# Dear customer

LAPIS Semiconductor Co., Ltd. ("LAPIS Semiconductor"), on the 1<sup>st</sup> day of October, 2020, implemented the incorporation-type company split (shinsetsu-bunkatsu) in which LAPIS established a new company, LAPIS Technology Co., Ltd. ("LAPIS Technology") and LAPIS Technology succeeded LAPIS Semiconductor's LSI business.

Therefore, all references to "LAPIS Semiconductor Co., Ltd.", "LAPIS Semiconductor" and/or "LAPIS" in this document shall be replaced with "LAPIS Technology Co., Ltd."

Furthermore, there are no changes to the documents relating to our products other than the company name, the company trademark, logo, etc.

Thank you for your understanding.

LAPIS Technology Co., Ltd. October 1, 2020



Issue Date: Sep. 28, 2021

# ML620Q131B/2B/3B/4B/5B/6B

### 16-bit micro controller

# GENERAL DESCRIPTION

This LSI is a high performance CMOS 16-bit microcontroller equipped with an 16-bit CPU nX-U16/100 and integrated with rich peripheral functions such as the timer, PWM, comparator, voltage level supervisor, UART, I2C, and successive approximation type A/D converter.

The CPU nX-U16/100 is capable of efficient instruction execution in 1-intruction 1-clock mode by 3-stage pipeline architecture parallel processing. It has the data flash memory area which can be written by software.

In addition, the on-chip debug function that is installed enables software debugging and programming.

### FEATURES

- CPU
  - 16-bit RISC CPU (CPU name: nX-U16/100)
  - Instruction system: 16-bit length instruction
  - Instruction set: Transfer, arithmetic operations, comparison, logic operations, multiplication/division, bit manipulations, bit logic operations, jump, conditional jump, call return stack manipulations, arithmetic shift, and so on
  - On-chip debug function built in
  - Minimum instruction execution time 30.5 μs (at 32.768 KHz system clock) 0.063 μs (at 16 MHz system clock)
- Internal memory
  - Flash memory\* (program area) Rewrite count 100 cycles ML620Q131B: 8 Kbyte (4K x 16 bits) ML620Q132B: 16 Kbyte (8K x 16 bits) ML620Q133B: 24 Kbyte (12K x 16 bits) ML620Q134B: 8 Kbyte (4K x 16 bits) ML620Q135B: 16 Kbyte (8K x 16 bits) ML620Q136B: 24 Kbyte (12K x 16 bits)
  - Flash memory (data area) Rewrite count 10,000 cycles
    - 2 Kbyte (1K x 16 bits)
    - SRAM
    - 2 Kbyte (2K x 8 bits)
    - \*: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc. SuperFlash® is a registered trademark of Silicon Storage Technology, Inc.
- Interrupt controller
  - Non-maskable interrupt source: 2 (Internal sources: BACK-UP CLOCK, WDT)
  - Maskable interrupt sources: 30 (Internal sources: 25, External sources: 5)
  - Four interrupt levels and masking function
- Time base counter
  - Low-speed time base counter × 1 channel
- Watchdog timer
  - Non-maskable interrupt and reset
  - (The first overflow generates an interrupt, and the second overflow generates a reset) - Free running
  - Overflow period: 4 types selectable (125 ms, 500 ms, 2 s, and 8 s at 32.768 kHz)



- Timers
  - 8 bits x 10 ch (16-bit configuration available)
  - Continuous timer mode/one-shot timer mode
  - Timer start/stop function by software/external trigger input
- PWM
  - Resolution 16 bits x 1 ch
  - Continuous PWM mode/one-shot PWM mode
  - PWM start/stop function by software/external trigger input
- Synchronous serial port
  - Master/slave selectable
  - LSB first/MSB first selectable
  - 8-bit length/16-bit length selectable
  - Operation in the SPI mode 0/3
  - Overflow detection function
- UART
  - Full-duplex communication x 1 ch
  - Bit length, parity/no parity, odd parity/even parity, 1 stop bit/2 stop bits
  - Positive logic/negative logic selectable
  - Internal baud rate generator
- I<sup>2</sup>C bus interface
  - Master x 1ch
    - Standard mode (100 kbit/s) and fast mode (400 kbit/s) are supported
  - Slave x 1ch
     Standard mode (100 kbit/s) and fast mode (400 kbit/s) are supported
- Successive approximation type A/D converter
  - 10-bit A/D converter
  - ML620Q131B/ ML620Q132B/ ML620Q133B : Input 6 ch
  - ML620Q134B/ ML620Q135B/ML620Q136B : Input 8 ch
- Analog Comparator
  - Operation voltage range: VDD = 1.8 to 5.5 V
  - Hysteresis width (only comparator 0): 20 mV (Typ.)
  - Interrupts allow edge selection and sampling selection
- DUTY measurement circuit
  - DUTY ratio measurement by inputting PWM signals with frequencies from 2 KHz to 64 KHz
  - DUTY measurement interrupt: 4 types selectable (64 µs, 0.51 ms, 1.09 ms, 2.18 ms)
- General-purpose ports (including secondary functions)
- Input-only port

1 ch (including secondary functions, also used by the on-chip debug pin) I/O port

ML620Q131B/ML620Q132B/ML620Q133B: 10 ch (including secondary functions) ML620Q134B/ML620Q135B/ML620Q136B: 14 ch (including secondary functions)

#### ML620Q131B/2B/3B/4B/5B/6B

- Reset
  - RESET\_N pin reset
  - Reset by power-on detection
  - Reset by the watchdog timer (WDT) overflow
  - Reset by RAM parity error (enable/disable can be selected)
  - Reset by voltage level detection 0 (VLS0) (enable/disable can be selected)
  - Reset by voltage level detection 1 (VLS1) (enable/disable can be selected)
  - Reset by prohibition program address change
- Voltage level detect function
  - 2 ch
  - Threshold voltage: 12 values selectable
  - Interrupt generation or reset generation can be selected
- Clock
  - Low-speed clock
  - Internal low-speed RC oscillation (32.768 KHz)
  - High-speed clock
     PLL oscillation @ internal high-speed RC oscillation (32 MHz\*1)
     High-speed crystal oscillation (4 MHz)
     PLL oscillation @ high-speed crystal oscillation (32 MHz\*1\*2)
  - Selection of high-speed clock mode by software
     PLL oscillation @ internal high-speed RC oscillation mode (16 MHz)
     High-speed crystal oscillation mode (4 MHz)
     PLL oscillation @ high-speed crystal oscillation mode (16 MHz)
    - <sup>\*1</sup>) 32 MHz can be used only as the PWMC clock.
      - The maximum frequency of the system clock is 16 MHz.
    - \*<sup>2</sup>) To use the high-speed crystal oscillation and PLL oscillation @ high-speed crystal oscillation, be sure to connect the high-speed crystal (4 MHz).
- Power management
  - HALT mode: Suspends the instruction execution by CPU (peripheral circuits are in operating states)
  - STOP mode: Stops the low-speed oscillation and high-speed oscillation (Operations of CPU and peripheral circuits are stopped.)
  - Clock gear: The frequency of high-speed system clock can be changed by software (1/1, 1/2, 1/4, 1/8, or 1/16 of the oscillation clock)
  - Block Control Function: Powers down (reset registers and stop clock supply) the circuits of unused function blocks

• Shipment

| <ul> <li>16-pin plastic SSOP</li> </ul> |                                |
|-----------------------------------------|--------------------------------|
| ML620Q131B-xxxMB                        | (Blank part: ML620Q131B-NNNMB) |
| ML620Q132B-xxxMB                        | (Blank part: ML620Q132B-NNNMB) |
| ML620Q133B-xxxMB                        | (Blank part: ML620Q133B-NNNMB) |
| xxx: ROM code number                    |                                |

- 16-pin WQFN
   ML620Q131B-xxxGD
   ML620Q132B-xxxGD
   ML620Q133B-xxxGD
   ML620Q133B-xxxGD
   ML620Q133B-xxxGD
   ML620Q133B-xxxGD
   (Blank part: ML620Q133B-NNNGD)
   xxx: ROM code number
- 20-pin plastic TSSOP ML620Q134B-xxxTD ML620Q135B-xxxTD ML620Q136B-xxxTD xxx: ROM code number
- 20-pin plastic SSOP ML620Q134B-xxxMB ML620Q135B-xxxMB ML620Q136B-xxxMB xxx: ROM code number

