
Adafruit AirLift FeatherWing - ESP32 WiFi Co-Processor
Created by Brent Rubell

Last updated on 2021-03-29 01:04:50 PM EDT

2
4
7
7
7
8
9
9
9

10
13
13
13
14
16
16
16
20
23
23
24
25
29
29
29
29
29
30
30
31
34
34
34
34
34
34
35
36
37
38
39
40
41
41
42
43
45

Guide Contents

Guide Contents
Overview
Pinouts

Power Pins
SPI and Control Pins
RGB LED

Assembly
Prepare the header strip:
Add the FeatherWing:
And Solder!

CircuitPython WiFi
CircuitPython Microcontroller Pinout

CircuitPython Installation of ESP32SPI Library
CircuitPython Usage
Internet Connect!
What's a secrets file?
Connect to WiFi
Requests

HTTP GET with Requests
HTTP POST with Requests
Advanced Requests Usage

WiFi Manager
CircuitPython BLE
CircuitPython BLE UART Example
Adafruit AirLift ESP32 FeatherWing Wiring
Update the AirLift Firmware
Install CircuitPython Libraries
Install the Adafruit Bluefruit LE Connect App
Copy and Adjust the Example Program
Talk to the AirLift via the Bluefruit LE Connect App
Arduino WiFi

Arduino Microcontroller Pin Definitions
Feather M0, M4, 32u4, or NRF52840
Feather 328P

Feather NRF52832
Teensy

Library Install
First Test
WiFi Connection Test
Secure Connection Example

JSON Parsing Demo
Adapting Other Examples

Upgrade External ESP32 Airlift Firmware
External AirLift FeatherWing, Shield, or ItsyWing

Upload Serial Passthrough code for Feather or ItsyBitsy
External AirLift Breakout
Code Usage

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 2 of 49

46
46
47
47
47
48
48
48
48

Install esptool.py
Burning nina-fw with esptool
Verifying the Upgraded Firmware Version

Arduino
CircuitPython

Downloads
Files
Schematic
Fab Print

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 3 of 49

Overview

Give your Feather project a lift with the Adafruit AirLift FeatherWing - a FeatherWing that lets you use the

powerful ESP32 as a WiFi or BLE co-processor. You probably have your favorite Feather (like the Feather

M4 (https://adafru.it/Cmy)) that comes with its own set of awesome peripherals and lots of libraries. But it

doesn't have WiFi built in! So lets give that chip a best friend, the ESP32. This chip can handle all the

heavy lifting of connecting to a WiFi network and transferring data from a site, even if its using the latest

TLS/SSL encryption (it has root certificates pre-burned in).

Having WiFi managed by a separate chip means your code is simpler, you don't have to cache socket

data, or compile in & debug an SSL library. Send basic but powerful socket-based commands over 8MHz

SPI for high speed data transfer. You can use 3V or 5V Arduino, any chip from the ATmega328 or up,

although the '328 will not be able to do very complex tasks or buffer a lot of data. It also works great with

CircuitPython, a SAMD51/Cortex M4 minimum required since we need a bunch of RAM. All you need is an

SPI bus and 2 control pins plus a power supply that can provide up to 250mA during WiFi usage.

The ESP32 also supports BLE (Bluetooth Low Energy), though not simultaneously with WiFi. Many of our

CircuitPython builds include native support for ESP32 BLE. You use a few control pins and the RXI and

TXO pins to talk to the ESP32 when it's in BLE mode.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 4 of 49

https://www.adafruit.com/product/3857
https://learn.adafruit.com/assets/74345
https://learn.adafruit.com/assets/74351
https://learn.adafruit.com/assets/74349
https://learn.adafruit.com/assets/74355
https://learn.adafruit.com/assets/74356
https://learn.adafruit.com/assets/74357
https://learn.adafruit.com/assets/74359
https://learn.adafruit.com/assets/74358
https://learn.adafruit.com/assets/74362
https://learn.adafruit.com/assets/74361

We placed an ESP32 module on a FeatherWing with a separate 3.3V regulator, and a tri-state chip for

MOSI so you can share the SPI bus with other 'Wing. Comes fully assembled and tested, pre-programmed

with ESP32 SPI WiFi co-processor firmware that you can use in CircuitPython to use this into WiFi co-

processsor over SPI + 2 pins (https://adafru.it/Evl). We also toss in some header so you can solder it in and

plug into a doubler, but you can also pick up a set of stacking headers to stack above/below your

Feather.

We've tested this with all our Feathers and it should work just fine with them except the ESP8266 &

ESP32 Feathers (cause they already have WiFi!). For use in Arduino , the '328 and '32u4 you can do basic

connectivity and data transfer but they do not have a lot of RAM so we don't recommend them - use the

M0, M4 or similar, for best results! For CircuitPython use, a Feather M4 or nRF52840 works best - the M0

series does not have enough RAM in CircuitPython.

The firmware on board is a slight variant of the Arduino WiFiNINA core, which works

great! (https://adafru.it/E7O)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 5 of 49

https://github.com/ladyada/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/nina-fw

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 6 of 49

Pinouts
Power Pins

GND - Common power/logic ground.

BAT - Positive voltage from JST on Feather for an optional LiPo battery.

USB - Positive voltage to/from the Micro USB jack if connected.

EN - 3.3V regulator's enable pin. It's pulled up, so connect to ground to disable the 3.3V regulator

3V - this is the output from the 3.3V regulator. The regulator can supply 500mA peak but half of that

is drawn by the ESP32, and it's a fairly power-hungry chip. So if you need a ton of power for stuff like

LEDs, motors, etc. Use the USB or BAT pins, and an additional regulator

SPI and Control Pins
To keep transfers speedy, we use SPI not UART Serial. UART is too slow and hard to synchronize. This

uses more pins but the experience is much better!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 7 of 49

Classic SPI Pins:

SCK - SPI Clock from your microcontroller, level shifted so can be 3-5V logic

MISO - SPI Data from the AirLift to the microcontroller, this is 3.3V logic out, can be read by 3-5V

logic. This is tri-stated when not selected, so you can share the SPI bus with other devices.

