PCN

AO-PCN-2022-016-A

Introduction of 2nd source for classic InGaAIP chip and backend production location Wuxi for Multi TOPLED

Published by ams-OSRAM AG Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved

CALL OSRAM

01.07.2022

Dear Customer,

please review this **PCN** and provide your feedback in the **Customer approval form** (at the end of this PCN document) to your ams OSRAM sales partner before **05.08.2022** *).

Please take note, that this PCN is published for the introduction of **additional source(s)**.

Your prompt reply will help ams OSRAM to assure a smooth and well executed transition. If ams OSRAM does not hear from your side by the due date, we will assume your (if you are a Distributor: and your customer's) full acceptance to this proposed change and its implementation.

ams OSRAM understands the time requirements your organization needs to approve this PCN. However, if you can provide ams OSRAM an estimated date your organization will have finalized this PCN review, ams OSRAM can use this date to plan continued production to secure your order needs during the expansion with additional source(s).

Your attention and response to this matter is highly appreciated.

Please direct your inquiries to your local Sales office.

*) ams OSRAM aligns with the widely recognized JEDEC/ECIA/IPC Joint Standard No. 46, which stipulates:

- Customers should acknowledge receipt of the PCN within 30 days of delivery of the PCN.
- Lack of acknowledgement of the PCN within 30 days constitutes acceptance of the change.
- After acknowledgement, lack of additional response within the 90 day period constitutes acceptance of the change. If the customer requires additional time to perform sample testing, beyond the 90 day review period, an extension must be negotiated with the supplier.

Subject of change:	Introduction of 2 nd source for classic InGaAIP chip and backend production location Wuxi for Multi TOPLED	
Affected products:	Standard: LSG T676, LSY T676 Low current: LSG T67K, LYG T67K	
Reason for change:	 Secure continuous supply Introduction of additional supplier chips Harmonization of back end production location 	
Description of change:	<u>Current status</u> Inhouse chips	<u>New status</u> Inhouse chips + 2nd (and 3rd) source chips provided by supplier(s)
	Production location Penang/Malaysia For details refer to file 2_cip_AO-	Production location Wuxi/China PCN-2022-016-A
	Final qualification report:	01.08.2022
Time schedule	Samples available:	01.08.2022 ^{*)} *) For details refer to file 2_cip_AO-PCN-2022- 016-A
for PCN material: (after implementation of change):	Intended Start of delivery:	 **) **) or earlier if released by customer and upon mutual agreement
	Customer Review Finalization:	***) ***) Expected final feedback of customer. Released order volume is related to deliveries of material from both previous and additional source(s).
Assessment:	No change in fit, form and reliability → no change in Datasheets	
Documentation:	Customer information package 2_cip_AO-PCN-2022-016-A 3_cip_AO-PCN-2022-016-A_Qual	

Note:

Pre-PCN material: Products of current status, means before implementation of the changes as described in the PCN. PCN material: Products with implementation of the changes as described in the PCN.

Customer approval form AO-PCN-2022-016-A

Introduction of 2nd source for classic InGaAIP chip and backend production location Wuxi for Multi TOPLED

Please list product(s) affected in your application(s):		
Please check the appropriate box below:		
O Approval: We agree with the proposed change and accept start of the shipment upon availability of PCN material	O Not relevant: Change is not relevant for products in use.	
O Change cannot be accepted:	!	
• We have objections:		
• We request following Information:		
• We request following Samples:		
 Expected approval date: 		
• Volume requirements for Pre-PCN mater	al:	
O Remarks:		
Sender:		
Company:		
Address / Location:		
Signature:	Date:	
Please return this approval form to your Sales p	partner.	
Published by ams-OSRAM AG Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved		

Sensing is life

CALL OSRAM

PCN AO-PCN-2022-016-A Introduction of 2nd source for classic InGaAIP chip and backend production location Wuxi for Multi TOPLED