(Blank part: ML620Q135B-NNNTD) (Blank part: ML620Q136B-NNNTD)

(Blank part: ML620Q134B-NNNTD)

(Blank part: ML620Q134B-NNNMB) (Blank part: ML620Q135B-NNNMB) (Blank part: ML620Q136B-NNNMB)

- Guaranteed operating range
  - Operating temperature: -40 to 105 °C
  - Operating voltage: VDD = 1.6 to 5.5 V

The difference of ML620Q130B series is shown below.

| Feature                                                                           | ML620Q131B  | ML620Q132B                  | ML620Q133B  | ML620Q134B  | ML620Q135B                   | ML620Q136B  |
|-----------------------------------------------------------------------------------|-------------|-----------------------------|-------------|-------------|------------------------------|-------------|
|                                                                                   | WIE020Q101B | WIE020Q102B                 | WIE020Q100B | WIE020Q104D | ME020Q100D                   | WIE020Q100D |
| Shipment                                                                          |             | 16-pin SSOP/<br>16-pin WQFN |             |             | 20-pin TSSOP/<br>20-pin SSOP |             |
| FLASH capacity<br>(Program area)                                                  | 8 KB        | 16 KB                       | 24 KB       | 8 KB        | 16 KB                        | 24 KB       |
| Number of input channels<br>for successive<br>approximation type A/D<br>converter | 3           | 6 ch                        |             |             | 8 ch                         |             |
| Number of input-only                                                              |             | 1                           |             |             | 1                            |             |
| ports                                                                             | (also used  | by the on-chip of           | debug pin)  | (also used  | by the on-chip               | debug pin)  |
| Number of I/O ports                                                               |             | 10                          |             |             | 14                           |             |

### **BLOCK DIAGRAM**

### ML620Q131B/ML620Q132B/ML620Q133B Block Diagram

"\*" indicates the secondary, tertiary or quarternary function.



Figure 1-1 ML620Q131B/ML620Q132B/ML620Q133B Block Diagram

### ML620Q134B/ML620Q135B/ML620Q136B Block Diagram

"\*" indicates the secondary, tertiary or quarternary function.



Figure 1-2 ML620Q134B/ML620Q135B/ML620Q136B Block Diagram

#### FEDL620Q130B-03

#### ML620Q131B/2B/3B/4B/5B/6B

### PIN CONFIGURATION

Pin Layout of ML620Q131B/ML620Q132B/ML620Q133B 16pin SSOP Package



Figure 2 Pin Layout of ML620Q131B/ML620Q132B/ML620Q133B 16pin SSOP Package

#### Pin Layout of ML620Q131B/ML620Q132B/ML620Q133B 16pin WQFN Package



Figure 3 Pin Layout of ML620Q131B/ML620Q132B/ML620Q133B 16pin WQFN Package

#### FEDL620Q130B-03

# LAPIS Technology Co., Ltd.

#### ML620Q131B/2B/3B/4B/5B/6B

#### Pin Layout of ML620Q134B/ML620Q135B/ML620Q136B 20pin TSSOP/SSOP Package



Figure 4 Pin Layout of ML620Q134B/ML620Q135B/ML620Q136B 20pin TSSOP/SSOP Package

### ML620Q131B/2B/3B/4B/5B/6B

# PIN LIST

|                        |                        |                                  |                                         |         |                                                                                              | Ta       | ble 1   | Pin List               |          |           |                               |          |           |                              |
|------------------------|------------------------|----------------------------------|-----------------------------------------|---------|----------------------------------------------------------------------------------------------|----------|---------|------------------------|----------|-----------|-------------------------------|----------|-----------|------------------------------|
| PAD                    | PAD                    | PAD                              |                                         | Primary | function                                                                                     | Se       | condary | function               | Te       | rtiary fu | nction                        | Quartie  | c functio | n                            |
| No.<br>(16pin<br>SSOP) | No.<br>(16pin<br>WQFN) | No.<br>(20pin<br>TSSOP/<br>SSOP) | Pin name                                | I/O     | Feature                                                                                      | Pin name | I/O     | Feature                | Pin name | I/O       | Feature                       | Pin name | I/O       | Feature                      |
| 14                     | 12                     | 18                               | V <sub>DD</sub>                         | I/O     | Positive<br>power supply pin<br>input/output                                                 |          | _       | _                      | _        |           | _                             | -        |           | _                            |
| 12                     | 10                     | 16                               | V <sub>DDL</sub>                        | I/O     | Power supply pin<br>for internal logic<br>(Internal generation)                              | _        | _       | _                      | _        | _         | -                             | -        | _         | —                            |
| 13                     | 11                     | 17                               | V <sub>ss</sub>                         | I/O     | Negative<br>power supply pin<br>input/output                                                 | _        | _       | -                      |          | 7         |                               |          | _         | _                            |
| 5                      | 3                      | 7                                | RESET_N                                 | I       | Reset input pin                                                                              | —        | —       |                        | —        | _         | —                             |          | —         | —                            |
| 6                      | 4                      | 8                                | TEST1_N                                 | I       | Input pin for testing                                                                        | _        | —       | _                      |          |           |                               |          | _         | —                            |
| 16                     | 13                     | 20                               | PA0/<br>LED0/<br>EXI0/<br>AIN0/<br>RXD1 | I/O     | I/O port/<br>LED drive<br>External interrupt 0/<br>AD input 0/<br>UART1 reception            | PWMC     | ο       | PWMC output            | OUTCLK   | 0         | High-speed<br>clock<br>output | SDA      | I/O       | l <sup>2</sup> C data<br>I/O |
| 9                      | 8                      | 11                               | PA1/<br>EXI1/<br>AIN1/<br>CMP1P         | I/O     | I/O port/<br>External interrupt 1/<br>AD input 1/<br>Comparator 1<br>Non-inverting input     | -        |         | Ē                      | LSCLK    | 0         | Low-speed<br>clock<br>output  | SOUT0    | 0         | SSIO<br>data<br>output       |
| 7                      | 6                      | 9                                | PA2/<br>EXI2/<br>TEST0                  | I       | input port/<br>External interrupt 2/<br>Input pin for testing                                |          | -       |                        | _        |           |                               | _        |           | _                            |
| _                      | -                      | 5                                | PA3/<br>AIN6                            | I/O     | I/O port/<br>AD input 6                                                                      | 1        | J       | -                      | SDA      | I/O       | I <sup>2</sup> C data I/O     |          |           | _                            |
| _                      | -                      | 15                               | PA4/<br>AIN7                            | I/O     | I/O port/<br>AD input 7                                                                      | SIN0     | Т       | SSIO<br>data input     | _        | _         | _                             | _        | —         | _                            |
| _                      | _                      | 6                                | PA5                                     | I/O     | I/O port                                                                                     | SCK0     | I/O     | SSIO<br>clock I/O      | SCL      | I/O       | I <sup>2</sup> C clock<br>I/O | _        | —         | _                            |
| _                      | _                      | 14                               | PA6                                     | 1/0     | I/O port                                                                                     | SOUTO    | ο       | SSIO<br>data output    | _        | _         | _                             | _        | —         | _                            |
| 3                      | 1                      | 3                                | PB0/<br>EXI4/<br>AIN2/<br>RXD0/<br>DUTI | 1/0     | I/O port/<br>External interrupt 4/<br>AD input 2/<br>UART0 reception/<br>DUTY<br>measurement | PWMC     | ο       | PWMC<br>output         | SCL      | I/O       | I <sup>2</sup> C clock<br>I/O | CMP1OUT  | 0         | CMP1<br>output               |
| 4                      | 2                      | 4                                | PB1/<br>EXI5/<br>AIN3                   | I/O     | I/O port/<br>External interrupt 5/<br>AD input 3                                             | TXD1     | 0       | UART1<br>transmission  | TXD0     | 0         | UART0<br>transmission         | CMP0OUT  | 0         | CMP0<br>output               |
| 1                      | 16                     | 1                                | PB2                                     | I/O     | I/O port                                                                                     | OSC0     | I       | High-speed oscillation |          | _         | _                             | CMP0POUT | 0         | CMP0P<br>output              |
| 2                      | 15                     | 2                                | PB3                                     | I/O     | I/O port                                                                                     | OSC1     | 0       | High-speed oscillation | _        | _         | —                             | CMP0NOUT | 0         | CMP0N<br>output              |