MOSI- SPI Data to the AirLift from the microcontroller, level shifted so can be 3-5V logic

ESPCS - SPI Chip Select from the microcontroller to start sending commands to the AirLift, level

shifted so can be 3-5V logic

Required Control Pins:

ESPBUSY - this pin is an input from the AirLift, it will let us know when its ready for more commands

to be sent. This is 3.3V logic out, can be read by 3-5V logic. This pin must be connected.

ESPRST- this pin is an output to the AirLift. Set low to put the AirLift into reset. You should use this

pin, even though you might be able to run for a short while without it, it's essential to 'kick' the chip if

it ever gets into a locked up state. Level shifted so can be 3-5V logic

Optional Control Pins:

ESPGPIO0 - this is the ESP32 GPIO0 pin, which is used to put it into bootloading mode. It is also

used if you like when the ESP32 is acting as a server, to let you know data is ready for reading. It's

not required for WiFi, but you'll need to connect it to use BLE mode. Solder the pad on the bottom of

the FeatherWing to connect it.

ESPRX & ESPTX - Serial data in and Serial data out, used for bootloading new firmware, and for

communication when in BLE mode. Leave disconnected if not using BLE or when not uploading new

WiFi firmware to the AirLift (which is a rare occurrence). You'll need to solder the two pads on the

bottom of the FeatherWing to use these pins.

RGB LED
There is a small RGB LED to the left of the ESP32. These RGB LEDs are available in the Arduino and

CircuitPython libraries if you'd like to PWM them for a visual alert. They're connected to the ESP32's pins

26 (Red), 25 (Green), and 27 (Blue).

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 8 of 49

Assembly

Prepare the header strip:

Cut the strip to length if necessary. It will be easier to solder if

you insert it into a breadboard - long pins down

Add the FeatherWing:
Place the FeatherWing over the pins so that the short pins

poke through the two rows of breakout pads

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 9 of 49

https://learn.adafruit.com//assets/76183
https://learn.adafruit.com//assets/76184

And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out ourGuide to

Excellent Soldering (https://adafru.it/aTk)).

Start by soldering the first row of headers

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 10 of 49

https://learn.adafruit.com//assets/76185
https://learn.adafruit.com//assets/76186
https://learn.adafruit.com//assets/76187
https://learn.adafruit.com//assets/76188
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Now flip around and solder the other row completely

You're done!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 11 of 49

https://learn.adafruit.com//assets/76189
https://learn.adafruit.com//assets/76190
https://learn.adafruit.com//assets/76191
https://learn.adafruit.com//assets/76192

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 12 of 49

CircuitPython WiFi
It's easy to use the Adafruit AirLift breakout with CircuitPython and the Adafruit CircuitPython

ESP32SPI (https://adafru.it/DWV) module. This module allows you to easily add WiFi to your project.

� The ESP32SPI library requires a microcontroller with ~128KB of RAM or more. The SAMD21 will not

work.

CircuitPython Microcontroller Pinout
Since all CircuitPython-running Feathers follow the same pinout, you do not need to change any of the

pins listed below.

To use the ESP32's pins, copy the following lines into your code:

esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

If you wish to use the ESP32's GPIO0 pin - solder the jumper on the back of the FeatherWing, highlighted

in red.

Then, include the following code to use the pin:

esp32_gpio0 = DigitalInOut(board.D10)

CircuitPython Installation of ESP32SPI Library
You'll need to install the Adafruit CircuitPython ESP32SPI (https://adafru.it/DWV) library on your

CircuitPython board.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 13 of 49

https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find

and install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/uap). Our

CircuitPython starter guide has a great page on how to install the library bundle (https://adafru.it/ABU).

You can manually install the necessary libraries from the bundle:

adafruit_esp32spi

adafruit_requests.mpy

adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit_esp32spi,

adafruit_requests.mpy, and adafruit_bus_device files and folders copied over.

Next make sure you are set up to connect to the serial console (https://adafru.it/Bec)

CircuitPython Usage
Copy the following code to your code.py file on your microcontroller:

import board
import busio
from digitalio import DigitalInOut

from adafruit_esp32spi import adafruit_esp32spi

print("ESP32 SPI hardware test")

esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

print("Done!")

Connect to the serial console (https://adafru.it/BlO) to see the output. It should look something like the

following:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 14 of 49

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/interacting-with-the-serial-console

Make sure you see the same output! If you don't, check your wiring. Note that we've changed the pinout

in the code example above to reflect the CircuitPython Microcontroller Pinout at the top of this page.

Once you've succeeded, continue onto the next page!

� If you can read the Firmware and MAC address but fails on scanning SSIDs, check your power

supply, you may be running out of juice to the ESP32 and it's resetting

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 15 of 49

Internet Connect!
Once you have CircuitPython setup and libraries installed we can get your board connected to the

Internet.

To get connected, you will need to start by creating a secrets file.

What's a secrets file?
We expect people to share tons of projects as they build CircuitPython WiFi widgets. What we want to

avoid is people accidentally sharing their passwords or secret tokens and API keys. So, we designed all

our examples to use a secrets.py file, that is in your CIRCUITPY drive, to hold secret/private/custom data.

