APDS-9102

Integrated Reflective Sensor

Data Sheet

Description

APDS-9102 is a low cost, fast switching speed reflective proximity sensor that incorporates an infrared LED and a phototransistor in a single integrated package. APDS-9102 supports the detection distance of near 0 to approx 8mm, enabling to support a wide range of applications.

Application Support Information

The Application Engineering Group is available to assist you with the application design associated with APDS-9102. You can contact them through your local sales representatives for additional details

Ordering Information

Part Number	Package	Quantity
APDS-9102-L22	4 pin leads	1600

Features

- Detection distance of near 0mm to 8mm
- Fast Switching Speed
- Package size

Height - 15.2 mm

Width - 5 mm

Depth - 17.8 mm

- Operating temperature: -35°C to 65°C
- · Lead-free and RoHS Compliant

Applications

APDS-9102 is widely suitable to provide reflective object or proximity sensing suitable for various applications in industrial, office automation and consumer markets.

- Industrial Automatic vending machines, amusement/ gaming machines, coin/bill validators etc
- Office automation Printers, Copiers etc
- Consumer Coffee machines, beverage dispensing machines etc

1

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Max Rating	Unit
Infrared Diode			
Power Dissipation [1]	P _D	75	mW
Peak Forward Current (300pps, 10 μs pulse)	Іср	3	А
Continuous Forward Current	l _F	50	mA
Reverse Voltage	V_{R}	5	V
Phototransistor			
Power Dissipation [1]	Рс	100	mW
Collector-Emitter Voltage	V_{CEO}	30	V
Emitter-Collector Voltage	V_{ECO}	5	V
Collector Current	lc	20	mA
Operating Temperature Range	T _{OP}		-35°C to +65°C
Storage Temperature Range	T _{STG}		-40°C to +100°C
Lead Soldering Termperature (1.6mm(0.063 ") From Case)	Ts		260°C for 5 seconds

Note:

1. Derate Linearly 1.33mW/ °C from 25°C

Electrical / Optical Characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Input Diode						
Forward Voltage	V _F		1.2	1.6	V	I _F =20mA
Reverse Current	I _R			100	μΑ	V _R = 5V
Output Phototransistor						
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	30			V	I _C = 1mA
Emitter-Collector Breakdown Voltage	V _{(BR)ECO}	5			V	I _E = 0.1mA
Collector-Emitter Dark Current	I _{CEO}			100	nA	V _{CE} = 10V
Coupler						
Collector-Emitter Saturation Voltage	V _{CE(SAT)}			0.4	V	I_{C} = 0.08mA, I_{F} = 20mA
On State Collector Current [2]	I _{C(ON)}	0.16			mA	V _{CE} = 5V, I _F = 20mA

Note:

 $2. \ Reflective \ surface \ is \ Eastman \ Kodak (or \ equivalent) \ neutral \ white \ paper \ with \ 90\% \ diffused \ reflectance \ placed \ at \ 3.81mm (0.15'') \ from \ read \ head.$

APDS-9102 Package Outline

9.7 (.382) 17.8±0.3 (.701)

APDS-9102 Block Diagram

 5.0 ± 0.2

(.20)

NOTES:

- 1. All dimensions are in millimeters(inches)
- 2. Tolerance is \pm 0.25mm(0.010") unless otherwise noted
- 3. Specifications are subjected to change specifications without prior notice.

I/O Pins Configuration Table

The electrical pin assignments are depicted in the below table.

Pin	Function	Description
1	Anode	LED Anode
2	Cathode	LED Cathode
3	Emitter	Phototransistor Emitter
4	Collector	Phototransistor Collector

APDS-9102 Performance Charts

Typical Electrical/Optical Characteristics Curves (Ta=25°C unless otherwise indicated)

Figure 1. Power Dissipation vs. Ambient Temperature

Figure 3. Collector Current vs. Collector-emitter Voltage

Figure 2. Forward Current vs. Forward Voltage

Figure 4. Collector Current vs. Ambient Temperature

Figure 5. Collector-emitter Saturation Voltage vs. Ambient Temperature

Figure 6. Response Time vs. Load Resistance