Table 1 Pin List

# FEDL620Q130B-03

# ML620Q131B/2B/3B/4B/5B/6B

| PAD                    | PAD                           | PAD                              |                                | Primary | function                                                         | Se       | condary | function                      | Te       | rtiary fur | nction                           | Quarti   | c functio | n                               |
|------------------------|-------------------------------|----------------------------------|--------------------------------|---------|------------------------------------------------------------------|----------|---------|-------------------------------|----------|------------|----------------------------------|----------|-----------|---------------------------------|
| No.<br>(16pin<br>SSOP) | PAD<br>No.<br>(16pin<br>WQFN) | No.<br>(20pin<br>TSSOP/<br>SSOP) | Pin name                       | I/O     | Feature                                                          | Pin name | I/O     | Feature                       | Pin name | I/O        | Feature                          | Pin name | I/O       | Feature                         |
| 10                     | 7                             | 12                               | PB4/<br>CMP0P                  | I/O     | I/O port/<br>Comparator 0<br>Non-inverting input                 | TXD1     | 0       | UART1<br>transmission         | TXD0     | 0          | UART0<br>transmissio<br>n        | SINO     | I         | SSIO<br>data<br>input           |
| 11                     | 9                             | 13                               | PB5/<br>RXD0/<br>CMP0M         | I/O     | I/O port/<br>UART0 reception/<br>Comparator 0<br>Inverting input | OUTCLK   | 0       | High-speed<br>clock<br>output | TMJOUT   | 0          | Timer J<br>output                | SCK0     | I/O       | SSIO<br>clock I/O               |
| 8                      | 5                             | 10                               | PB6/<br>AIN4/<br>RXD1          | I/O     | I/O port/<br>AD input 4/<br>UART1 reception                      | LSCLK    | 0       | Low-speed<br>clock<br>output  | TMFOUT   | 0          | Timer F<br>output                | SDA      | I/O       | I <sup>2</sup> C<br>data<br>I/O |
| 15                     | 14                            | 19                               | PB7/<br>LED1/<br>AIN5/<br>DUTI | I/O     | I/O port/<br>LED drive<br>AD input 5/<br>DUTY<br>measurement     | TXD1     | 0       | UART1<br>transmission         | SCL      | 1/0        | I <sup>2</sup> C<br>clock<br>I/O | PWMC     | ο         | PWMC<br>output                  |

#### FEDL620Q130B-03

### ML620Q131B/2B/3B/4B/5B/6B

# PIN DESCRIPTION

|                                |         | Table 2 Pin Description (1/4)                                                                                                                                                                                                                                            |                                                |          |
|--------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------|
| Pin name                       | I/O     | Description                                                                                                                                                                                                                                                              | Primary/<br>Secondary/<br>Tertiary/<br>Quartic | Logic    |
| System                         |         |                                                                                                                                                                                                                                                                          |                                                |          |
| RESET_N                        | I       | Reset input pin. When this pin is set to a "L" level, system reset mode is set and<br>the internal section is initialized. When this pin is set to a "H" level<br>subsequently, program execution starts.<br>The RESET_N pin does not have an internal pull-up resistor. | -                                              | Negative |
| OSC0                           | I       | Crystal connection pin for the high-speed clock.                                                                                                                                                                                                                         | Secondary                                      | _        |
| OSC1                           | 0       | A crystal oscillator is connected to this pin (4 MHz max.), and capacitors $C_{DH}$ and $C_{GH}$ (see measurement circuit 1) are connected between this pin and $V_{SS}$ . This pin is used as the secondary function of the PB2 and PB3 pins.                           | Secondary                                      | _        |
| LSCLK                          | 0       | Low-speed clock output. This pin is used as the tertiary function of the PA1 pin or the secondary function of the PB6 pin.                                                                                                                                               | Secondary/<br>Tertiary                         |          |
| OUTCLK                         | 0       | High-speed clock output pin. This pin is used as the tertiary function of the PA0 pin or the secondary function of the PB5 pin.                                                                                                                                          | Tertiary                                       | _        |
| General-purpose                | e input | t port                                                                                                                                                                                                                                                                   |                                                |          |
| PA2                            | Ι       | General-purpose input port.                                                                                                                                                                                                                                              |                                                | Positive |
| General-purpose                | e input | t/output port                                                                                                                                                                                                                                                            |                                                |          |
| PA0 to PA1<br>PB0~PB7          | I/O     | General-purpose input/output port.<br>This cannot be used as the general input/output port when used as the secondary to quartic functions.                                                                                                                              | _                                              | Positive |
| PA3 to PA6                     | I/O     | General-purpose input/output port.<br>This cannot be used as the general input/output port when used as the<br>secondary to quartic functions.<br>Not available in ML620Q131B/ML620Q132B/ML620Q133B.                                                                     | _                                              | Positive |
| Serial (UART)                  |         |                                                                                                                                                                                                                                                                          |                                                |          |
| TXD0                           | 0       | UART0 transmit pin. This pin is used as the tertiary function of the PB1 and PB4 pins.                                                                                                                                                                                   | Tertiary                                       | Positive |
| TXD1                           | 0       | UART1 transmit pin. This pin is used as the secondary function of the PB1, PB4, and PB7 pins.                                                                                                                                                                            | Secondary                                      | Positive |
| RXD0                           | -       | UART0 receive pin. This pin is used as the primary function of the PB0 and PB5 pins.                                                                                                                                                                                     | Primary                                        | Positive |
| RXD1                           |         | UART1 receive pin. This pin is used as the primary function of the PA0 and PB6 pins.                                                                                                                                                                                     | Primary                                        | Positive |
| I <sup>2</sup> C Bus Interface | )       |                                                                                                                                                                                                                                                                          |                                                |          |
| SDA                            | I/O     | NMOS open drain pin for I <sup>2</sup> C data input/output.<br>This pin is used as the quartic function of the PA0 pin, the tertiary function of<br>the PA3 pin, or the quartic function of the PB6 pin. A pull-up resistor is<br>connected externally.                  | Tertiary/<br>Quartic                           | Positive |
| SCL                            | I/O     | NMOS open drain pin for I <sup>2</sup> C clock input/output.<br>This pin is used as the tertiary function of the PA5 pin, the tertiary function of the PB0 pin, or the tertiary function of the PB7 pin. A pull-up resistor is connected externally.                     | Tertiary                                       | Positive |

### Table 2 Pin Description (1/4)

#### FEDL620Q130B-03

### ML620Q131B/2B/3B/4B/5B/6B

|                  |           | Table 2 Pin Description (2/4)                                                                                                                                                                                     |                                                |                       |
|------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|
| Pin name         | I/O       | Description                                                                                                                                                                                                       | Primary/<br>Secondary/<br>Tertiary/<br>Quartic | Logic                 |
| Synchronous se   | erial (SS | SIO)                                                                                                                                                                                                              |                                                |                       |
| SIN              |           | Synchronous serial data input pin.<br>This pin is used as the secondary function of the PA4 pin or the quartic function<br>of the PB4 pin.                                                                        | Secondary/<br>Quartic                          | Positive              |
| SCK0             |           | High-speed clock input pin.<br>This pin is used as the secondary function of the PA5 pin or the quartic function<br>of the PB5 pin.                                                                               | Secondary/<br>Quartic                          | _                     |
| SOUT0            | 0         | High-speed clock output pin.<br>This pin is used as the quartic function of the PA1 pin or the secondary function<br>of the PA6 pin.                                                                              | Secondary/<br>Quartic                          | Positive              |
| PWM              |           |                                                                                                                                                                                                                   |                                                |                       |
| PWMC             | 0         | PWMC output pin.<br>This pin is used as the secondary function of the PA0 and PB0 pins or the<br>quartic function of the PB7 pin.                                                                                 | Secondary/<br>Quartic                          | Positive/<br>negative |
| External interru | pt        |                                                                                                                                                                                                                   |                                                |                       |
| EXI0 to 2        | I         | External maskable interrupt input pins. Interrupt enable and edge selection can be performed for each bit by software. This pin is used as the primary function of the PA0 to PA2 pins.                           | Primary                                        | Positive/<br>negative |
| EXI4,5           | I         | External maskable interrupt input pins. Interrupt enable and edge selection can be performed for each bit by software. This pin is used as the primary function of the PB0 and PB1 pins.                          | Primary                                        | Positive/<br>negative |
| Timer            |           |                                                                                                                                                                                                                   |                                                |                       |
| TnTG             | I         | External trigger input pin of the timer 0, timer 1, timer E, timer F, timer G, timer H, timer I, timer J, timer K, or timer L.<br>This pin is used as the primary function of the PA0 to PA2 and PB0 to PB7 pins. | Primary                                        | _                     |
| TMJOUT           | 0         | Timer J output pin. This pin is used as the tertiary function of PB5.                                                                                                                                             | Tertiary                                       | Positive              |
| TMFOUT           | 0         | Timer F output pin. This pin is used as the tertiary function of PB6.                                                                                                                                             | Tertiary                                       | Positive              |
| LED drive        |           |                                                                                                                                                                                                                   |                                                |                       |
| LED0, 1          | 0         | Pins for LED driving. Allocated to the primary function of the PA0 and PB7 pins.                                                                                                                                  | Primary                                        | Positive/<br>negative |