That way you can share your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : 'home ssid',
 'password' : 'my password',
 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones
 'github_token' : 'fawfj23rakjnfawiefa',
 'hackaday_token' : 'h4xx0rs3kret',
 }

Inside is a python dictionary named secrets with a line for each entry. Each entry has an entry name (say

'ssid') and then a colon to separate it from the entry key 'home ssid' and finally a comma ,

At a minimum you'll need the ssid and password for your local WiFi setup. As you make projects you may

need more tokens and keys, just add them one line at a time. See for example other tokens such as one

for accessing github or the hackaday API. Other non-secret data like your timezone can also go here, just

cause its called secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://adafru.it/EcP) and

remember that if your city is not listed, look for a city in the same time zone, for example Boston, New

York, Philadelphia, Washington DC, and Miami are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other project-sharing sites.

Connect to WiFi
OK now you have your secrets setup - you can connect to the Internet using the ESP32SPI and the

Requests modules.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find

and install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our

introduction guide has a great page on how to install the library bundle (https://adafru.it/ABU) for both

express and non-express boards.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 16 of 49

http://worldtimeapi.org/timezones
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Remember for non-express boards like the Feather M0, you'll need to manually install the necessary

libraries from the bundle:

adafruit_bus_device

adafruit_esp32_spi

adafruit_requests

neopixel

Before continuing make sure your board's lib folder or root filesystem has the above files copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the CircuitPython >>> prompt.

Into your lib folder. Once that's done, load up the following example using Mu or your favorite editor:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import busio
from digitalio import DigitalInOut
import adafruit_requests as requests
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi

Get wifi details and more from a secrets.py file
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an AirLift Shield:
esp32_cs = DigitalInOut(board.D10)
esp32_ready = DigitalInOut(board.D7)
esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:
esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

If you have an externally connected ESP32:
NOTE: You may need to change the pins to reflect your wiring
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 17 of 49

https://learn.adafruit.com/welcome-to-circuitpython/the-repl

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print(
 "IP lookup adafruit.com: %s" % esp.pretty_ip(esp.get_host_by_name("adafruit.com"))
)
print("Ping google.com: %d ms" % esp.ping("google.com"))

esp._debug = True
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print("-" * 40)
print(r.text)
print("-" * 40)
r.close()

print()
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print("-" * 40)
print(r.json())
print("-" * 40)
r.close()

print("Done!")

And save it to your board, with the name code.py .

� This first connection example doesn't use a secrets file - you'll hand-enter your SSID/password to

verify connectivity first!

Then go down to this line

esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')

and change MY_SSID_NAME and MY_SSID_PASSWORD to your access point name and password,

keeping them within the '' quotes. (This example doesn't use the secrets' file, but its also very stand-alone

so if other things seem to not work you can always re-load this. You should get something like the

following:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 18 of 49

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

To use the AirLift FeatherWing's pins, replace the following lines into your code:

esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

Tells our requests library the type of socket we're using (socket type varies by connectivity type - we'll be

using the adafruit_esp32spi_socket for this example). We'll also set the interface to an esp object. This is a

little bit of a hack, but it lets us use requests like CPython does.

requests.set_socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 19 of 49

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

Performs a scan of all access points it can see and prints out the name and signal strength:

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

Connects to the AP we've defined here, then prints out the local IP address, attempts to do a domain

name lookup and ping google.com to check network connectivity (note sometimes the ping fails or takes

a while, this isn't a big deal)

 print("Connecting to AP...")
esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print("IP lookup adafruit.com: %s" % esp.pretty_ip(esp.get_host_by_name("adafruit.com")))
print("Ping google.com: %d ms" % esp.ping("google.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM (well, over 32 KB)

device, we can do a lot of neat tricks. Like for example we can implement an interface a lot like

requests (https://adafru.it/E9o) - which makes getting data really really easy

To read in all the text from a web URL call requests.get - you can pass in https URLs for SSL connectivity

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print('-'*40)
print(r.text)
print('-'*40)
r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python dictionary that can be

easily queried or traversed. (Again, only for nRF52840, M4 and other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print('-'*40)
print(r.json())
print('-'*40)
r.close()

Requests
We've written a requests-like (https://adafru.it/FpT) library for web interfacing

named Adafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send HTTP/1.1

requests without "crafting" them and provides helpful methods for parsing the response from the server.

Here's an example of using Requests to perform GET and POST requests to a server.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 20 of 49

http://docs.python-requests.org/en/master/
https://2.python-requests.org/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

adafruit_requests usage with an esp32spi_socket
import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with "ssid" and
"password" keys with your WiFi credentials. DO NOT share that file or commit it into Git or other
source control.
pylint: disable=no-name-in-module,wrong-import-order
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
socket.set_interface(esp)
requests.set_socket(socket, esp)

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_GET_URL = "http://httpbin.org/get"
JSON_POST_URL = "http://httpbin.org/post"

print("Fetching text from %s" % TEXT_URL)
response = requests.get(TEXT_URL)
print("-" * 40)

print("Text Response: ", response.text)
print("-" * 40)
response.close()

print("Fetching JSON data from %s" % JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print("-" * 40)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 21 of 49

print("JSON Response: ", response.json())
print("-" * 40)
response.close()

data = "31F"
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))
response = requests.post(JSON_POST_URL, data=data)
print("-" * 40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.
print("Data received from server:", json_resp["data"])
print("-" * 40)
response.close()

json_data = {"Date": "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print("-" * 40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.
print("JSON Data received from server:", json_resp["json"])
print("-" * 40)
response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object using an ESP32 socket
and the esp object.

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
 except RuntimeError as e:
 print("could not connect to AP, retrying: ",e)
 continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set_socket(socket, esp)

Make sure to set the ESP32 pinout to match your AirLift breakout's connection:

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 22 of 49

esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

HTTP GET with Requests
The code makes a HTTP GET request to Adafruit's WiFi testing website

- http://wifitest.adafruit.com/testwifi/index.html (https://adafru.it/FpZ).

