UHF power LDMOS transistor Rev. 01 — 19 June 2007

Product data sheet

Product profile 1.

1.1 General description

160 W LDMOS power transistor for base station applications at frequencies from 800 MHz to 1000 MHz.

Table 1. **Typical performance**

RF performance at T_{case} = 25 °C in a common source class-AB test circuit.

Mode of operation	f	v_{dS}	P_L	P _{L(AV)}	Gp	$\eta_{\textbf{D}}$	ACPR ₄₀₀	ACPR ₆₀₀	EVM_{rms}	IMD3
	(MHz)	(V)	(W)	(W)	(dB)	(%)	(dBc)	(dBc)	(%)	(dBc)
CW	894	28	200	-	19.0	59	-	-	-	-
2-tone	894	28	-	80	19.7	42.5	-	-	-	-30
GSM EDGE	894	28	-	80	19.7	41.5	-61 <mark>1</mark>	-72 <mark>[1]</mark>	2.6	-

[1] ACPR₄₀₀ and ACPR₆₀₀ at 30 kHz resolution bandwidth.

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Therefore care should be taken during transport and handling.

1.2 Features

- Typical GSM EDGE performance at f = 894 MHz, V_{DS} = 28 V and I_{Dq} = 900 mA:
 - Average output power = 80 W
 - ◆ Gain = 19.7 dB
 - Efficiency = 41.5 %
 - ♦ ACPR₄₀₀ = -61 dBc
 - ACPR₆₀₀ = -72 dBc
 - EVM_{rms} = 2.6 %
- Easy power control
- Excellent ruggedness
- High efficiency
- Excellent thermal stability
- Designed for broadband operation (800 MHz to 1000 MHz)
- Internally matched for ease of use

1.3 Applications

RF power amplifiers for GSM, GSM EDGE and CDMA base stations and multi carrier applications in the 800 MHz to 1000 MHz frequency range.

2. Pinning information

Table 2.	Pinning		
Pin	Description	Simplified outline	Symbol
1	drain		
2	gate		1 لــــا
3	source		2 – – – 3 sym112

[1] Connected to flange

3. Ordering information

Table 3. Ordering information

Type number	Package					
	Name	Description	Version			
BLF4G10LS-160	-	flanged LDMOST ceramic package; 2 mounting holes; 2 leads	SOT502A			

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage		-	65	V
V _{GS}	gate-source voltage		-0.5	+15	V
I _D	drain current		-	15	А
T _{stg}	storage temperature		-65	+150	°C
Тj	junction temperature		-	200	°C

5. Thermal characteristics

Thermal characteristics					
Parameter	Conditions	Тур	Max	Unit	
thermal resistance from junction	$T_{case} = 80 \ ^{\circ}C$				
to case	$P_L = 50 W$	0.49	0.58	K/W	
	$P_{L} = 130 W$	0.38	0.47	K/W	
	Parameter thermal resistance from junction	ParameterConditionsthermal resistance from junction to case $T_{case} = 80 \ ^{\circ}C$ $P_L = 50 \ W$	ParameterConditionsTypthermal resistance from junction to case $T_{case} = 80 \ ^{\circ}C$ $P_L = 50 \ W$ 0.49	ParameterConditionsTypMaxthermal resistance from junction to case $T_{case} = 80 \ ^{\circ}C$ $P_{L} = 50 \ W$ 0.490.58	

6. Characteristics

Table 6. <i>T_j</i> = <i>25</i> ° <i>C</i>	Characteristics <i>; unless otherwise specified.</i>					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
$V_{(BR)DSS}$	drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 2.1 \text{ mA}$	65	-	-	V
V _{GS(th)}	gate-source threshold voltage	V_{DS} = 10 V; I_{D} = 230 mA	2.5	2.9	3.5	V
V_{GSq}	gate-source quiescent voltage	$V_{DS} = 28 \text{ V}; \text{ I}_{D} = 900 \text{ mA}$	2.65	3.15	3.65	V
I _{DSS}	drain leakage current	$V_{GS} = 0 V; V_{DS} = 28 V$	-	-	5	μA
I _{DSX}	drain cut-off current	$V_{GS} = V_{GS(th)} + 6 V;$ $V_{DS} = 10 V$	35	42	-	A
I _{GSS}	gate leakage current	V_{GS} = 15 V; V_{DS} = 0 V	-	-	420	nA
g fs	forward transconductance	$V_{DS} = 10 \text{ V}; \text{ I}_{D} = 7.5 \text{ A}$	-	11	-	S
R _{DS(on)}	drain-source on-state resistance	$V_{GS} = V_{GS(th)} + 6 \text{ V};$ I _D = 7.5 A	-	0.065	-	Ω
C _{rs}	feedback capacitance	$V_{GS} = 0 V$; $V_{DS} = 28 V$; f = 1 MHz	-	3.0	-	pF

7. Application information

Table 7. Application information

Mode of operation: 2-tone; $f_1 = 894$ MHz; $f_2 = 894.2$ MHz; RF performance at $V_{DS} = 28$ V; $I_{Dq} = 900$ mA; $T_{case} = 25 \degree C$; unless otherwise specified; in a class-AB test circuit.

