ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

Product specification

1998 Jul 27

IC24 Data Handbook

Philips Semiconductors

74ALVCH16841

- Wide supply voltage range of 1.2V to 3.6V
- Complies with JEDEC standard no. 8-1A
- Wide supply voltage range of 1.2V to 3.6V
- CMOS low power consumption
- Direct interface with TTL levels
- MULTIBYTETM flow-through standard pin-out architecture
- Low inductance multiple V_{CC} and GND pins for minimum noise and ground bounce
- Current drive ±24 mA at 3.0 V
- All inputs have bus hold circuitry
- Output drive capability 50Ω transmission lines @ 85°C
- 3-State non-inverting outputs for bus oriented applications

DESCRIPTION

The 74ALVCH16841 has two 10-bit D-type latch featuring separate D-type inputs for each latch and 3-State outputs for bus oriented applications. The two sections of each register are controlled independently by the latch enable (nLE) and output enable (n \overline{OE}) control gates.

When $n\overline{OE}$ is LOW, the data in the registers appears at the outputs. When $n\overline{OE}$ is High the outputs are in High-impedance OFF state. Operation of the nOE input does not affect the state of the flip-flops.

The 74ALVCH16841 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

PIN CONFIGURATION	
10E 1	56 1LE
1Q0 2	55 1D0
1Q1 3	54 1D1
GND 4	53 GND
1Q2 5	52 1D2
1Q3 6	51 1D3
V _{CC} 7	50 V _{CC}
1Q4 8	49 1D4
1Q5 9	48 1D5
1Q6 10	47 1D6
GND 11	46 GND
1Q7 12	45 1D7
1Q8 13	44 1D8
1Q9 14	43 1D9
2Q0 15	42 2D0
2Q1 <u>16</u>	41 2D1
2Q2 17	40 2D2
GND 18	39 GND
2Q3 <u>19</u>	38 2D3
2Q4 <u>20</u>	37 2D4
2Q5 21	36 2D5
VCC 22	35 VCC
2Q6 23	34 2D6
2Q7 24	33 2D7
GND 25	32 GND
2Q8 26	31 2D8
2Q9 27	30 2D9
2 0E 28	29 2LE
	SA00076

QUICK REFERENCE DATA

GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 ns$

SYMBOL	PARAMETER	CONDITION	NS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay nD _n to nQ _n	$V_{CC} = 2.5V, C_L = 30pF$ $V_{CC} = 3.3V, C_L = 50pF$		2.5 2.4	ns
t _{PHL} /t _{PLH}	Propagation delay nLE to nQ _n	$V_{CC} = 2.5V, C_L = 30pF$ $V_{CC} = 3.3V, C_L = 50pF$		2.5 2.4	ns
Cl	Input capacitance			5.0	pF
C _{PD}	Power dissipation capacitance per buffer	$V_1 = GND$ to V_{CC}^1	Outputs enabled	19	pF
OpD	r ower dissipation capacitance per builer		Outputs disabled	3	pi

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where: } f_{i} = \text{input frequency in MHz; } C_{L} = \text{output load capacitance in pF;}$ $f_{o} = \text{output frequency in MHz; } V_{CC} = \text{supply voltage in V; } \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) = \text{sum of outputs.}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
56-Pin Plastic TSSOP Type II	–40°C to +85°C	74ALVCH16841 DGG	ACH16841 DGG	SOT364-1

74ALVCH16841

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	1 0E	Output enable inputs (active-LOW)
56	1LE	Latch enable inputs (active HIGH)
55, 54, 52, 51, 49, 48, 47, 45, 44, 43	1D0 – 1D9	Data inputs
2, 3, 5, 6, 8, 9, 10, 12, 13, 14	1Q0 – 1Q9	Data outputs
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0V)
7, 22, 35, 50	V _{CC}	Positive supply voltage
28	2 0E	Output enable inputs (active-LOW)
29	2LE	Latch enable inputs (active HIGH)
42, 41, 40, 38, 37, 36, 34, 33, 31, 30	2D0 – 2D9	Data inputs
15, 16, 17, 19, 20, 21, 23, 24, 26, 27	2Q0 – 2Q9	Data outputs