# Table 2 Pin Description (2/4)

#### FEDL620Q130B-03

### ML620Q131B/2B/3B/4B/5B/6B

|                |         | Table 2 Pin Description (3/4)                                                                                                                                                 |                                                |       |
|----------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|
| Pin name       | I/O     | Description                                                                                                                                                                   | Primary/<br>Secondary/<br>Tertiary/<br>Quartic | Logic |
| Successive app | roximat | ion type A/D converter                                                                                                                                                        |                                                |       |
| AINO           | I       | Ch0 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PA0 pin.                                                    | Primary                                        | —     |
| AIN1           | I       | Ch1 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PA1 pin.                                                    | Primary                                        | —     |
| AIN2           | I       | Ch2 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PB0 pin.                                                    | Primary                                        | _     |
| AIN3           | Ι       | Ch3 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PB1 pin.                                                    | Primary                                        |       |
| AIN4           | I       | Ch4 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PB6 pin.                                                    | Primary                                        | _     |
| AIN5           | I       |                                                                                                                                                                               |                                                | _     |
| AIN6           | I       | Ch6 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PA3 pin. Not available in ML620Q131B/ML620Q132B/ML620Q133B. | Primary                                        | _     |
| AIN7           | I       | Ch7 analog input for successive approximation type A/D converter. This pin is used as the primary function of the PA4 pin. Not available in ML620Q131B/ML620Q132B/ML620Q133B. | Primary                                        | _     |
| Comparator     |         |                                                                                                                                                                               |                                                |       |
| CMP0P          | I       | Comparator 0 non-inverting input. This pin is used as the primary function of the PB4 pin.                                                                                    | Primary                                        | _     |
| CMP0M          | I       | Comparator 0 inverting input. This pin is used as the primary function of the PB5 pin.                                                                                        | Primary                                        | _     |
| CMP0OUT        | 0       | Comparator 0 output pin. This pin is used as the quartic function of the PB1 pin.                                                                                             | Quartic                                        | _     |
| CMP0POUT       | 0       | Comparator 0 output pin. This pin is used as the quartic function of the PB2 pin.                                                                                             | Quartic                                        | _     |
| CMP0NOUT       | 0       | Comparator 0 output pin. This pin is used as the quartic function of the PB3 pin.                                                                                             | Quartic                                        |       |
| CMP1P          | I       | Comparator 1 non-inverting input. This pin is used as the primary function of the PA1 pin.                                                                                    | Primary                                        | —     |
| CMP1OUT        | 0       | Comparator 1 output pin. This pin is used as the quartic function of the PB0 pin.                                                                                             | Quartic                                        | _     |
| DUTY measure   | ment ci | rcuit                                                                                                                                                                         |                                                |       |
| DUTI           | I       | PWM waveform input for the DUTY measurement circuit. This pin is used as the primary function of the PB0 and PB7 pins.                                                        | Primary                                        | —     |

# FEDL620Q130B-03

# ML620Q131B/2B/3B/4B/5B/6B

|                  |     | Table 2 Pin Description (4/4)                                                                                                                        |                                                |          |
|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------|
| Pin name         | I/O | Description                                                                                                                                          | Primary/<br>Secondary/<br>Tertiary/<br>Quartic | Logic    |
| For testing      |     |                                                                                                                                                      | L                                              | 1        |
| TEST0            | Ι   | Input pin for testing. This pin is used as the primary function of the PA2 pin.                                                                      | —                                              | Positive |
| TEST1_N          | Ι   | Input pin for testing. A pull-up resistor is internally connected.                                                                                   | —                                              | Negative |
| Power supply     |     |                                                                                                                                                      |                                                |          |
| V <sub>SS</sub>  |     | Negative power supply pin.                                                                                                                           | —                                              | _        |
| V <sub>DD</sub>  | —   | Positive power supply pin.                                                                                                                           | —                                              | —        |
| V <sub>DDL</sub> | —   | Power supply pin for internal logic (internally generated). Capacitor $C_L$ (see measurement circuit 1) is connected between this pin and $V_{SS}$ . | -                                              | —        |

# TERMINATION OF UNUSED PINS

#### Table 3 Termination of unused pins

| Pin        | Recommended pin termination                     |
|------------|-------------------------------------------------|
| RESET_N    | Pull up to V <sub>DD</sub> , or V <sub>DD</sub> |
| TEST1_N    | open                                            |
| PA0 to PA1 | open                                            |
| PA2/TEST0  | V <sub>SS</sub>                                 |
| PA3 to PA6 | open                                            |
| PB0 to PB7 | open                                            |

Note:

The unused input ports or unused input/output ports should not be configured as high-impedance inputs and left open. If the corresponding pins are configured as high-impedance inputs and left open, because the input buffer of both Nch and Pch MOS transistor turn on, the supply current may become excessively large. Therefore, it is recommended to configure those pins as either inputs with a pull-down resistor/pull-up resistor or outputs.

#### FEDL620Q130B-03

#### ML620Q131B/2B/3B/4B/5B/6B

### **ELECTRICAL CHARACTERISTICS**

#### **Absolute Maximum Ratings**

| -                                                                 |                   |                                                                   |                              | $(V_{SS} = 0V)$ |
|-------------------------------------------------------------------|-------------------|-------------------------------------------------------------------|------------------------------|-----------------|
| Parameter                                                         | Symbol            | Condition                                                         | Rating                       | Unit            |
| Power supply voltage 1                                            | V <sub>DD</sub>   | Ta = 25°C                                                         | -0.3 to +6.5                 | V               |
| Power supply voltage 2                                            | V <sub>DDL</sub>  | Ta = 25°C                                                         | -0.3 to +2.0                 | V               |
| Input voltage                                                     | V <sub>IN</sub>   | Ta = 25°C                                                         | -0.3 to V <sub>DD</sub> +0.3 | V               |
| Output voltage                                                    | V <sub>OUT</sub>  | Ta = 25°C                                                         | -0.3 to V <sub>DD</sub> +0.3 | V               |
| Output current 1<br>(PA0 to PA1)<br>(PA3 to PA6)*<br>(PB0 to PB7) | I <sub>OUT1</sub> | Ta = 25°C                                                         | -12 to +11                   | mA              |
| Output current 2<br>(PA0)<br>(PB7)                                | I <sub>OUT2</sub> | Ta = 25°C<br>When N-channel open drain<br>output mode is selected | -12 to +20                   | mA              |
| Power dissipation                                                 | PD                | Ta = 25°C                                                         | 1                            | W               |
| Storage temperature                                               | T <sub>STG</sub>  | -                                                                 | -55 to +150                  | °C              |

\* : ML620Q131B/ ML620Q132B/ ML620Q133B do not have the peripherals.