Customer information package

S&MK EM FQE/OS Q CQM A ITR 2022-07-01

1 Confidential

Agenda

	Page
1. Reason for change	3
2. Description of change	4-6
3. Changes in the datasheets	7
4. List of affected products	8
5. PCN samples	9
6. Time schedule	10

Reason for change

Item	Description
1.	Secure continuous supply
2.	Introduction of additional supplier chips
3.	Harmonization of back end production location

AO-PCN-2022-016-A

Introduction of 2nd source for classic InGaAIP chip and backend production location Wuxi for Multi TOPLED

Description of change for standard chips

ltem	Current status	2 nd source chip A	2 nd source chip B	2 nd source chip C
Wafer size [mm]	100		100	
Wafer substrate	GaAs		GaAs	
Height [µm]	220		180	
Chip dicing process	Sawing		Sawing	
Picture (schematic)				
Chip size [µm]	200 x 200	200 x 200	180 x 180	180 x 180
Front metal type	AI		Au	
Front metal thickness [µm]	1.5		2.25 - 2.9	
Back metal type	Au		Au	
Back metal thickness [µm]	0.25		0.05 - 0.50	
Bond pad size [µm]	100		100	

AO-PCN-2022-016-A

Introduction of 2nd source for classic InGaAIP chip and backend production location Wuxi for Multi TOPLED

Description of change for low current chips

Item	Current status	2 nd source chip D	2 nd source chip E
Wafer size [mm]	100	100	
Wafer substrate	GaAs	GaAs	
Height [µm]	190	180	
Chip dicing process	Sawing	Saw	ving
Picture (schematic)			
Chip size [µm]	170 x 170	160 x 160	170 x 170
Front metal type	AI	Au	
Front metal thickness [µm]	1.5	2.25-2.9	
Back metal type	Au	Au	
Back metal thickness [µm]	0.25	0.35-	0.50
Bond pad size [µm]	100	90	100

Description of change for all devices

Current status	New status
Backend production location	Backend production location
Penang/Malaysia	Wuxi/China

Changes in the datasheets

No change in fit, form and function of affected devices \rightarrow no change in Datasheets

List of affected products

Brand	Standard	Low current
	LSG T676	LSG T67K
	LSY T676	LYG T67K
Multi TOPLED		

Due to complexity not all device/chip source combinations will be available at start of series production.

PCN Samples

Standard	Low current
LSG T676	LSG T67K
LSY T676	LYG T67K

Color code: available on 01.08.2022

on request

Time schedule

for PCN material (<u>after</u> implementation of change):		
Final qualification report	01.08.2022	
Samples available	01.08.2022	
Intended Start of delivery	01.12.2022*)	*) or earlier if released by customer and upon mutual agreement

		**) Expected final feedback of customer. Released order volume is
Customer Review Finalization:	01.07.2023 **)	related to deliveries of material from both previous and additional
		source(s).

Note:

PCN material: Products with implementation of the changes as described in the PCN.

10 Confidential 2022-07-01 | PCN | AO-PCN-2022-016-A | Customer information package

Sensing is life

Qualification Results overview 220121C1

Subject	Qualification for 2nd source Chip introduction for classic InGaAIP Multi TOPLED devices
Date	01.07.2022
Tested device	Chip A: LSY T676
	Chip B: LSG T676
	Chip C: LSG T67K, LYG T67K
	Chip D: LSG T67K, LYG T67K
Brand (including sub brands)	Multi TOPLED
Applies to	LSY T676, LSG T676, LSG T67K, LYG T67K

ams-OSRAM AG Tobelbader Strasse 30 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com