FUNCTION TABLE

	INPUTS	OUTPUT	
nOE	LE	Dx	Q
L	Н	L	L
L	Н	Н	Н
L	L	Х	Q ₀
Н	Х	Х	Z

H = High voltage level

L = Low voltage level

X = Don't care

Z = High impedance "off" state

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

74ALVCH16841

BUS HOLD CIRCUIT

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
	DC supply voltage 2.5V range (for max. speed performance @ 30 pF output load)		2.3	2.7	V
V _{CC}	DC supply voltage 3.3V range (for max. speed performance @ 50 pF output load)		3.0	3.6	V
VI	DC Input voltage range		0	V _{CC}	V
Vo	DC output voltage range		0	V _{CC}	V
T _{amb}	Operating free-air temperature range		-40	+85	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 2.3 \text{ to } 3.0 \text{V}$ $V_{CC} = 3.0 \text{ to } 3.6 \text{V}$	0 0	20 10	ns/V

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V ₁ < 0	-50	mA
V.	DC input voltage	For control pins ¹	-0.5 to +4.6	v
VI	DC input voltage	For data inputs ¹	–0.5 to V _{CC} +0.5	Ň
I _{OK}	DC output diode current	$V_{O} > V_{CC} \text{ or } V_{O} < 0$	±50	mA
Vo	DC output voltage	Note 1	–0.5 to V _{CC} +0.5	V
Ι _Ο	DC output source or sink current	$V_{O} = 0$ to V_{CC}	±50	mA
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package -plastic medium-shrink (SSOP) -plastic thin-medium-shrink (TSSOP)	For temperature range: -40 to +125 °C above +55°C derate linearly with 11.3 mW/K above +55°C derate linearly with 8 mW/K	850 600	mW

NOTE:

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74ALVCH16841

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V).

				LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Temp =	= -40°C to +8	5°C	
			MIN	TYP ¹	MAX	1
M		V _{CC} = 2.3 to 2.7V	1.7	1.2		V
VIH	HIGH level Input voltage	V _{CC} = 2.7 to 3.6V	2.0	1.5		1 ^v
M		V _{CC} = 2.3 to 2.7V		1.2	0.7	
VIL	LOW level Input voltage	V _{CC} = 2.7 to 3.6V		1.5	0.8	
		V_{CC} = 2.3 to 3.6V; V_I = V_{IH} or V_{IL} ; I_O = -100 μ A	V _{CC} -0.2	V _{CC}		
		V_{CC} = 2.3V; V_{I} = V_{IH} or V_{IL} ; I_{O} = -6mA	V _{CC} -0.3	V _{CC} -0.08		1
		V_{CC} = 2.3V; V_I = V_{IH} or V_{IL} ; I_O = -12mA	V _{CC} -0.6	V _{CC} -0.26		1
V _{OH}	HIGH level output voltage	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -12mA$	V _{CC} -0.5	V _{CC} -0.14		
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -12mA$	V _{CC} -0.6	V _{CC} -0.09		1
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -24mA$	V _{CC} -1.0	V _{CC} -0.28		1
		V_{CC} = 2.3 to 3.6V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		GND	0.20	V
		V_{CC} = 2.3V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 6mA		0.07	0.40	V
V _{OL}	LOW level output voltage	V_{CC} = 2.3V; V_I = V_{IH} or V_{IL} ; I_O = 12mA		0.15	0.70	
		V_{CC} = 2.7V; V_I = V_{IH} or V_{IL} ; I_O = 12mA		0.14	0.40	V
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 24mA$		0.27	0.55	1
I	Input leakage current	$V_{CC} = 2.3 \text{ to } 3.6 \text{V};$ $V_{I} = V_{CC} \text{ or GND}$		0.1	5	μA
I _{OZ}	3-State output OFF-state current	$ \begin{array}{l} V_{CC} = 2.3 \text{ to } 3.6 \text{V}; \text{V}_{\text{I}} = \text{V}_{\text{IH}} \text{ or } \text{V}_{\text{IL}}; \\ \text{V}_{\text{O}} = \text{V}_{CC} \text{ or } \text{GND} \end{array} $		0.1	10	μA
I _{CC}	Quiescent supply current	V_{CC} = 2.3 to 3.6V; V_{I} = V_{CC} or GND; I_{O} = 0		0.2	40	μA
ΔI_{CC}	Additional quiescent supply current	V_{CC} = 2.3V to 3.6V; V_{I} = V_{CC} – 0.6V; I_{O} = 0		150	750	μA
I _{BHL} ²	Bus hold LOW sustaining current	$V_{CC} = 2.3V; V_{I} = 0.7V$	45	-		μ/
.DUL		$V_{CC} = 3.0V; V_1 = 0.8V$	75	150		μ.,
I _{BHH} ²	Bus hold HIGH sustaining current	$V_{CC} = 2.3V; V_{I} = 1.7V$	-45	475		μ/
	Pue held I OW exercitive exercit	$V_{CC} = 3.0V; V_I = 2.0V$	-75	-175		/
I _{BHLO} ² I _{BHHO} ²	Bus hold LOW overdrive current Bus hold HIGH overdrive current	$V_{CC} = 3.6V$ $V_{CC} = 3.6V$	500 500			μΑ μΑ