### **Recommended Operating Conditions**

|                                                       |                  |                               |                 | $(V_{SS} = 0V)$ |
|-------------------------------------------------------|------------------|-------------------------------|-----------------|-----------------|
| Parameter                                             | Symbol           | Condition                     | Range           | Unit            |
| Operating temperature                                 | TOP              | -                             | -40 to +105     | °C              |
| Operating voltage                                     | V <sub>DD</sub>  | —                             | 1.6 to 5.5      | V               |
| Operating frequency (CDLI)                            | 4                | V <sub>DD</sub> = 1.6 to 5.5V | 30k to 32.768k  | Hz              |
| Operating frequency (CPU)                             | f <sub>OP</sub>  | V <sub>DD</sub> = 1.8 to 5.5V | 30k to 16M      |                 |
| High-speed crystal oscillation frequency              | f <sub>хтн</sub> | $V_{DD} = 1.8$ to 5.5V        | 4.0M            | Hz              |
| High-speed crystal oscillation                        | C <sub>DH</sub>  | Use NX8045GE (NIHON           | 16              | pF              |
| external capacitor                                    | C <sub>GH</sub>  | DEMPA KOGYO CORP.)            | 16              | pi              |
| Capacitor externally connected to V <sub>DD</sub> pin | Cv               |                               | 2.2±30% or more | μF              |
| Capacitor externally connected to VDDL pin            | CL               | —                             | 2.2±30%         | μF              |

# Flash Memory Operating Conditions

| hash Memory Operating Cond |                  |                |                             |                  | $(V_{SS} = 0)$ |
|----------------------------|------------------|----------------|-----------------------------|------------------|----------------|
| Parameter                  | Symbol           | Co             | ondition                    | Range            | Unit           |
|                            |                  | Data flash mer | nory, At write/erase        | -40 to +105      |                |
| Operating temperature      | T <sub>OP</sub>  | Flash ROM      | 1, At write/erase           | 0 to +40         | °C             |
| Operating voltage          | V <sub>DD</sub>  | At w           | rite/erase                  | 1.6 to 5.5       | V              |
| Maximum rewrite count *1   | C <sub>EPD</sub> | Da             | ta Flash                    | 10,000           | timoo          |
| Maximum rewrite count      | CEPP             | Program Flash  |                             | 100              | times          |
|                            | _                | Chip erase     |                             | All area         | _              |
|                            |                  | Discharge      | Program Flash               | 4                | KB             |
| Erase unit                 | _                | Block erase    | Data Flash                  | 2                | KB             |
|                            | _                | Sec            | tor erase                   | 1                | KB             |
| Erase time                 | _                | •              | lock erase, Sector<br>erase | 100              | ms             |
| Write unit                 | _                |                | _                           | 1 word (2 Bytes) | _              |
| Write time (Max.)          | _                | 1 wor          | d (2 Bytes)                 | 40               | μS             |
| Data retention period      | Y <sub>DR</sub>  |                | _                           | 15               | years          |

\*1: One rewrite cycle includes both one time erase and one time write, it counts as one even if the erase is aborted.

#### FEDL620Q130B-03

### ML620Q131B/2B/3B/4B/5B/6B

### **DC** Characteristics (Supply Current)

## (V<sub>DD</sub>=1.6 to 5.5V, V<sub>SS</sub> =0V, Ta=-40 to +105°C, unless otherwise specified)

|                  |        | (VDD=1.0 to 5                                                                                     | .00, 055 - 00                                                                                    | , iu= +0 i | 5 1 105 0, 0 |      | n wibe op | comca)                   |
|------------------|--------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------|--------------|------|-----------|--------------------------|
| Parameter        | Symbol | Condition                                                                                         |                                                                                                  | Min.       | Тур.         | Max. | Unit      | Meas<br>uring<br>circuit |
| Supply ourront 1 | IDD1   | CPU is in STOP state.<br>Low-speed oscillation is                                                 | Ta = -40<br>to +105°C                                                                            | —          | 1            | 22   |           |                          |
| Supply current 1 | ושטו   | stopped.<br>V <sub>DD</sub> =5.0V                                                                 | Ta = -40<br>to +85°C                                                                             | —          | 1            | 9    |           |                          |
| Supply current 2 | IDD2   |                                                                                                   | PU is in HALT state (LTBC,WBC:<br>Operating <sup>1</sup> ). High-speed oscillation is<br>topped. |            |              | 26   | μΑ        |                          |
| Supply current 3 | IDD3   | CPU: Running at 32kHz* <sup>2</sup><br>High-speed oscillation is stopped<br>V <sub>DD</sub> =3.0V | PU: Running at 32kHz* <sup>2</sup><br>igh-speed oscillation is stopped.                          |            |              |      |           |                          |
| Supply current 4 | IDD4   | CPU: Running at 16MHz PLL os<br>mode used High-speed crystal o<br>VDD=5.0V                        | U .                                                                                              |            | 4.5          | 5.5  | mA        |                          |
| Supply current 5 | IDD5   | CPU: Running at 16MHz PLL os<br>mode used High-speed RC oscil<br>VDD=5.0V                         | ŭ                                                                                                | _          | 4.5          | 5.5  |           |                          |

\*<sup>1</sup> : LTBC and WDT is operating, Significant bits of BLKCON0 to BLKCON7 registers are all "1" \*<sup>2</sup> : CPU running rate is 100%

#### FEDL620Q130B-03

### ML620Q131B/2B/3B/4B/5B/6B

# DC Characteristics (VOHL, IOHL)

| ```                                           | ,         | (V                                    | <sub>DD</sub> =1.6 to 5.5V, V <sub>SS</sub> =0V                                                    | , Ta=–40 | to +105° | C, unless   | otherwi | se specified)        |
|-----------------------------------------------|-----------|---------------------------------------|----------------------------------------------------------------------------------------------------|----------|----------|-------------|---------|----------------------|
| Parameter                                     | Symbol    | Co                                    | Condition                                                                                          |          |          | Max.        | Unit    | Measuring<br>circuit |
| Output voltage 1<br>(PA0 to PA1)              | VOH1      | IOH1 :                                | IOH1 = -0.5mA                                                                                      |          |          | _           |         |                      |
| (PA3 to PA6)*<br>(PB0 to PB7)                 | · VOL1 IO |                                       | IOL1 = +0.5mA                                                                                      |          | —        | 0.5         |         |                      |
|                                               |           |                                       | $\begin{array}{l} \text{IOL2} = +10\text{mA} \\ \text{V}_{\text{DD}} \geq 5.0\text{V} \end{array}$ | _        | —        | 0.5         | V       |                      |
| Output voltage 2                              |           | When N-channel                        | $\begin{array}{l} \text{IOL2} = +8\text{mA} \\ \text{V}_{\text{DD}} \geq 3.0\text{V} \end{array}$  | _        | _        | 0.5         |         | 2                    |
| (PA0)<br>(PB7)                                | VOL2      | open drain output<br>mode is selected | $IOL3 = +3mA$ $V_{DD} \ge 2.0V$                                                                    | -        | _        | 0.4         |         |                      |
|                                               |           |                                       | IOL3 = +2mA<br>2.0V > V <sub>DD</sub> ≥ 1.8V                                                       | 77       | -        | VDD*<br>0.2 |         |                      |
| Output leakage<br>current                     | ЮОН       |                                       | H = V <sub>DD</sub><br>pedance state)                                                              |          |          | 1           |         |                      |
| (PA0 to PA1)<br>(PA3 to PA6)*<br>(PB0 to PB7) | IOOL      |                                       | _ = V <sub>ss</sub><br>pedance state)                                                              | -1       |          | _           | μA      | 3                    |

\*: ML620Q131B/ ML620Q132B/ ML620Q133B do not have the peripherals.

### **DC Characteristics (IIHL)**

|                                 |        | (V <sub>DD</sub> =1.6 to 5.5V, V <sub>SS</sub> =0V  | , Ta=–40 | to +105° | C, unless | otherwi | se specified)        |
|---------------------------------|--------|-----------------------------------------------------|----------|----------|-----------|---------|----------------------|
| Parameter                       | Symbol | Condition                                           | Min.     | Тур.     | Max.      | Unit    | Measuring<br>circuit |
| Input current 1                 | IIH1   | VIH1 = V <sub>DD</sub>                              | _        | _        | 1         |         |                      |
| (RESET_N)                       | IIL1   | VIL1 = V <sub>SS</sub>                              | -1       |          |           |         |                      |
| Input current 2                 | IIH2   | $VIH2 = V_{DD}$                                     | _        | _        | 1         |         |                      |
| (TEST1_N)                       | IIL2   | $VIL2 = V_{SS}$                                     | -1500    | -300     | -20       |         |                      |
| lanut sumant 0                  | IIH3   | VIH3 = $V_{DD}$ (when pulled down)                  | 2        | 30       | 250       | μA      | 4                    |
| Input current 3<br>(PA0 to PA1) | IIL3   | VIL3 = $V_{SS}$ (when pulled up)                    | -250     | -30      | -2        |         |                      |
| (PA2/TEST0)<br>(PA3 to PA6)*    | IIH3Z  | VIH3 = V <sub>DD</sub><br>(in high-impedance state) | _        | _        | 1         |         |                      |
| (PB0 to PB7)                    | IIL3Z  | VIL3 = V <sub>SS</sub><br>(in high-impedance state) | -1       | _        | _         |         |                      |

\*: ML620Q131B/ ML620Q132B/ ML620Q133B do not have the peripherals.