Pre-conditioni	ng according to Jedeo	: Level II where applicable a	as per AEC-Q10)2 AEC-Q102 #A1		LSY T676 (Chip		
_				Sample		Failure	S	
Test Performed		Condition	Duration	Size	EI.	Opt.	Vis	
Wet High Tem Life WHTOL1	Derature Operating JESD22-A101 AEC-Q102 #A2a Test PCB: IMS-AI	$\begin{split} T_{A} &= 85^{\circ}\text{C}; \text{ r.H.} = 85\%; \\ T_{s} &= 95^{\circ}\text{C}; T_{j} = 115^{\circ}\text{C} \\ I_{F} &= 20 \text{ mA} \\ T_{\text{on/off}} &= 30 \text{ min} \end{split}$	1000 h	3x26	<u>AEC-Q102 #E1</u>	AEC-Q102 #E1	AEC-Q102 #E0	
Wet High Tem Life WHTOL2	Derature Operating JESD22-A101 AEC-Q102 #A2b Test PCB: FR4	$T_A = 85^{\circ}C; r.H. = 85\%$ $I_F = 5 mA$	1000 h	3x26	0	0	0	
Powered Temp PTC	Derature Cycle JESD22-A105 AEC-Q102 #A3a Test PCB: IMS-AI	$\begin{array}{l} T_{A} = -40^{\circ}C/+100^{\circ}C \\ T_{s} = 105^{\circ}C; \ T_{j} = 125^{\circ}C \\ I_{F} = 15 \ mA \\ t_{on/off} = 5 \ min \end{array}$	1000 c	3x26	0	0	0	
Temperature C TC	Cycling JESD22-A104 AEC-Q102 #A4a Test PCB: FR4	$T_A = -40^{\circ}C/+100^{\circ}C$ 15 min each extreme	1000 c	3x26	0	0	0	
High Temperat HTOL1	ture Operating Life JESD22-A108 AEC-Q102 #B1a Test PCB: IMS-AI	T _A = 85°C; T _s = 95 °C T _j = 115 °C; I _F = 20 mA	1000 h	3x26	0	0	0	
Pulsed Operati PLT	Ing Life JESD22-A108 AEC-Q102 #B3 Test PCB: FR4	$T_A = 25^{\circ}C$ $I_F = 55 \text{ mA}; t_p = 0,1\text{ms};$ D = 3%	1000 h	3x26	0	0	0	
Dew DEW	AEC-Q102-001 AEC-Q102#C7 Test PCB: FR4	$T_{A,min} = 10^{\circ}C$ $T_{A,max} = 80^{\circ}C$ r.H. = 53-100%	10 c	3x26	0	0	0	
Solderability SD	IEC 60068-2-58 aec-q102 #c10	$T_A = 235^{\circ}C$ method 2 (reflow simulation)	1x	3x10	-	-	0	
Hydrogen Sulp H2S	hide <i>IEC 60068-2-43</i> AEC-9102 #C12 Test PCB: FR4	15 ppm H₂S 40°C/90% r.H.	336 h	3x26	0	0	0	
Flowing Mixed FMG	Gas <i>IEC 60068-2-60</i> AEC-Q102 #C13 Test PCB: FR4	$T_A = 25^{\circ}C,$ r.H. = 75% Test method 4	500 h	3x26	0	0	0	
Board Flex Tes BF	St AEC-Q102-002 AEC-Q102 #C14 Test PCB: FR4	2 mm	1x	3x10	0	0	0	
Electrostatic D HBM ANSI/	ischarge /ESDA/ JEDEC JS-001 AEC-Q102 #E3 Test PCB: FR4	Human Body Model	2000 V	3x10	0	0	0	

Pre-conditioning according to Jedec Level II where applicable as per AEC-Q102 AEC-Q102 #A1 LS

LSY T676 (Chip A)

am Osram

Constant Acc CA	celeration MIL-STD-750-2 AEC-Q102 #G1	Method 2006 2000 gf; 1 min in x/y/z (+/- direction)	1x	3x10	
Vibration Var VVF	riable Frequency JESD22-B103 AEC-Q102 #G2	20g, 20-2000Hz; 4min / cy; 4cy/axis service condition 1	1x	sequential samples	for uncasted
Mechanical S MS	Shock JESD22-B110 AEC-Q102 #G3	1500g for 0.5ms, 5 blows, 3 orientations	1x	sequential samples	packages only
Hermeticity HER	JESD22-A109 aec-q102 #g4	Leak Test: Fine & Gross	1x	sequential samples	