NOTES:

1. All typical values are at $T_{amb} = 25^{\circ}C$. 2. Valid for data inputs of bus hold parts.

74ALVCH16841

AC CHARACTERISTICS FOR V_{CC} = 2.3V TO 2.7V RANGE

 $GND = 0V; t_r = t_f \le 2.0ns; C_L = 30pF$

SYMBOL	PARAMETER	WAVEFORM	V	_{CC} = 2.3 to 2.	7V	UNIT
			MIN	TYP ¹	MAX	1
t _{PLH} /t _{PHL}	Propagation delay nD _n to nQ _n	1, 5	1.0	2.5	5.0	ns
t _{PLH} /t _{PHL}	Propagation delay nLE to nQ _n	2, 5	1.0	2.5	5.6	ns
t _{PZH} /t _{PZL}	3-State output enable time $n\overline{OE}_n$ to nQ_n	4, 5	1.0	2.7	6.2	ns
t _{PHZ} /t _{PLZ}	3-State output disable time $n\overline{OE}_n$ to nQ_n	4, 5	1.1	2.2	5.3	ns
t _W	nLE pulse width HIGH	2, 5	3.3	1.5	-	ns
t _{SU}	Set up time nD _n to nLE	3, 5	1.3	0.1	-	ns
Т _h	Hold time nD _n to nLE	3, 5	1.4	0.3	-	ns

NOTE:

1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

AC CHARACTERISTICS FOR V_{CC} = 3.0V TO 3.6V RANGE AND V_{CC} = 2.7V

GND = 0V; $t_r = t_f \le 2.5ns$; $C_L = 50pF$

				LIMITS			LIMITS		
SYMBOL	PARAMETER	WAVEFORM	٧ _C	$_{ m C}$ = 3.3 \pm 0.	3V		V _{CC} = 2.7V		UNIT
			MIN	TYP ^{1, 2}	MAX	MIN	TYP ¹	MAX	
t _{PLH} /t _{PHL}	Propagation delay nD _n to nQ _n	1, 5	1.0	2.4	3.9	1.0	2.6	4.7	ns
t _{PLH} /t _{PHL}	Propagation delay nLE to nQ _n	2, 5	1.0	2.4	4.3	1.0	2.6	5.1	ns
t _{PZH} /t _{PZL}	3-State output enable time nOE _n to nQ _n	4, 5	1.0	2.3	4.9	1.0	3.1	6.0	ns
t _{PHZ} /t _{PLZ}	3-State output disable time $n\overline{OE}_n$ to nQ_n	4, 5	1.3	2.9	4.1	1.3	3.1	4.3	ns
t _W	nLE pulse width HIGH	2, 5	3.3	1.5	-	3.3	1.5	-	ns
t _{SU}	Set up time nD _n to nLE	3, 5	1.0	0.6	-	1.1	0.1	-	ns
t _h	Hold time nD _n to nLE	3, 5	1.4	0.2	-	1.7	0.2	-	ns

NOTES:

1. All typical values are measured T_{amb} = 25°C.

2. Typical value is measured at V_{CC} = 3.3V

74ALVCH16841

AC WAVEFORMS FOR V_{CC} = 2.3V TO 2.7V AND V_{CC} < 2.3V RANGE

 $V_{M} = 0.5 V_{CC}$ $V_{\rm X} = V_{\rm OL} + 0.15 V$ $V_{Y} = V_{OH} - 0.15V$ $\dot{V_{OL}}$ and \dot{V}_{OH} are the typical output voltage drop that occur with the output load.

AC WAVEFORMS FOR V_{CC} = 3.0V TO 3.6V AND V_{CC} = 2.7V RANGE

 $V_{M} = 1.5 V$ $V_{X} = V_{OL} + 0.3V$ $V_{\rm Y} = V_{\rm OH} - 0.3V$

 V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load. V_I = 2.7V

v

Waveform 1. The input (D_n) to output (Q_n) propagation delay

Waveform 2. The latch enable (LE) pulse width, the latch enable input to output (Qn) propagation delay

Waveform 3. The data set up and hold times for the D_n input to the LE input

Waveform 4. 3-State enable and disable times

TEST CIRCUIT

Waveform 5. Load circuitry for switching times

74ALVCH16841

74ALVCH16841

NOTES

74ALVCH16841

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

Document order number:

print code

Date of release: 07-98 9397-750-04561

Let's make things better.

PHILIPS