#### FEDL620Q130B-03

### ML620Q131B/2B/3B/4B/5B/6B

### **DC Characteristics (VIHL)**

|                                                                                                                 |        | (V <sub>DD</sub> =1.6 to 5.5V, V <sub>SS</sub> : | =0V, Ta=-4              | 40 to +10 | 5°C, unless             | s otherwis | se specified)     |
|-----------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------|-------------------------|-----------|-------------------------|------------|-------------------|
| Parameter                                                                                                       | Symbol | Condition                                        | Min.                    | Тур.      | Max.                    | Unit       | Measuring circuit |
| Input voltage 1<br>(RESET_N)<br>(TEST1_N)                                                                       | VIH1   | _                                                | 0.7×<br>V <sub>DD</sub> | —         | V <sub>DD</sub>         | Ň          |                   |
| (PA0 to PA1)<br>(PA2/TEST0)<br>(PA3 to PA6)*<br>(PB0 to PB7)                                                    | VIL1   | _                                                | 0                       | _         | 0.3×<br>V <sub>DD</sub> | V          | 5                 |
| Input pin capacitance<br>(RESET_N)<br>(TEST1_N)<br>(PA0 to PA1)<br>(PA2/TEST0)<br>(PA3 to PA6)*<br>(PB0 to PB7) | CIN    | f = 10kHz<br>Ta = 25°C                           | Q                       |           | 10                      | pF         | _                 |

\*: ML620Q131B/ ML620Q132B/ ML620Q133B do not have the peripherals.

### ML620Q131B/2B/3B/4B/5B/6B

| Parameter               | Symbol            | Condition        |      | Min. | Тур. | Max. | Unit | Meas<br>uring<br>circuit |
|-------------------------|-------------------|------------------|------|------|------|------|------|--------------------------|
|                         |                   |                  | Rise | 1.64 | 1.67 | 1.70 |      |                          |
|                         |                   | VLS03 to 0 = 00H | Fall | 1.60 | 1.63 | 1.66 |      |                          |
|                         |                   |                  | Rise | 1.74 | 1.77 | 1.81 |      |                          |
|                         |                   | VLS03 to 0 = 01H | Fall | 1.70 | 1.73 | 1.77 |      |                          |
|                         |                   | \/I to 0         | Rise | 1.84 | 1.88 | 1.91 |      |                          |
|                         |                   | VLS03 to 0 = 02H | Fall | 1.80 | 1.84 | 1.87 |      |                          |
|                         |                   | VLS03 to 0 = 03H | Rise | 1.94 | 1.98 | 2.02 |      |                          |
|                         |                   | VLS03 to 0 = 03H | Fall | 1.90 | 1.94 | 1.98 |      |                          |
|                         |                   | VLS03 to 0 = 04H | Rise | 2.05 | 2.09 | 2.13 |      |                          |
|                         |                   | VLS03 10 0 = 04H | Fall | 2.00 | 2.04 | 2.08 |      |                          |
| Voltage Level           |                   | VLS03 to 0 = 05H | Rise | 2.45 | 2.50 | 2.55 |      |                          |
| Supervisor 0            | N/                | VLS03 10 0 = 05H | Fall | 2.40 | 2.45 | 2.50 |      |                          |
| VLS0) V <sub>VLS0</sub> | V <sub>VLS0</sub> | VLS03 to 0 = 06H | Rise | 2.56 | 2.61 | 2.66 |      |                          |
|                         |                   | VL303 10 0 = 00H | Fall | 2.50 | 2.55 | 2.60 | V    |                          |
|                         |                   | VLS03 to 0 = 07H | Rise | 2.66 | 2.71 | 2.76 |      |                          |
|                         |                   |                  | Fall | 2.60 | 2.65 | 2.70 |      |                          |
|                         |                   | VLS03 to 0 = 08H | Rise | 2.76 | 2.81 | 2.87 |      | 1                        |
|                         |                   |                  | Fall | 2.70 | 2.75 | 2.81 |      |                          |
|                         |                   |                  | Rise | 2.86 | 2.92 | 2.97 | V    | 1                        |
|                         |                   | VLS03 to 0 = 09H | Fall | 2.80 | 2.86 | 2.91 |      |                          |
|                         |                   |                  | Rise | 2.96 | 3.02 | 3.08 | 1    |                          |
|                         |                   | VLS03 to 0 = 0AH | Fall | 2.90 | 2.96 | 3.02 |      |                          |
|                         |                   |                  | Rise | 4.01 | 4.09 | 4.17 |      |                          |
|                         |                   | VLS03 to 0 = 0BH | Fall | 3.90 | 3.98 | 4.06 |      |                          |
|                         |                   | VLS13 to 0 = 0   | ОН   | 1.60 | 1.63 | 1.66 |      |                          |
|                         |                   | VLS13 to 0 = 0   | 1H   | 1.70 | 1.73 | 1.77 |      |                          |
|                         |                   | VLS13 to 0 = 0   | 2H   | 1.80 | 1.84 | 1.87 |      |                          |
|                         |                   | VLS13 to 0 = 0   |      | 1.90 | 1.94 | 1.98 |      |                          |
| Voltage Level           |                   | VLS13 to 0 = 0   |      | 2.00 | 2.04 | 2.08 |      |                          |
| Supervisor 0            |                   | VLS13 to 0 = 0   |      | 2.40 | 2.45 | 2.50 | 1    |                          |
| (VLS1)                  |                   | VLS13 to 0 = 0   |      | 2.50 | 2.55 | 2.60 | 1    |                          |
| threshold voltage       |                   | VLS13 to 0 = 0   |      | 2.60 | 2.65 | 2.70 | 1    |                          |
| -                       |                   | VLS13 to 0 = 0   |      | 2.70 | 2.75 | 2.81 | 1    |                          |
|                         |                   | VLS13 to 0 = 0   |      | 2.80 | 2.86 | 2.91 | 1    |                          |
|                         |                   | VLS13 to 0 = 0/  |      | 2.90 | 2.96 | 3.02 | 1    |                          |
|                         |                   | VLS13 to 0 = 0   |      | 3.90 | 3.98 | 4.06 | 1    |                          |

# DC Characteristics (Voltage Level Supervisor)

#### FEDL620Q130B-03

# ML620Q131B/2B/3B/4B/5B/6B

### **DC Characteristics (Analog Comparator)**

|                                                  |                    | (V <sub>DD</sub> =1.6 to 5.5V, V <sub>SS</sub> =0V | , Ta=–40 t | o +105°C, ⊧ | unless othe             | rwise sp | ecified)                |
|--------------------------------------------------|--------------------|----------------------------------------------------|------------|-------------|-------------------------|----------|-------------------------|
| Parameter                                        | Symbol             | Condition                                          | Min.       | Тур.        | Max.                    | Unit     | Meas<br>uring<br>circui |
| Comparator0<br>Comparator1<br>Operating voltage  | V <sub>DD</sub>    | _                                                  | 1.8        | _           | 5.5                     | V        | _                       |
| Comparator0 same<br>phase input voltage<br>range | V <sub>CMR</sub>   | V <sub>DD</sub> = 1.8 to 5.5V                      | 0.1        | -           | V <sub>DD</sub><br>-1.5 | V        |                         |
| Comparator0                                      | V <sub>HYSP</sub>  | Ta = 25°C, V <sub>DD</sub> = 5.0V                  | 10         | 20          | 30                      |          |                         |
| Hysteresis                                       | VHYSP              | $V_{DD} = 5.0V$                                    | 5          | 20          | 35                      |          | 1                       |
| Comparator0 input<br>offset                      | V <sub>CMOF</sub>  | $Ta = 25^{\circ}C, V_{DD} = 5.0V$                  |            | -           | 7                       | mV       | 1                       |
| Comparator<br>reference voltage                  | V <sub>CMREF</sub> | Ta = 25°C<br>V <sub>DD</sub> = 1.8 to 5.5V         | -25        | -           | 25                      |          |                         |
| error *1                                         |                    | V <sub>DD</sub> = 1.8 to 5.5V                      | -50        | -           | 50                      |          |                         |

#### Measuring circuit

#### Measuring circuit 1



(\*2) Measured at the specified output pins.

#### ML620Q131B/2B/3B/4B/5B/6B





\*3: Measured at the specified input pins.