Additional Tests to AEC Q102

Test Performed		Condition Duration	Sample		Failure	S	
		Condition	Duration	Size	EI.	Opt.	Vis
Electrostatic [MM	Discharge JESD22-A115 Test PCB: FR4	Machine Model	200 V	3x10	0	0	0

Failure criteria:

Electrical failures:	red: $V_f (I_f = 20 \text{ mA})$ yellow: $V_f (I_f = 20 \text{ mA})$	> 2,3 V; \pm 10% from initial value > 2,4 V; \pm 10% from initial value
Optical failures:	$ I_v (I_f = 20 \text{ mA}) $ $\lambda_{dom} (I_f = 20 \text{ mA}) $	absolute limit: \pm 50% max. \pm 2 nm initial value
Visual failures:	acc JEDEC JESD22-B101	

Pre-conditioni	ng according to Jedeo	: Level II where applicable a	is per AEC-Q10)2 AEC-Q102 #A1		LSG T676 (Chip		
Teet	Derfermed	Condition	Duration	Sample		Failure	S	
Test Performed		Condition	Duration	Size	EI. AEC-Q102 #E1	Opt. AEC-Q102 #E1	Vis AEC-Q102 #E0	
Wet High Tem Life WHTOL1	JESD22-A101 AEC-Q102 #A2a Test PCB: IMS-AI	$\begin{array}{l} T_{A} = 85^{\circ}C; \ r.H. = 85\%; \\ T_{s} = 95^{\circ}C; \ T_{j} = 120^{\circ}C \\ I_{F} = 20 \ mA \\ T_{on/off} = 30 \ min \end{array}$	1000 h	3x26	0	0	0	
Wet High Tem Life WHTOL2	JESD22-A101 AEC-Q102 #A2b Test PCB: FR4	$T_A = 85^{\circ}C; r.H. = 85\%$ $I_F = 5 mA$	1000 h	3x26	0	0	0	
Powered Tem PTC	perature Cycle JESD22-A105 AEC-Q102 #A3a Test PCB: IMS-AI	$\begin{split} T_A &= -40^\circ\text{C}/+100^\circ\text{C} \\ T_s &= 105^\circ\text{C}; \ T_j &= 125^\circ\text{C} \\ I_F &= 15 \ \text{mA} \\ t_{\text{on/off}} &= 5 \ \text{min} \end{split}$	1000 c	3x26	0	0	0	
Temperature C TC	Cycling JESD22-A104 AEC-Q102 #A4a Test PCB: FR4	$T_A = -40^{\circ}C/+100^{\circ}C$ 15 min each extreme	1000 c	3x26	0	0	0	
High Tempera HTOL1	ture Operating Life JESD22-A108 AEC-Q102 #B1a Test PCB: IMS-AI	$T_A = 85^{\circ}C; T_s = 95^{\circ}C$ $T_j = 120^{\circ}C; I_F = 20 \text{ mA}$	1000 h	3x26	0	0	0	
Pulsed Operat PLT	ting Life JESD22-A108 AEC-Q102 #B3 Test PCB: FR4	$T_A = 25^{\circ}C$ $I_F = 55 \text{ mA}; t_p = 0,1\text{ms};$ D = 3%	1000 h	3x26	0	0	0	
Dew DEW	AEC-Q102-001 AEC-Q102#C7 Test PCB: FR4	$T_{A,min} = 10^{\circ}C$ $T_{A,max} = 80^{\circ}C$ r.H. = 53-100%	10 c	3x26	0	0	0	
Solderability SD	IEC 60068-2-58 aec-q102 #c10	$T_A = 235^{\circ}C$ method 2 (reflow simulation)	1x	3x10	-	-	0	
Hydrogen Sulp H2S	Dhide <i>IEC 60068-2-43</i> AEC-Q102 #C12 Test PCB: FR4	15 ppm H₂S 40°C/90% r.H.	336 h	3x26	0	0	0	
Flowing Mixed FMG	Gas <i>IEC 60068-2-60</i> AEC-Q102 #C13 Test PCB: FR4	$T_A = 25^{\circ}C,$ r.H. = 75% Test method 4	500 h	3x26	0	0	0	
Board Flex Te BF	St AEC-Q102-002 AEC-Q102 #C14 Test PCB: FR4	2 mm	1x	3x10	0	0	0	
Electrostatic D HBM ANSI	Vischarge /ESDA/ JEDEC JS-001 AEC-Q102 #E3 Test PCB: FR4	Human Body Model	2000 V	3x10	0	0	0	