To do this, we'll pass the URL into requests.get() . We're also going to save the response from the server

into a variable named response .

While we requested data from the server, we'd what the server responded with. Since we already saved

the server's response , we can read it back. Luckily for us, requests automatically decodes the server's

response into human-readable text, you can read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes, deletes, and collect's the

response's data.

 print("Fetching text from %s"%TEXT_URL)
response = requests.get(TEXT_URL)
print('-'*40)

print("Text Response: ", response.text)
print('-'*40)
response.close()

While some servers respond with text, some respond with json-formatted data consisting of attribute–

value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a CPython dict.
object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns a json-formatted

response (instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict .

 print("Fetching JSON data from %s"%JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print('-'*40)

print("JSON Response: ", response.json())
print('-'*40)
response.close()

HTTP POST with Requests
Requests can also POST data to a server by calling the requests.post method, passing it a data value.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 23 of 49

http://wifitest.adafruit.com/testwifi/index.html

data = '31F'
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))
response = requests.post(JSON_POST_URL, data=data)
print('-'*40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.
print("Data received from server:", json_resp['data'])
print('-'*40)
response.close()

You can also post json-formatted data to a server by passing json data into the requests.post method.

json_data = {"Date" : "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print('-'*40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.
print("JSON Data received from server:", json_resp['json'])
print('-'*40)
response.close()

Advanced Requests Usage
Want to send custom HTTP headers, parse the response as raw bytes, or handle a response's http status

code in your CircuitPython code?

We've written an example to show advanced usage of the requests module below.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with "ssid" and
"password" keys with your WiFi credentials. DO NOT share that file or commit it into Git or other
source control.
pylint: disable=no-name-in-module,wrong-import-order
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 24 of 49

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
socket.set_interface(esp)
requests.set_socket(socket, esp)

JSON_GET_URL = "http://httpbin.org/get"

Define a custom header as a dict.
headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON_GET_URL)
response = requests.get(JSON_GET_URL, headers=headers)
print("-" * 60)

json_data = response.json()
headers = json_data["headers"]
print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))
print("-" * 60)

Read Response's HTTP status code
print("Response HTTP Status Code: ", response.status_code)
print("-" * 60)

Close, delete and collect the response data
response.close()

WiFi Manager
That simpletest example works but its a little finicky - you need to constantly check WiFi status and have

many loops to manage connections and disconnections. For more advanced uses, we recommend using

the WiFiManager object. It will wrap the connection/status/requests loop for you - reconnecting if WiFi

drops, resetting the ESP32 if it gets into a bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST data with some

extra headers:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import busio
from digitalio import DigitalInOut
import neopixel
from adafruit_esp32spi import adafruit_esp32spi
from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 25 of 49

Get wifi details and more from a secrets.py file
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)
"""Use below for Most Boards"""
status_light = neopixel.NeoPixel(
 board.NEOPIXEL, 1, brightness=0.2
) # Uncomment for Most Boards
"""Uncomment below for ItsyBitsy M4"""
status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1, brightness=0.2)
Uncomment below for an externally defined RGB LED
import adafruit_rgbled
from adafruit_esp32spi import PWMOut
RED_LED = PWMOut.PWMOut(esp, 26)
GREEN_LED = PWMOut.PWMOut(esp, 27)
BLUE_LED = PWMOut.PWMOut(esp, 25)
status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)
wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

while True:
 try:
 print("Posting data...", end="")
 data = counter
 feed = "test"
 payload = {"value": data}
 response = wifi.post(
 "https://io.adafruit.com/api/v2/"
 + secrets["aio_username"]
 + "/feeds/"
 + feed
 + "/data",
 json=payload,
 headers={"X-AIO-KEY": secrets["aio_key"]},
)
 print(response.json())
 response.close()
 counter = counter + 1
 print("OK")
 except (ValueError, RuntimeError) as e:
 print("Failed to get data, retrying\n", e)
 wifi.reset()
 continue
 response = None
 time.sleep(15)

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 26 of 49

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when you've set up a feed

named test . (https://adafru.it/f5k)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is given the ESP32

object, secrets and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the code can query the

Adafruit IO API:

aio_username
aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add them to the secrets file,

which will now look something like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : '_your_ssid_',
 'password' : '_your_wifi_password_',
 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones
 'aio_username' : '_your_aio_username_',
 'aio_key' : '_your_aio_key_',
 }

We can then have a simple loop for posting data to Adafruit IO without having to deal with connecting or

initializing the hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each time the CircuitPython

board posts data to it!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 27 of 49

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 28 of 49

CircuitPython BLE
CircuitPython BLE UART Example
It's easy to use Adafruit AirLift ESP32 co-processor boards for Bluetooth Low Energy (BLE) with

CircuitPython. When you reset the ESP32, you can put it in WiFi mode (the default), or in BLE mode; you

cannot use both modes simultaenously.

Here's a simple example of using BLE to connect CircuitPython with the Bluefruit Connect app. Use

CircuitPython 6.0.0 or later.

Note: Don't confuse the ESP32 with the ESP32-S2, which is a different module with a similar name. The

ESP32-S2 does not support BLE.

� Currently the AirLift support for CircuitPython only provides BLE peripheral support. BLE central is

under development. So you cannot connect to BLE devices like Heart Rate monitors, etc., but you can

act as a BLE peripheral yourself.

Adafruit AirLift ESP32 FeatherWing Wiring
If you have an Adafruit Airlift ESP32 FeatherWing , you will need to solder three jumpers closed on the

bottom side of the board to enable BLE. The rest of the ESP32 pins you need are already jumpered to

certain Feather pins.

Update the AirLift Firmware
You will need to update the AirLift's firmware to at least version 1.7.1. Previous versions of the AirLift

firmware do not support BLE.

