

This is an demonstration of line following capabilities using the RedBot
mainboard and either chassis. It was designed for a dark line of about ¾
inch width (spray paint or electrical tape) on a light background.

The sketch can navigate curved corners but not 90 degree corners! It’s up
to you to find a way to make it navigate. Also, this was designed to stop if
the line is lost. There must be a way to seek partial line segments…

This example is being used in our demo video.

This sketch has a little state machine inside that reads the line, then goes to
a state that calls drive functions, depending on some condition. It was
designed to be simple on purpose. It’s up to you to make a better system!

The basic state machine inside the sketch.

Page 11 of 12

This blog post State Machines: blink.ino learns to snooze may help if you
need a refresher on state machines.

AveragingReadBarOnly

This sketch was written to demonstrate how to get a pseudo-high resolution
output from the array. Load the sketch and open a serial terminal at 115200
baud. The ‘*’ is drawn on a scale as a rolling average filter of the
getPosition() data.

It also allows you to look back in time to see what the robot previously went
over.

Output of the AveragingReadBarOnly sketch while the sensor was swept
over a line. Notice the averaging has produced a output that has a

resolution higher than the physical sensor resolution.

This works by creating a circular buffer which stores fresh getPosition()
data at a regular intervals, and by averaging the newest 10 entries in the
buffer.

The buffer class is included as an extra with the library. See The Circular
Buffer section.

Resources and Going Further
Here are a few line following resources:

• SX1509 Hookup Guide – You can treat the array as a SX1509
breakout board, use those drivers and fine tune your operation if you
like.

• SX1509 Datasheet – This datasheet describes the full operation of
the I2C expander.

• PID tutorial – Our Educator’s pick for following lines with a PID
(proportional, integral, differential) algorithm.

Happy line-following!

Page 12 of 12

10/23/2015https://learn.sparkfun.com/tutorials/sparkfun-line-follower-array-hookup-guide?_ga=1.34...