Pre-conditioning according to Jedec Level II where applicable as per AEC-Q102 AEC-Q102 #A1

LSG T676 (Chip B)

am Osram

Constant Act CA	celeration MIL-STD-750-2 AEC-Q102 #G1	Method 2006 2000 gf; 1 min in x/y/z (+/- direction)	1x	3x10	
Vibration Val VVF	riable Frequency JESD22-B103 AEC-Q102 #G2	20g, 20-2000Hz; 4min / cy; 4cy/axis service condition 1	1x	sequential samples	for uncasted
Mechanical S MS	Shock JESD22-B110 AEC-Q102 #G3	1500g for 0.5ms, 5 blows, 3 orientations	1x	sequential samples	packages only
Hermeticity HER	JESD22-A109 aec-q102 #64	Leak Test: Fine & Gross	1x	sequential samples	

Additional Tests to AEC Q102

Test Performed		Condition Duration	Sample		Failure	S	
		Condition	Duration	Size	EI.	Opt.	Vis
Electrostati MM	c Discharge JESD22-A115 Test PCB: FR4	Machine Model	200 V	3x10	0	0	0

Failure criteria:

Electrical failures:	$\begin{array}{ll} \mbox{red:} & V_f \; (I_f = 20 \; mA) \\ \mbox{green:} & V_f \; (I_f = 20 \; mA) \end{array}$	> 2,3 V; \pm 10% from initial value > 2,4 V; \pm 10% from initial value
Optical failures:	$ I_v (I_f = 20 \text{ mA}) $ $\lambda_{dom} (I_f = 20 \text{ mA}) $	absolute limit: \pm 50% max. \pm 2 nm initial value
Visual failures:	acc JEDEC JESD22-B101	