Follow the instructions in the guide below, and come back to this page when you've upgraded the AirLift's

firmware:

https://adafru.it/RdC

� Ensure the AirLift firmware is version 1.7.1 or higher for BLE to work.

Install CircuitPython Libraries
Make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your

board; you'll need 6.0.0 or later.

Next you'll need to install the necessary libraries to use the hardware and BLE. Carefully follow the steps

to find and install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/uap). Our

CircuitPython starter guide has a great page on how to use the library bundle (https://adafru.it/ABU).

Install these libraries from the bundle:

adafruit_airlift

adafruit_ble

https://adafru.it/RdC

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 29 of 49

https://learn.adafruit.com/upgrading-esp32-firmware/upgrade-an-external-esp32
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Before continuing make sure your board's lib folder or root filesystem has the adafruit_airlift and

adafruit_ble folders copied over.

Install the Adafruit Bluefruit LE Connect App
The Adafruit Bluefruit LE Connect iOS and Android apps allow you to connect to BLE peripherals that

provide a over-the-air "UART" service. Follow the instructions in the Bluefruit LE Connect

Guide (https://adafru.it/Eg5) to download and install the app on your phone or tablet.

Copy and Adjust the Example Program
Copy the program below to the file code.py on CIRCUITPY on your board.

TAKE NOTE: Adjust the program as needed to suit the AirLift board you have. Comment and

uncomment lines 12-39 below as necessary.

import board

from adafruit_ble import BLERadio
from adafruit_ble.advertising.standard import ProvideServicesAdvertisement
from adafruit_ble.services.nordic import UARTService

from adafruit_airlift.esp32 import ESP32

If you are using a Metro M4 Airlift Lite, PyPortal,
or MatrixPortal, you can use the default pin settings.
Leave this DEFAULT line uncommented.
esp32 = ESP32() # DEFAULT

If you are using CircuitPython 6.0.0 or earlier,
on PyPortal and PyPortal Titano only, use the pin settings
below. Comment out the DEFAULT line above and uncomment
the line below. For CircuitPython 6.1.0, the pin names
have changed for these boards, and the DEFAULT line
above is correct.
esp32 = ESP32(tx=board.TX, rx=board.RX)

If you are using an AirLift FeatherWing or AirLift Bitsy Add-On,
use the pin settings below. Comment out the DEFAULT line above
and uncomment the lines below.
If you are using an AirLift Breakout, check that these
choices match the wiring to your microcontroller board,
or change them as appropriate.
esp32 = ESP32(
reset=board.D12,
gpio0=board.D10,
busy=board.D11,
chip_select=board.D13,
tx=board.TX,
rx=board.RX,
)

If you are using an AirLift Shield,
use the pin settings below. Comment out the DEFAULT line above
and uncomment the lines below.
esp32 = ESP32(
reset=board.D5,
gpio0=board.D6,
busy=board.D7,
chip_select=board.D10,
tx=board.TX,

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 30 of 49

https://learn.adafruit.com/bluefruit-le-connect/

tx=board.TX,
rx=board.RX,
)

adapter = esp32.start_bluetooth()

ble = BLERadio(adapter)
uart = UARTService()
advertisement = ProvideServicesAdvertisement(uart)

while True:
 ble.start_advertising(advertisement)
 print("waiting to connect")
 while not ble.connected:
 pass
 print("connected: trying to read input")
 while ble.connected:
 # Returns b'' if nothing was read.
 one_byte = uart.read(1)
 if one_byte:
 print(one_byte)
 uart.write(one_byte)

Talk to the AirLift via the Bluefruit LE Connect App
Start the Bluefruit LE Connect App on your phone or tablet. You should see a CIRCUITPY device available

to connect to. Tap the Connect button (1):

You'll then see a list of Bluefruit Connect functions ("modules"). Choose the UART module (2):

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 31 of 49

On the UART module page, you can type a string and press Send (3). You'll see that string entered, and

then see it echoed back (echoing is in gray).

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 32 of 49

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 33 of 49

Arduino WiFi
You can use the AirLift with Arduino. Unlike CircuitPython, it work with just about any Arduino chip, even a

classic Arduino UNO. However, if you want to use libraries like ArduinoJSON or add sensors and SD card,

you'll really want an ATSAMD21 (Cortex M0) or ATSAMD51 (Cortex M4), both of which have plenty or RAM

Arduino Microcontroller Pin Definitions
Because each Feather uses a different processor, you'll need to include the following pin definitions to

your code depending on which board you are using:

Feather M0, M4, 32u4, or NRF52840
#define SPIWIFI SPI // The SPI port
#define SPIWIFI_SS 13 // Chip select pin
#define ESP32_RESETN 12 // Reset pin
#define SPIWIFI_ACK 11 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 -1

Feather 328P
#define SPIWIFI SPI // The SPI port
#define SPIWIFI_SS 4 // Chip select pin
#define ESP32_RESETN 3 // Reset pin
#define SPIWIFI_ACK 2 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 -1

Feather NRF52832
#define SPIWIFI SPI // The SPI port
#define SPIWIFI_SS 16 // Chip select pin
#define ESP32_RESETN 15 // Reset pin
#define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 -1

Teensy
#define SPIWIFI SPI // The SPI port
#define SPIWIFI_SS 5 // Chip select pin
#define ESP32_RESETN 6 // Reset pin
#define SPIWIFI_ACK 9 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 -1

Note: These pin definitions leave the the ESP32's GPIO0 pin undefined (-1). If you wish to use this pin -

solder the pad on the bottom of the FeatherWing and set #define ESP32_GPIO0 to the correct pin for

your microcontroller.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 34 of 49

Note: These pin definitions leave the the ESP32's GPIO0 pin

undefined (-1).