Parameter	Conditions	Min	Turn		11.14
			Тур	Max	Unit
power gain	$P_{L(PEP)} = 160 \text{ W}$	18.5	19.7	21	dB
input return loss	$P_{L(PEP)} = 160 \text{ W}$	-	-10	-6	dB
drain efficiency	$P_{L(PEP)} = 160 \text{ W}$	40	42.5	-	%
third order intermodulation distortion	$P_{L(PEP)} = 160 \text{ W}$	-	-30	-27	dBc
fifth order intermodulation distortion	$P_{L(PEP)} = 160 \text{ W}$	-	-39	-36	dBc
seventh order intermodulation distortion	$P_{L(PEP)} = 160 \text{ W}$	-	-59	-55	dBc
	input return loss drain efficiency third order intermodulation distortion fifth order intermodulation distortion	$\begin{array}{ll} \text{input return loss} & P_{L(PEP)} = 160 \text{ W} \\ \text{drain efficiency} & P_{L(PEP)} = 160 \text{ W} \\ \text{third order intermodulation distortion} & P_{L(PEP)} = 160 \text{ W} \\ \text{fifth order intermodulation distortion} & P_{L(PEP)} = 160 \text{ W} \end{array}$	$\begin{array}{ll} \text{input return loss} & P_{L(PEP)} = 160 \ W & - \\ \\ \text{drain efficiency} & P_{L(PEP)} = 160 \ W & - \\ \\ \text{third order intermodulation distortion} & P_{L(PEP)} = 160 \ W & - \\ \\ \text{fifth order intermodulation distortion} & P_{L(PEP)} = 160 \ W & - \end{array}$		input return loss $P_{L(PEP)} = 160 \text{ W}$ 10-6drain efficiency $P_{L(PEP)} = 160 \text{ W}$ 4042.5-third order intermodulation distortion $P_{L(PEP)} = 160 \text{ W}$ 30-27fifth order intermodulation distortion $P_{L(PEP)} = 160 \text{ W}$ 39-36

7.1 Ruggedness in class-AB operation

The BLF4G10LS-160 is capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: $V_{DS} = 28$ V; $I_{Dg} = 900$ mA; $P_L = 160$ W (CW); f = 894 MHz.

UHF power LDMOS transistor

Table 8. RF gain grouping 6 804 MUT: 6 804 2 MUT

$I_1 = 894 \text{ MHZ}; I_2 = 894.2 \text{ MHZ}$					
Code ^[1]	Gain (dB) for two-tone				
	Min	Мах			
С	18.5	19			
D	19	19.5			
E	19.5	20			
F	20	20.5			
G	20.5	21			

[1] 0.2 overlap is allowed for measurement reproducibility.

NXP Semiconductors

BLF4G10LS-160

UHF power LDMOS transistor

NXP Semiconductors

BLF4G10LS-160

UHF power LDMOS transistor

NXP Semiconductors

BLF4G10LS-160

UHF power LDMOS transistor

8. Test information

UHF power LDMOS transistor

001aag593

The striplines are on a double copper-clad Rogers 6006 Printed-Circuit Board (PCB) with ϵ_r = 6.15 and thickness = 0.635 mm.

See Table 9 for a list of components.

Fig 13. Component layout for 894 MHz production test circuit

Table 9. List of components (see Figure 12 and Figure 13).

Component	Description	Value	Remarks
C1, C4, C6, C7	multilayer ceramic chip capacitor	68 pF	[1]
C2	multilayer ceramic chip capacitor	1.5 pF	[1]
C3	multilayer ceramic chip capacitor	1.4 pF	[1]
C5, C9	tantalum capacitor	10 μF	
C8	ceramic capacitor	1 μF	1812X7R105KL2AB
C10	electrolytic capacitor	220 μF	
L1	stripline		^[2] (W × L) 0.914 mm × 10.160 mm
L2	stripline		^[2] (W × L) 0.914 mm × 24.384 mm
L3	tapered stripline		 (W1 × W2 × L) 0.914 mm × 19.812 mm × 11.024 mm
L4	stripline		^[2] (W × L) 19.812 mm × 21.438 mm
L5	stripline		^[2] (W × L) 0.914 mm × 42.342 mm
L6	stripline		^[2] (W × L) 1.524 mm × 42.418 mm
L7	stripline		^[2] (W × L) 17.221 mm × 22.479 mm
L8	tapered stripline		^[2] (W1 × W2 × L) 17.221 mm × 0.914 mm × 20.625 mm

UHF power LDMOS transistor

Component	Description	Value	Remarks
L9	stripline		$\ensuremath{\textcircled{2}}$ (W \times L) 0.914 mm \times 19.126 mm
L10	stripline		[2] (W × L) 0.914 mm × 6.858 mm
R1	SMD resistor	5.1 Ω	

[1] American Technical Ceramics type 100B or capacitor of same quality.