			LSG T67K (Ch Failures				
Test Pe	erformed	Condition	Duration	Sample Size	EI.	Opt.	Vis
-	ature Operating JESD22-A101 AEC-Q102 #A2a Test PCB: IMS-AI	$\begin{split} T_{A} &= 85^{\circ}\text{C}; \ r.\text{H.} = 85\%; \\ T_{s} &= 85^{\circ}\text{C}; \ T_{j} = 105^{\circ}\text{C} \\ I_{F} &= 15 \text{ mA} \\ T_{\text{on/off}} &= 30 \text{ min} \end{split}$	1000 h	1x26	AEC-Q102 #E1	AEC-Q102 #E1	AEC-Q102 #E0 0
Wet High Tempera Life WHTOL2		$T_A = 85^{\circ}C; r.H. = 85\%$ $I_F = 5 mA$	1000 h	1x26	0	0	0
Powered Tempera PTC		$\begin{split} T_A &= -40^\circ\text{C} /+100^\circ\text{C} \\ T_s &= 100^\circ\text{C}; \ T_j &= 120^\circ\text{C} \\ I_F &= 15 \text{ mA} \\ t_{\text{on/off}} &= 5 \text{ min} \end{split}$	1000 c	1x26	0	0	0
-	ing JESD22-A104 AEC-Q102 #A4a Test PCB: FR4	$T_A = -40^{\circ}C/+100^{\circ}C$ 15 min each extreme	1000 c	1x26	0	0	0
-	Operating Life JESD22-A108 AEC-Q102 #B1a Test PCB: IMS-AI	$T_A = 100^{\circ}C; T_s = 100^{\circ}C$ $T_j = 120^{\circ}C; I_F = 15 \text{ mA}$	1000 h	1x26	0	0	0
	Life JESD22-A108 AEC-Q102 #B3 Test PCB: FR4	$T_A = 25^{\circ}C$ $I_F = 35 \text{ mA}; t_p = 0,1\text{ms};$ D = 3%	1000 h	1x26	0	0	0
	AEC-Q102-001 AEC-Q102#C7 Test PCB: FR4	$\begin{array}{l} T_{A,min} = 10^{\circ}C \\ T_{A,max} = 80^{\circ}C \\ r.H. = 53\text{-}100\% \end{array}$	10 c	1x26	0	0	0
	IEC 60068-2-58 aec-q102 #C10	$T_A = 235^{\circ}C$ method 2 (reflow simulation)	1x	1x10	-	-	0
	e <i>IEC 60068-2-43</i> AEC-Q102 #C12 Test PCB: FR4	15 ppm H₂S 40°C/90% r.H.	336 h	1x26	0	0	0
	S <i>IEC 60068-2-60</i> AEC-Q102 #C13 fest PCB: FR4	$T_A = 25^{\circ}C,$ r.H. = 75% Test method 4	500 h	1x26	0	0	0
	AEC-Q102-002 AEC-Q102 #C14 Test PCB: FR4	2 mm	1x	1x10	0	0	0
	narge DA/ JEDEC JS-001 AEC-Q102 #E3 Test PCB: FR4	Human Body Model	2000 V	1x10	0	0	0

am Osram

Constant Acc CA	celeration MIL-STD-750-2 AEC-Q102 #G1	Method 2006 2000 gf; 1 min in x/y/z (+/- direction)	1x	1x10	
Vibration Var VVF	iable Frequency JESD22-B103 AEC-Q102 #G2	20g, 20-2000Hz; 4min / cy; 4cy/axis service condition 1	1x	sequential samples	for uncasted
Mechanical S MS	Shock <i>JESD22-B110</i> AEC-Q102 #G3	1500g for 0.5ms, 5 blows, 3 orientations	1x	sequential samples	packages only
Hermeticity HER	JESD22-A109 aec-q102 #g4	Leak Test: Fine & Gross	1x	sequential samples	

Additional Tests to AEC Q102

Test Performed Condition		Condition	Duration	Sample		Failure	S
		Condition	Duration	Size	EI.	Opt.	Vis
Electrostatic D MM	ischarge JESD22-A115 _{Test PCB: FR4}	Machine Model	200 V	1x10	0	0	0

Failure criteria:

Electrical failures:	$\begin{array}{ll} \mbox{red:} & V_f \; (I_f = 2 \; mA) \\ \mbox{green:} & V_f \; (I_f = 2 \; mA) \end{array}$	> 2,2 V; \pm 10% from initial value > 2,2 V; \pm 10% from initial value
Optical failures:	$ I_v (I_f = 2 mA) \lambda_{dom} (I_f = 2 mA) $	absolute limit: \pm 50% max. \pm 2 nm initial value
Visual failures:	acc JEDEC JESD22-B101	