If you wish to use this pin - solder the pad on the bottom of

the FeatherWing and set #define ESP32_GPIO0 to the

correct pin for your microcontroller.

Library Install
We're using a variant of the Arduino WiFiNINA library, which is amazing and written by the Arduino team!

The official WiFi101 library won't work because it doesn't support the ability to change the pins .

So! We made a fork that you can install.

Click here to download the library:

https://adafru.it/Evm

Within the Arduino IDE, select Install library from ZIP...

https://adafru.it/Evm

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 35 of 49

https://learn.adafruit.com//assets/80352
https://github.com/adafruit/WiFiNINA/archive/master.zip

And select the zip you just downloaded.

First Test
OK now you have it wired and library installed, time to test it out!

Lets start by scanning the local networks. Load up the ScanNetworks example

 (https://adafru.it/EVu)

At the top you'll see a section where the GPIO pins are defined

 (https://adafru.it/EVv)

If you don't see this, you may have the wrong WiFiNINA library installed. Uninstall it and re-install the

Adafruit one as above.

Compile and upload to your board wired up to the AirLift

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 36 of 49

 (https://adafru.it/EVw)

If you don't even get the MAC address printed out, check your wiring.

If you get the MAC address but cannot scan any networks, check your power supply. You need a solid 3-

5VDC into Vin in order for the ESP32 not to brown out.

WiFi Connection Test
Now that you have your wiring checked, time to connect to the Internet!

Open up the WiFiWebClient example

 (https://adafru.it/EVx)

Open up the secondary tab, arduino_secrets.h. This is where you will store private data like the

SSID/password to your network.

 (https://adafru.it/EVy)

You must change these string values before updating to your board!

After you've set it correctly, upload and check the serial monitor. You should see the following. If not, go

back, check wiring, power and your SSID/password

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 37 of 49

 (https://adafru.it/EVz)

Secure Connection Example
Many servers today do not allow non-SSL connectivity. Lucky for you the ESP32 has a great TLS/SSL

stack so you can have that all taken care of for you. Here's an example of a secure WiFi connection:

 (https://adafru.it/EVA)

Note we use WiFiSSLClient client; instead of WiFiClient client; to require an SSL connection!

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 38 of 49

 (https://adafru.it/EVB)

JSON Parsing Demo
This example is a little more advanced - many sites will have API's that give you JSON data. We'll

use ArduinoJSON (https://adafru.it/Evn) to convert that to a format we can use and then display that data

on the serial port (which can then be re-directed to a display of some sort)

First up, use the Library manager to install ArduinoJSON (https://adafru.it/Evo).

Then load the example JSONdemo

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 39 of 49

https://arduinojson.org/
https://arduinojson.org/v6/doc/installation/

 (https://adafru.it/EVC)

By default it will connect to to the Twitter banner image API, parse the username and followers and

display them.

 (https://adafru.it/EVD)

Adapting Other Examples
Once you've got it connecting to the Internet you can check out the other examples.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 40 of 49

Upgrade External ESP32 Airlift Firmware
� To support BLE on the ESP32 AirLift, you'll need NINA_W102-1.7.1.bin or later.

External AirLift FeatherWing, Shield, or ItsyWing
External AirLift boards have three optional ESP32 control pins which are not connected by default:

ESPGPIO0

ESPRX

ESPTX

Make sure to solder each of these pads together. You will

not be able to upload firmware to your ESP32 if they are not

connected.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 41 of 49

https://learn.adafruit.com//assets/81533
https://learn.adafruit.com//assets/94694
https://learn.adafruit.com//assets/94695

Upload Serial Passthrough code for Feather or ItsyBitsy
First, back up any code and files you have on your CIRCUITPY drive . It will be overwritten by the code

you're going to upload to your board. You should not end up losing any files on the QSPI flash, but it's a

good idea to back them up anyways.

� This section is only for an AirLift FeatherWing with a Feather M4, or an AirLift BitsyWing with an

ItsyBitsy M4. If you are using a different hardware combination - scroll down to the "External AirLift

Breakout" section.

Download the UF2 for your board to your Desktop.

https://adafru.it/OYF

https://adafru.it/PTE

https://adafru.it/IEK

Find the reset button on your board. It's a small, black button, and on most of the boards, it will be the

only button available.

Tap this button twice to enter the bootloader. If it doesn't work on the first try, don't be discouraged. The

rhythm of the taps needs to be correct and sometimes it takes a few tries.

Once successful, the RGB LED on the board will flash red and then stay green. A new drive will show up

on your computer. The drive will be called boardnameBOOT where boardname is a reference to your

specific board. For example, a Feather will have FEATHERBOOT and a Trinket will

have TRINKETBOOT etc. Going forward we'll just call the boot drive BOOT

The board is now in bootloader mode. Now find the UF2 file you downloaded. Drag that file to the BOOT
drive on your computer in your operating system file manager/finder.

https://adafru.it/OYF

https://adafru.it/PTE

https://adafru.it/IEK

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 42 of 49

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Adafruit_ESP32_Arduino_Demos/SerialESPPassthrough/Airlift-Feather-FeatherWing-Passthru.UF2
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Adafruit_ESP32_Arduino_Demos/SerialESPPassthrough/Adafruit-Feather-NRF52840-FeatherWing-Passthru.UF2
https://github.com/adafruit/Adafruit_Learning_System_Guides/raw/master/Adafruit_ESP32_Arduino_Demos/SerialESPPassthrough/Airlift-BitsyWing-FeatherWing-Passthru.UF2

The lights should flash again, BOOT will disappear. Your board should re-enumerate USB and appear as

a COM or Serial port on your computer. Make a note of the serial port by checking the Device Manager

(Windows) or typing ls /dev/cu* or /dev/tty* (Mac or Linux) in a terminal.

If your board is listed in the terminal, proceed to the Uploading nina-fw with esptool section of this guide.