#### Measuring circuit 5



\*1: Input logic circuit to determine the specified measuring conditions.

#### ML620Q131B/2B/3B/4B/5B/6B

### **AC Characteristics (Oscillation Circuit)**

|                                                            |                  | $(V_{DD}=1.6 \text{ to } 5.5 \text{V}, \text{V}_{S})$ | <sub>s</sub> =0V, Ta | =–40 to +10 | 5°C, unless ( | otherwise | specified)               |
|------------------------------------------------------------|------------------|-------------------------------------------------------|----------------------|-------------|---------------|-----------|--------------------------|
| Parameter                                                  | Symbol           | Condition                                             | Min.                 | Тур.        | Max.          | Unit      | Measur<br>ing<br>circuit |
|                                                            |                  | Ta= +25°C                                             | Тур<br>-1%           | 32.768k     | Тур<br>+1%    | Hz        |                          |
| Low-speed RC oscillator<br>frequency                       | f <sub>RCL</sub> | Ta= -40 to 85°C                                       | Тур<br>-2.5%         | 32.768k     | Тур<br>+2.5%  | Hz        |                          |
|                                                            |                  | Ta= -40 to 105°C                                      | Тур<br>-3%           | 32.768k     | Тур<br>+3%    | Hz        |                          |
| PLL oscillation frequency* <sup>1</sup>                    | 4                | Ta= -20 to 85°C,<br>V <sub>DD</sub> = 1.8 to 5.5V     | Тур<br>-1%           | 32          | Тур<br>+1%    | MHz       |                          |
| PLL oscillation frequency                                  | f <sub>PLL</sub> | Ta= -40°C to +105°C,<br>V <sub>DD</sub> = 1.8 to 5.5V | Тур<br>-1.5%         | 32          | Typ<br>+1.5%  | MHz       | 1                        |
| Low-speed RC oscillation start time* <sup>1</sup>          | T <sub>RCL</sub> | _                                                     |                      |             | 65            | μs        |                          |
| High-speed RC oscillation start<br>time* <sup>1</sup>      | T <sub>RCH</sub> | V <sub>DD</sub> = 1.8 to 5.5V                         | _                    | -           | 5             | μs        |                          |
| High-speed crystal oscillation<br>start time* <sup>1</sup> | T <sub>XTH</sub> | V <sub>DD</sub> = 1.8 to 5.5V                         | -                    | 2           | 20            | ms        |                          |
| PLL oscillation start time                                 | T <sub>PLL</sub> | V <sub>DD</sub> = 1.8 to 5.5V                         | —                    | _           | 2             | ms        |                          |

\*<sup>1</sup>: 4096 clock average. The CPU clock is max. f<sub>PLL</sub>/2.
 \*<sup>2</sup>: Use 4MHz Crystal Oscillator NX8045GE (NIHON DEMPA KOGYO CORP.)

#### AC Characteristics (Power On Reset Sequence)

|                                   | s =0V, Ta         | =-40 to +10 | 5°C, unless ( | otherwise | specified) |      |                          |
|-----------------------------------|-------------------|-------------|---------------|-----------|------------|------|--------------------------|
| Parameter                         | Symbol            | Condition   | Min.          | Тур.      | Max.       | Unit | Measur<br>ing<br>circuit |
| Reset pulse width                 | P <sub>RST</sub>  | _           | 100           | —         | _          | -    |                          |
| Reset noise rejection pulse width | P <sub>NRST</sub> | —           |               | _         | 0.4        | μs   | 1                        |
| Power On Reset rising time        | T <sub>POR</sub>  | —           | _             | —         | 10         | ms   |                          |

#### When using **RESET\_N** pin



P<sub>RST:</sub> Reset pulse width

#### When using power on reset



T<sub>POR</sub>: Power On Reset V<sub>DD</sub> Rising Time

#### ML620Q131B/2B/3B/4B/5B/6B

# (V<sub>DD</sub>=1.6 to 5.5V, V<sub>SS</sub> =0V, Ta=-40 to +105°C, unless otherwise specified) Parameter Symbol Condition Min. Тур. Max. Unit External interrupt disable Interrupt: Enabled (MIE = 1), 2.5 × 3.5 × $\mathsf{T}_{\mathsf{NUL}}$ \_ μs CPU is executing NOP instruction period LSCLK LSCLK EXI0 to EXI2, EXI4 to EXI5 (Rising-edge interrupt) t<sub>NUL</sub> EXI0 to EXI2, EXI4 to EXI5 (Falling-edge interrupt) $\mathbf{t}_{\mathsf{NUL}}$ EXI0 to EXI2, EXI4 to EXI5 (Both-edge interrupt) t<sub>NUL</sub>

### AC Characteristics (External Interrupt)

### AC Characteristics (Synchronous Serial Port)

|                                         |                   | (V <sub>DD</sub> =1.6 to 5.5V, V <sub>SS</sub> =0V, Ta=-40 to +105°C, unless otherwise specified |                             |                             |                             |      |  |  |  |  |  |
|-----------------------------------------|-------------------|--------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------|--|--|--|--|--|
| Parameter                               | Symbol            | Condition                                                                                        | Min.                        | Тур.                        | Max.                        | Unit |  |  |  |  |  |
| SCK input cycle<br>(slave mode)         | t <sub>SCYC</sub> | —                                                                                                | 1                           | —                           | —                           | μS   |  |  |  |  |  |
| SCK output cycle<br>(master mode)       | t <sub>SCYC</sub> | —                                                                                                | —                           | SCK <sup>(*1)</sup>         | —                           | sec  |  |  |  |  |  |
| SCK input pulse width<br>(slave mode)   | t <sub>SW</sub>   | _                                                                                                | 200                         | —                           | —                           | ns   |  |  |  |  |  |
| SCK output pulse width<br>(master mode) | t <sub>SW</sub>   | —                                                                                                | SCK <sup>(*1)</sup><br>×0.4 | SCK <sup>(*1)</sup><br>×0.5 | SCK <sup>(*1)</sup><br>×0.6 | sec  |  |  |  |  |  |
| SOUT output delay time<br>(slave mode)  | t <sub>SD</sub>   | —                                                                                                | —                           | —                           | 360                         | ns   |  |  |  |  |  |
| SOUT output delay time<br>(master mode) | t <sub>SD</sub>   | _                                                                                                | _                           | —                           | 160                         | ns   |  |  |  |  |  |
| SIN input setup time<br>(slave mode)    | t <sub>SS</sub>   | -                                                                                                | 80                          |                             | -                           | ns   |  |  |  |  |  |
| SIN input setup time<br>(Master mode)   | t <sub>SS</sub>   | -                                                                                                | 180                         |                             |                             | ns   |  |  |  |  |  |
| SIN input hold time                     | t <sub>SH</sub>   | _                                                                                                | 80                          | -                           | —                           | ns   |  |  |  |  |  |

\*1: Clock period selected by S0CK3–0 of the serial port n mode register (SIO0MOD1)



\*: Indicates the secondary function of the corresponding port.

#### AC Characteristics (I2C Bus Interface: Standard Mode 100kHz)

|                                            | (V <sub>DD</sub> =  | 1.6 to 5.5V, V <sub>SS</sub> =0V, Ta=–4 | 0 to +105°0 | C, unless o | therwise s | pecified) |
|--------------------------------------------|---------------------|-----------------------------------------|-------------|-------------|------------|-----------|
| Deverseter                                 | Ci implicati        | Condition                               |             | Rating      |            | ا ا ا     |
| Parameter                                  | Symbol              | Condition                               | Min.        | Тур.        | Max.       | Unit      |
| SCL clock frequency                        | f <sub>SCL</sub>    | _                                       | 0           |             | 100        | kHz       |
| SCL hold time<br>(start/restart condition) | t <sub>HD:STA</sub> | _                                       | 4.0         |             |            | μS        |
| SCL "L" level time                         | t <sub>LOW</sub>    | _                                       | 4.7         |             |            | μS        |
| SCL "H" level time                         | t <sub>HIGH</sub>   | _                                       | 4.0         |             |            | μS        |
| SCL setup time<br>(restart condition)      | t <sub>SU:STA</sub> | —                                       | 4.7         |             |            | μS        |
| SDA hold time                              | t <sub>HD:DAT</sub> | _                                       | 0           |             |            | μS        |
| SDA setup time                             | t <sub>SU:DAT</sub> |                                         | 0.25        |             | _          | μS        |
| SDA setup time<br>(stop condition)         | t <sub>SU:STO</sub> |                                         | 4.0         | _           | —          | μS        |
| Bus-free time                              | t <sub>BUF</sub>    | _                                       | 4.7         |             | -          | μS        |