[2] The striplines are on a double copper-clad Rogers 6006 Printed-Circuit Board (PCB) with ϵ_r = 6.15 and thickness = 0.635 mm.

BLF4G10LS-160_1

UHF power LDMOS transistor

The other side is unetched and serves as a ground plane. See Table 10 for a list of components.

Fig 15. Component layout for 869 MHz to 894 MHz CDMA demo test circuit

Table 10. List of components (see Figure 14 and Figure 15).

Component	Description	Value		Remarks
C1, C6, C8	multilayer ceramic chip capacitor	68 pF	<u>[1]</u>	
C2, C7	multilayer ceramic chip capacitor	1.3 pF	<u>[1]</u>	
C3, C4	ceramic capacitor	100 nF		
C5, C10	tantalum capacitor	10 μF		
C9	ceramic capacitor	1 μF		
C11	electrolytic capacitor	2200 μF		
C12	multilayer ceramic chip capacitor	18 pF	<u>[1]</u>	
L1	stripline		[2]	(W \times L) 0.914 mm \times 10.160 mm
L2	stripline		[2]	(W \times L) 0.914 mm \times 24.384 mm
L3	tapered stripline		[2]	(W1 \times W2 \times L) 0.914 mm \times 19.812 mm \times 11.024 mm
L4	stripline		[2]	(W \times L) 19.812 mm \times 21.438 mm
L5	stripline		[2]	(W \times L) 0.914 mm \times 42.342 mm
L6	stripline		[2]	(W \times L) 1.524 mm \times 42.418 mm
L7	stripline		[2]	(W \times L) 17.221 mm \times 22.479 mm
L8	tapered stripline		[2]	(W1 \times W2 \times L) 17.221 mm \times 0.914 mm \times 20.625 mm
L9	stripline		[2]	(W \times L) 0.914 mm \times 19.126 mm

UHF power LDMOS transistor

Component	Description	Value	Remarks
L10	stripline		[2] (W \times L) 0.914 mm \times 6.858 mm
R1, R2	SMD resistor	430 Ω	
R3	SMD resistor	300 Ω	
R4	potentiometer	200 Ω	
R5	SMD resistor	2 kΩ	
R6	SMD resistor	1.1 kΩ	
R7	SMD resistor	11 kΩ	
R8	SMD resistor	5.1 Ω	
R9	SMD resistor	5.1 kΩ	
R10	SMD resistor	910 Ω	
Q1	voltage regulator		78L08
Q2	transistor		2N2222
Q3	BLF4G10-160		

Table 10. List of components (see Figure 14 and Figure 15). ...continued

[1] American Technical Ceramics type 100B or capacitor of same quality.

[2] The striplines are on a double copper-clad Rogers 6006 Printed-Circuit Board (PCB) with ϵ_r = 6.15 and thickness = 0.635 mm.

UHF power LDMOS transistor

9. Package outline

Fig 16. Package outline SOT502A

BLF4G10LS-160_1

UHF power LDMOS transistor

10. Abbreviations

AcronymDescriptionACPRAdjacent ChannelCDMACode Division MuCWContinuous WaveEDGEEnhanced Data G	
CDMACode Division MuCWContinuous WaveEDGEEnhanced Data G	
CWContinuous WaveEDGEEnhanced Data G	
EDGE Enhanced Data G	Itiple Access
	form
	SM Environment
EVM Error Vector Magr	nitude
GSM Global System for	r Mobile communications
IS-95 CDMA Interim Sta	andard 95
LDMOS Laterally Diffused	Metal Oxide Semiconductor
LDMOST Laterally Diffused	Metal-Oxide Semiconductor Transistor
PAR Peak-to-Average	power Ratio
RF Radio Frequency	
RMS Root Mean Squar	e
SMD Surface-Mount De	evice
VSWR Voltage Standing-	

11. Revision history

Table 12. Revision histor	У			
Document ID	Release date	Data sheet status	Change notice	Supersedes
BLF4G10LS-160_1	20070619	Product data sheet	-	-

12. Legal information

12.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

12.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

13. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

UHF power LDMOS transistor

14. Contents

founded by

PHILIPS

1	Product profile 1
1.1	General description1
1.2	Features
1.3	Applications 2
2	Pinning information 2
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 2
6	Characteristics 3
7	Application information 3
7.1	Ruggedness in class-AB operation 3
8	Test information
9	Package outline 12
10	Abbreviations 13
11	Revision history 13
12	Legal information 14
12.1	Data sheet status 14
12.2	Definitions 14
12.3	Disclaimers
12.4	Trademarks 14
13	Contact information 14
14	Contents 15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

Date of release: 19 June 2007 Document identifier: BLF4G10LS-160_1