External AirLift Breakout
You'll be turning your Arduino board into a USB to Serial converter. To do this, you'll need a special

Arduino sketch named SerialESPPassthrough.ino and an Arduino-compatible board with Native USB

support such as the Adafruit Metro M4.

You will also need to make the following connections between the board and the AirLift Breakout:

Board Pin 12 to ESP32_ResetN

Board Pin 10 to ESP32 GPIO0

Board TX to RXI

Board RX to TX0

Click Download: Project ZIP to download the code below.

/*
 SerialNINAPassthrough - Use esptool to flash the ESP32 module
 For use with PyPortal, Metro M4 WiFi...

 Copyright (c) 2018 Arduino SA. All rights reserved.

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/

#include <Adafruit_NeoPixel.h>

unsigned long baud = 115200;

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 43 of 49

#if defined(ADAFRUIT_FEATHER_M4_EXPRESS) || \
 defined(ADAFRUIT_FEATHER_M0_EXPRESS) || \
 defined(ARDUINO_AVR_FEATHER32U4) || \
 defined(ARDUINO_NRF52840_FEATHER) || \
 defined(ADAFRUIT_ITSYBITSY_M0) || \
 defined(ADAFRUIT_ITSYBITSY_M4_EXPRESS) || \
 defined(ARDUINO_AVR_ITSYBITSY32U4_3V) || \
 defined(ARDUINO_NRF52_ITSYBITSY)
 // Configure the pins used for the ESP32 connection
 #define SerialESP32 Serial1
 #define SPIWIFI SPI // The SPI port
 #define SPIWIFI_SS 13 // Chip select pin
 #define ESP32_RESETN 12 // Reset pin
 #define SPIWIFI_ACK 11 // a.k.a BUSY or READY pin
 #define ESP32_GPIO0 10
 #define NEOPIXEL_PIN 8
#elif defined(ARDUINO_AVR_FEATHER328P)
 #define SerialESP32 Serial1
 #define SPIWIFI SPI // The SPI port
 #define SPIWIFI_SS 4 // Chip select pin
 #define ESP32_RESETN 3 // Reset pin
 #define SPIWIFI_ACK 2 // a.k.a BUSY or READY pin
 #define ESP32_GPIO0 -1
 #define NEOPIXEL_PIN 8
#elif defined(TEENSYDUINO)
 #define SerialESP32 Serial1
 #define SPIWIFI SPI // The SPI port
 #define SPIWIFI_SS 5 // Chip select pin
 #define ESP32_RESETN 6 // Reset pin
 #define SPIWIFI_ACK 9 // a.k.a BUSY or READY pin
 #define ESP32_GPIO0 -1
 #define NEOPIXEL_PIN 8
#elif defined(ARDUINO_NRF52832_FEATHER)
 #define SerialESP32 Serial1
 #define SPIWIFI SPI // The SPI port
 #define SPIWIFI_SS 16 // Chip select pin
 #define ESP32_RESETN 15 // Reset pin
 #define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
 #define ESP32_GPIO0 -1
 #define NEOPIXEL_PIN 8
#elif !defined(SPIWIFI_SS) // if the wifi definition isnt in the board variant
 // Don't change the names of these #define's! they match the variant ones
 #define SerialESP32 Serial1
 #define SPIWIFI SPI
 #define SPIWIFI_SS 10 // Chip select pin
 #define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
 #define ESP32_RESETN 5 // Reset pin
 #define ESP32_GPIO0 -1 // Not connected
 #define NEOPIXEL_PIN 8
#endif

#if defined(ADAFRUIT_PYPORTAL)
 #define PIN_NEOPIXEL 2
#elif defined(ADAFRUIT_METRO_M4_AIRLIFT_LITE)
 #define PIN_NEOPIXEL 40
#endif

Adafruit_NeoPixel pixel = Adafruit_NeoPixel(1, PIN_NEOPIXEL, NEO_GRB + NEO_KHZ800);

void setup() {
 Serial.begin(baud);
 pixel.begin();
 pixel.setPixelColor(0, 10, 10, 10); pixel.show();

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 44 of 49

 pixel.setPixelColor(0, 10, 10, 10); pixel.show();

 while (!Serial);
 pixel.setPixelColor(0, 50, 50, 50); pixel.show();

 delay(100);
 SerialESP32.begin(baud);

 pinMode(SPIWIFI_SS, OUTPUT);
 pinMode(ESP32_GPIO0, OUTPUT);
 pinMode(ESP32_RESETN, OUTPUT);

 // manually put the ESP32 in upload mode
 digitalWrite(ESP32_GPIO0, LOW);

 digitalWrite(ESP32_RESETN, LOW);
 delay(100);
 digitalWrite(ESP32_RESETN, HIGH);
 pixel.setPixelColor(0, 20, 20, 0); pixel.show();
 delay(100);
}

void loop() {
 while (Serial.available()) {
 pixel.setPixelColor(0, 10, 0, 0); pixel.show();
 SerialESP32.write(Serial.read());
 }

 while (SerialESP32.available()) {
 pixel.setPixelColor(0, 0, 0, 10); pixel.show();
 Serial.write(SerialESP32.read());
 }
}

Code Usage
Unzip the file, and open the SerialESPPassthrough.ino file in the Arduino IDE.

If you're using the AirLift FeatherWing, AirLift Shield or AirLift Bitsy Add-On, use the PassThrough UF2

instructions above

If you have an AirLift Breakout (or are manually wiring up any of the boards above), change the following

pin definitions in the sketch to match your wiring:

#elif !defined(SPIWIFI_SS) // if the wifi definition isnt in the board variant
 // Don't change the names of these #define's! they match the variant ones
 #define SerialESP32 Serial1
 #define SPIWIFI SPI
 #define SPIWIFI_SS 10 // Chip select pin
 #define SPIWIFI_ACK 7 // a.k.a BUSY or READY pin
 #define ESP32_RESETN 5 // Reset pin
 #define ESP32_GPIO0 -1 // Not connected
 #define NEOPIXEL_PIN 8
#endif

Using the Arduino IDE, upload the code to your board (Sketch->Upload).