#### AC Characteristics (I2C Bus Interface: Fast Mode 400kHz)

|                                            | (Vc                 | <sub>DD</sub> =1.6 to 5.5V, V <sub>SS</sub> =0V, Ta=-40 | 0 to +105°0 | C, unless c | therwise s | pecified) |
|--------------------------------------------|---------------------|---------------------------------------------------------|-------------|-------------|------------|-----------|
| Parameter                                  | Symbol              | Condition                                               |             |             | Unit       |           |
| Falameter                                  | Symbol              | Condition                                               | Min.        | Тур.        | Max.       | Unit      |
| SCL clock frequency                        | f <sub>SCL</sub>    | _                                                       | 0           |             | 400        | kHz       |
| SCL hold time<br>(start/restart condition) | t <sub>HD:STA</sub> |                                                         | 0.6         |             |            | μS        |
| SCL "L" level time                         | t <sub>LOW</sub>    | —                                                       | 1.3         |             |            | μs        |
| SCL "H" level time                         | t <sub>HIGH</sub>   |                                                         | 0.6         |             |            | μS        |
| SCL setup time<br>(restart condition)      | tsu:sta             | _                                                       | 0.6         |             |            | μS        |
| SDA hold time                              | t <sub>HD:DAT</sub> | _                                                       | 0           |             |            | μS        |
| SDA setup time                             | t <sub>SU:DAT</sub> | _                                                       | 0.1         |             |            | μS        |
| SDA setup time<br>(stop condition)         | tsu:sto             | —                                                       | 0.6         |             |            | μS        |
| Bus-free time                              | t <sub>BUF</sub>    |                                                         | 1.3         |             |            | μs        |



#### Note:

Current drive ability of PA3, PA5, PB0 and PB6 in N-ch open drain mode is lower than that of PA0 and PB7.

Therefore, the fast mode (400kbps) cannot be available when PA5 or PB0 is set as SCL function and when PA3 or PB6 is set as SDA function.

For more details, see the characteristics of VOL1 and VOL2 in DC Characteristics (VOHL, IOHL).

#### FEDL620Q130B-03

### ML620Q131B/2B/3B/4B/5B/6B

#### Successive Approximation Type A/D Converter

| Parameter                        | Symbol            | Condition                                              | Min. | Тур.           | Max. | Unit |
|----------------------------------|-------------------|--------------------------------------------------------|------|----------------|------|------|
| Resolution                       | n                 | _                                                      | —    | _              | 10   | bits |
|                                  |                   | $2.7V \le V_{DD} \le 5.5V$                             | -4   | _              | +4   |      |
| Integral populingarity arror     | INL               | $2.2V \le V_{DD} < 2.7V$                               | -6   | _              | +6   |      |
| Integral non-linearity error     | INL               | $1.8V \le V_{DD} < 2.2V$<br>SACK bit <sup>*1</sup> = 1 | -10  | _              | +10  |      |
|                                  |                   | $2.7V \le V_{DD} \le 5.5V$                             | -3   | _              | +3   | LSB  |
| Differential non-linearity error | DNL               | $2.2V \leq V_{DD} < 2.7V$                              | -5   | —              | +5   | LOD  |
| Differential non-linearity end   | DINL              | $1.8V \le V_{DD} < 2.2V$<br>SACK bit <sup>*1</sup> = 1 | -9   |                | +9   |      |
| Zero-scale error                 | V <sub>OFF</sub>  | $RI \le 5k \Omega$                                     | -6   | _              | +6   |      |
| Full-scale error                 | FSE               | $RI \leq 5k \Omega$                                    | -6   | _              | +6   |      |
| Input impedance                  | RI                | -                                                      | —    | —              | 5k   | Ω    |
| A/D operating voltage            | V <sub>DD</sub>   | _                                                      | 1.8  |                | 5.5  | V    |
| Conversion time                  | t <sub>CONV</sub> | SACK bit $^{*1} = 0$<br>SACK bit $^{*1} = 1$           | -    | 13.67<br>41.26 |      | μs   |

<sup>\*1</sup>: Bit 1 of SA-ADC control register 0 (SADCON0)



Note: ML620Q131B/ML620Q132B/ML620Q133B do not have AIN7 and AIN6.

### PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact LAPIS Technology's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

#### ML620Q131B/ML620Q132B/ML620Q133B Package Dimensions (SSOP16)



(Unit: mm)

#### Notes for Mounting the Surface Mount Type Package



#### ML620Q131B/ML620Q132B/ML620Q133B Package Dimensions (WQFN16)

Notes for Mounting the Surface Mount Type Package



#### ML620Q134B/ML620Q135B/ML620Q136B Package Dimensions (TSSOP20)

Notes for Mounting the Surface Mount Type Package

#### FEDL620Q130B-03

#### ML620Q131B/2B/3B/4B/5B/6B



#### ML620Q134B/ML620Q135B/ML620Q136B Package Dimensions (SSOP20)

Notes for Mounting the Surface Mount Type Package

# **REVISION HISTORY**

| Document<br>No. | Date          | Page     |         |                                                             |
|-----------------|---------------|----------|---------|-------------------------------------------------------------|
|                 |               | Previous | Current | Description                                                 |
|                 |               | Edition  | Edition |                                                             |
| FEDL620Q130B-01 | Mar. 30, 2017 | _        | _       | 1 <sup>st</sup> revision                                    |
| FEDL620Q130B-02 | _             | _        | _       | Skipped 2 <sup>nd</sup> revision of English edition         |
| FEDL620Q130B-03 | Sep. 28, 2021 | -        | _       | The Company name in the document header, Notes, and         |
|                 |               |          |         | PACKAGE DIMENSIONS is changed due to company name           |
|                 |               |          |         | change to "LAPIS Technology Co., Ltd."                      |
|                 |               | _        | 4       | Added 20-pin plastic SSOP in "Shipment" and "The difference |
|                 |               |          |         | of ML620Q130B series"                                       |
|                 |               | _        | 9       | Added 20pin SSOP package pin layout                         |
|                 |               | _        | 10      | Added 20pin SSOP PAD No. in the "PIN LIST"                  |
|                 |               | 16       | 16      | Revised the description of Note in "TERMINATION OF          |
|                 |               |          |         | UNUSED PINS"                                                |
|                 |               | -        | 33      | Added 20pin SSOP package dimensions                         |
|                 |               | 34       | 35      | Revised the description of "Notes"                          |

#### <u>Notes</u>

1) The information contained herein is subject to change without notice.

- 2) When using LAPIS Technology Products, refer to the latest product information (data sheets, user's manuals, application notes, etc.), and ensure that usage conditions (absolute maximum ratings, recommended operating conditions, etc.) are within the ranges specified. LAPIS Technology disclaims any and all liability for any malfunctions, failure or accident arising out of or in connection with the use of LAPIS Technology Products outside of such usage conditions specified ranges, or without observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down or malfunction of LAPIS Technology Products, please take safety at your own risk measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. You are responsible for evaluating the safety of the final products or systems manufactured by you.
- 3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be taken into account when designing circuits for mass production. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related information.
- 4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Technology or any third party with respect to LAPIS Technology Products or the information contained in this document (including but not limited to, the Product data, drawings, charts, programs, algorithms, and application examples, etc.). Therefore LAPIS Technology shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) The Products are intended for use in general electronic equipment (AV/OA devices, communication, consumer systems, gaming/entertainment sets, etc.) as well as the applications indicated in this document. For use of our Products in applications requiring a high degree of reliability (as exemplified below), please be sure to contact a LAPIS Technology representative and must obtain written agreement: transportation equipment (cars, ships, trains, etc.), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems, etc. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising by using the Product for purposes not intended by us. Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) LAPIS Technology has used reasonable care to ensure the accuracy of the information contained in this document. However, LAPIS Technology does not warrant that such information is error-free and LAPIS Technology shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 8) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. LAPIS Technology shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 9) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act..
- 10) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or LAPIS Technology's Products.
- 11) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Technology.

(Note) "LAPIS Technology" as used in this document means LAPIS Technology Co., Ltd.

Copyright 2017-2021 LAPIS Technology Co., Ltd.

# LAPIS Technology Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan http://www.lapis-tech.com/en/