

# Getting Started with SimbleeCOM

SimbleeCOM is a high performance, low latency, wireless professional protocol that works extremely well in high noise environments. SimbleeCOM supports both nonencrypted and encrypted communication in a pre-shared static network or dynamic network.

# **Overview**

You can easily dive into SimbleeCOM by checking out the examples available. In the Arduino IDE, select:

```
File > Examples > SimbleeCOM
```

to see and try a series of examples on SimbleeCOM. The best way to get started with SimbleeCOM is by using the examples and through experimentation.

A simple SimbleeCOM sketch contains the following functions:

| void setup(){                                                                        |  |
|--------------------------------------------------------------------------------------|--|
| }                                                                                    |  |
| void loop(){                                                                         |  |
| }                                                                                    |  |
| // Function below used, if receiving data from a Simblee device                      |  |
| void SimbleeCOM_onReceive(unsigned int esn, const char *payload, int len, int rssi){ |  |
| }                                                                                    |  |

# **Unique ESN (Electronic Serial Number)**

Each Simblee device has a factory assigned ESN that is used to uniquely identify it on the network. You can access this ESN by calling the following function:

### SimbleeCOM.getESN()

The ESN returned by the function above will be a 32-bit unique factory ESN.

You can view the example sketch "GetESN" from the Arduino IDE examples to see it in action.



# Adding the SimbleeCOM library into your sketch

Add the following line of code to the very beginning of your sketch:

#include "SimbleeCOM.h"

# **SimbleeCOM Setup Functions**

## SimbleeCOM.mode

There are 2 modes for SimbleeCOM to choose from:

### SimbleeCOM.mode = LOW\_LATENCY;

SimbleeCOM's low latency mode enables 3ms latency along with 10us jitter, for faster communication between Simblee devices.

### SimbleeCOM.mode = LONG\_RANGE;

SimbleeCOM's long range mode enables 12ms latency along with 10us jitter for up to 4x the range of low latency mode.

## SimbleeCOM.txPowerLevel

You can set the radio transmission power level of your Simblee at the following 4dBm increments:

SimbleeCOM.txPowerLevel = +4; //default value is +4 (-20, -16, -12, -8, -4, 0, +4)

## SimbleeCOM.proximityMode

Proximity mode brings the range of the Simblee module to a very close proximity. This is for use in security applications, or when connection to a Simblee device is requires the user to be very close.

### SimbleeCOM.proximityMode(FALSE); //proximity mode is set to FALSE on default

### SimbleeCOM.begin

Begins the SimbleeCOM stack.

#### SimbleeCOM.begin();

## SimbleeCOM.end

Ends the SimbleeCOM stack.

#### SimbleeCOM.end();



# SimbleeCOM Communication Functions

This section will cover the send and receive functions of SimbleeCOM.

# SimbleeCOM.send

This function allows you to send data via SimbleeCOM. Here is the format:

SimbleeCOM.send(const char \*data, int len);

Example:

char payload[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };

SimbleeCOM.send(payload, sizeof(payload));

## SimbleeCOM\_onReceive

This function returns data from the radio.

void SimbleeCOM\_onReceive(unsigned int esn, const char \*payload, int len, int rssi){}

Example:

{

}

void SimbleeCOM\_onReceive(unsigned int esn, const char \*payload, int len, int rssi)

printf("%d ", rssi); // prints RSSI to the serial port

printf("0x%08x ", esn); // prints ESN of sender to the serial port

for (int i = 0; i < len; i++)

printf("%02x ", payload[i]); // prints payload data to the serial port

printf("\n");