After uploading, the board should enumerate USB and appear as a COM or Serial port on your computer.

Make a note of the serial port by checking the Device Manager (Windows) or typing in ls

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 45 of 49

/dev/cu* or /dev/tty* (Mac or Linux) in a terminal

� This guide assumes you have Python3 installed. If you have not installed it, navigate to the Python

downloads page (https://www.python.org/downloads) and install the latest release.

Install esptool.py
Esptool is an application which can communicate with the ROM bootloader (https://adafru.it/LKe) in

Espressif chips.

To install esptool, run the following in your terminal :

pip3 install esptool

Burning nina-fw with esptool
Click the link below to download the latest nina-fw .bin file. Unzip it and save the .bin file to your

desktop.

https://adafru.it/G3D

If you're using macOS or Linux - run the following command, replacing /dev/ttyACM0 with the serial port

of your board and NINA_W102-1.6.0 with the binary file you're flashing to the ESP32.

esptool.py --port /dev/ttyACM0 --before no_reset --baud 115200 write_flash 0 NINA_W102-1.6.0.bin

If you're using Windows - run the following command, replacing COM7 with the serial port of your board

and NINA_W102-1.6.0 with the binary file you're flashing to the ESP32

esptool.py --port COM7 --before no_reset --baud 115200 write_flash 0 NINA_W102-1.6.0.bin

The command should detect the ESP32 and will take a minute or two to upload the firmware.

If ESPTool doesn't detect the ESP32, make sure you've uploaded the correct .UF2 file to the bootloader

and are using the correct serial port.

https://adafru.it/G3D

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 46 of 49

https://www.python.org/downloads
https://learn.adafruit.com/bootloader-basics
https://github.com/adafruit/nina-fw/releases/latest

Once the firmware is fully uploaded, the ESP32 will reset.

Verifying the Upgraded Firmware Version
To verify everything is working correctly, we'll load up either an Arduino sketch or CircuitPython code. At

this point, you must desolder the connections between the Optional ESP32 control pins you made

earlier using a solder sucker (https://adafru.it/FWk) or a bit of solder wick (https://adafru.it/yrC).

Arduino
If you were previously using your ESP32 with Arduino, you should load up an Arduino sketch to verify

everything is working properly and the version of the nina-fw correlates with the version the sketch reads.

Open up File->Examples->WiFiNINA->ScanNetworks and upload the sketch. Then, open the Serial

Monitor. You should see the firmware version printed out to the serial monitor.

CircuitPython
If you were previously using your ESP32 project with CircuitPython , you'll need to first reinstall

CircuitPython firmware (UF2) for your board. The QSPI flash should have retained its contents. If you don't

see anything on the CIRCUITPY volume, copy files from the backup you made earlier to CIRCUITPY .

To verify the new ESP32 WiFi firmware version is correct, follow the Connect to WiFi step in this

guide (https://adafru.it/Eao) and come back here when you've successfully ran the code. The REPL output

should display the firmware version you flashed.

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 47 of 49

https://www.adafruit.com/product/148
https://www.adafruit.com/product/149
https://learn.adafruit.com/adafruit-pyportal/internet-connect#connect-to-wifi-17-4

Downloads
Files

ESP32 WROOM32 Datasheet (https://adafru.it/EVE)

EagleCAD files on GitHub (https://adafru.it/EVF)

Fritzing object in Adafruit Fritzing Library (https://adafru.it/EVG)

3D Models on GitHub (https://adafru.it/FcS)

Schematic

Fab Print

© Adafruit Industries https://learn.adafruit.com/adafruit-airlift-featherwing-esp32-wifi-co-processor-
featherwing Page 48 of 49

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://github.com/adafruit/Adafruit-AirLift-FeatherWing-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20AirLift%20FeatherWing.fzpz
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4264%20AirLift%20FeatherWing

© Adafruit Industries Last Updated: 2021-03-29 01:04:50 PM EDT Page 49 of 49

	Guide Contents
	Overview
	Pinouts
	Power Pins
	SPI and Control Pins
	RGB LED

	Assembly
	Prepare the header strip:
	Add the FeatherWing:
	And Solder!

	CircuitPython WiFi
	CircuitPython Microcontroller Pinout

	CircuitPython Installation of ESP32SPI Library
	CircuitPython Usage
	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	CircuitPython BLE
	CircuitPython BLE UART Example
	Adafruit AirLift ESP32 FeatherWing Wiring
	Update the AirLift Firmware
	Install CircuitPython Libraries
	Install the Adafruit Bluefruit LE Connect App
	Copy and Adjust the Example Program
	Talk to the AirLift via the Bluefruit LE Connect App
	Arduino WiFi
	Arduino Microcontroller Pin Definitions
	Feather M0, M4, 32u4, or NRF52840
	Feather 328P

	Feather NRF52832
	Teensy

	Library Install
	First Test
	WiFi Connection Test
	Secure Connection Example
	JSON Parsing Demo
	Adapting Other Examples

	Upgrade External ESP32 Airlift Firmware
	External AirLift FeatherWing, Shield, or ItsyWing
	Upload Serial Passthrough code for Feather or ItsyBitsy

	External AirLift Breakout
	Code Usage
	Install esptool.py

	Burning nina-fw with esptool
	Verifying the Upgraded Firmware Version
	Arduino
	CircuitPython

	Downloads
	Files
	Schematic
	Fab Print

