

Surface Mount Switching Diode Types HCR4148D, HCR4148M, TX, TXV

Features

- Constructed from ceramic, metal, and glass for rugged environments
- Eutectic mounted silicon die.
- TX and TXV processing available

Description

The HCR4148 series are hermetically sealed, ceramic surface mount switching diodes designed for the High Reliability user. Specifications are similar to those of the 1N4148-1 as defined by MIL-PRF-19500/116. The miniature three and four pin packages are ideal where PC board space and device weight are important design considerations.

High reliability processing per MIL-PRF-19500 TX or TXV equivalent levels are available on request. Typical screening and lot acceptance testing is provided on page 13-4. MIL-PRF-19500/116 may be used as a guide for more detail. TX and TXV devices are 100% thermal response tested. To order add "TX" or "TXV" suffix to part number (i.e. HCR4148MTX).

Absolute Maximum Ratings ($T_A = 25^\circ$ C unless otherwise noted)

Operating Junction Temperature
Storage Temperature
Reverse Breakdown Voltage (BVR) 100 V
Continuous Forward Current (Io)
Surge Current (IFSM, tp = 1/120 sec.)

Part Number	Rejo	Power Dissipation(1)	Burn-in Current ⁽²⁾
HCR4148M	175° C/W	300 mW	_100 mA
HCR4148D	100° C/W ⁽³⁾	200 mW/diode	80 mA/diode

Notes:

- (1) This rating is given as an aid to designers and applies to a device that is soldered to a substrate (i.e. PC board) that is held at 25°C.
- (2) This value is the maximum D.C. current that can be conducted while the device is operating in a burn-in test socket where convection cooling is limited. (Applies to TX and TXV processing only).
- (3) This rating given for the dual diode device applies when both devices are being driven equally.

Types HCR4148D, HCR4148M, TX, TXV

Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Min	Max	Units	Test Conditions
V _{F1}	Forward Voltage		1.0	V	l _F = 10 mA
VF2	Forward Voltage		1.2	V	IF = 100 mA
V _(BR)	Breakdown Voltage	100		V	I _R = 100 μA
I _{R1}	Reverse Leakage Current		25	nA	V _R = 20 V
I _{R2}	Reverse Leakage Current		500	nA	V _R = 75 V
I _{R3}	Reverse Leakage Current		50	μA	$V_{R} = 20 V, T_{A} = 150^{\circ}C$
I _{R4}	Reverse Leakage Current		100	μA	V _R = 75 V, T _A = 150 ^o C
V _{F3}	Forward Voltage		0.80	V	l⊧ = 10 mA, T _A = 150°C
V _{F4}	Forward Voltage		1.2	V	I _F = 100 mA, T _A = -55°C
IFSM	Surge Current	1		А	t = 8.3 ms
V _(fr)	Forward Recovery Voltage		5.0	V	$I_F = 50 \text{ mA}$, Recover to 110% of V_F at $I_F = 50 \text{ mA}$
*t(fr)	Forward Recovery Time		20	ns	$I_F = 50 \text{ mA}$, Recover to 110% of V _F at $I_F = 50 \text{ mA}$
*C1	Junction Capacitance		4.0	pF	V _R = 0 V, f = 1MHz, Vsig = 50 mV, p-p max
*C2	Junction Capacitance		2.8	pF	V _R = 1.5 V, f = 1MHz, Vsig = 50 mV, p-p max
*t ₇	Reverse Recovery Time		5.0	ns	$I_{\text{F}} = I_{\text{r}} = 10 \text{ mA}, I_{\text{rr}} = 1.0 \text{ mA}, \text{ R}_{\text{L}} = 100 \ \Omega,$ $C = 3 \text{ pF}$

*These tests are guaranteed by die design and are not performed on assembled devices.

Optek Technology, Inc. 1215 W. Crosby Road Carrollton, Texas 75006 (214)323-2200 Fax (214)323-2396