Pre-conditioni	ng according to Jedeo	: Level II where applicable a	s per AEC-Q10)2 AEC-Q102 #A1		LYG T67K (Ch		
_		O 11/1		Sample		Failure	S	
Test Performed		Condition	Duration	Size	EI.	Opt.	Vis	
Wet High Tem Life WHTOL1	perature Operating JESD22-A101 AEC-Q102 #A2a Test PCB: IMS-AI	$\begin{split} T_{A} &= 85^{\circ}\text{C}; \text{ r.H.} = 85\%; \\ T_{s} &= 85^{\circ}\text{C}; T_{j} = 105^{\circ}\text{C} \\ I_{F} &= 15 \text{ mA} \\ T_{\text{on/off}} &= 30 \text{ min} \end{split}$	1000 h	2x26	<u>AEC-Q102 #E1</u>	AEC-Q102 #E1	<u>AEC-Q102 #E0</u>	
Wet High Tem Life WHTOL2	Derature Operating JESD22-A101 AEC-Q102 #A2b Test PCB: FR4	T _A = 85°C; r.H. = 85% I _F = 5 mA	1000 h	2x26	0	0	0	
Powered Temp PTC	perature Cycle JESD22-A105 AEC-q102 #A3a Test PCB: IMS-AI	$\begin{array}{l} T_{A} = -40^{\circ}C / +100^{\circ}C \\ T_{s} = 100^{\circ}C; \ T_{j} = 120^{\circ}C \\ I_{F} = 15 \ mA \\ t_{on/off} = 5 \ min \end{array}$	1000 c	2x26	0	0	0	
Temperature C TC	Cycling JESD22-A104 AEC-Q102 #A4a Test PCB: FR4	$T_A = -40^{\circ}C/+100^{\circ}C$ 15 min each extreme	1000 c	2x26	0	0	0	
High Tempera HTOL1	ture Operating Life JESD22-A108 AEC-Q102 #B1a Test PCB: IMS-AI	$T_A = 100^{\circ}C; T_s = 100^{\circ}C$ $T_j = 120^{\circ}C; I_F = 15 \text{ mA}$	1000 h	2x26	0	0	0	
Pulsed Operat PLT	ing Life JESD22-A108 AEC-Q102 #B3 Test PCB: FR4	$T_A = 25^{\circ}C$ $I_F = 35 \text{ mA}; t_p = 0,1\text{ms};$ D = 3%	1000 h	2x26	0	0	0	
Dew DEW	AEC-Q102-001 AEC-Q102#C7 Test PCB: FR4	$\begin{array}{l} T_{A,min} = 10^{\circ}C \\ T_{A,max} = 80^{\circ}C \\ r.H. = 53\text{-}100\% \end{array}$	10 c	2x26	0	0	0	
Solderability SD	IEC 60068-2-58 aec-q102 #c10	$T_A = 235^{\circ}C$ method 2 (reflow simulation)	1x	2x10	-	-	0	
Hydrogen Sulp H2S	Dhide <i>IEC 60068-2-43</i> AEC-Q102 #C12 Test PCB: FR4	15 ppm H₂S 40°C/90% r.H.	336 h	2x26	0	0	0	
Flowing Mixed FMG	Gas <i>IEC 60068-2-60</i> AEC-Q102 #C13 Test PCB: FR4	T _A = 25°C, r.H. = 75% Test method 4	500 h	2x26	0	0	0	
Board Flex Tes BF	St AEC-Q102-002 AEC-Q102 #C14 Test PCB: FR4	2 mm	1x	2x10	0	0	0	
Electrostatic D HBM ANSI	Vischarge /ESDA/ JEDEC JS-001 AEC-Q102 #E3 Test PCB: FR4	Human Body Model	2000 V	2x10	0	0	0	

Pre-conditioning according to Jedec Level II where applicable as per AEC-Q102 AEC-Q102 #A1

LYG T67K (Chip C)

am Osram

Constant Acc CA	celeration MIL-STD-750-2 AEC-Q102 #G1	Method 2006 2000 gf; 1 min in x/y/z (+/- direction)	1x	2x10	
Vibration Var VVF	riable Frequency JESD22-B103 AEC-Q102 #G2	20g, 20-2000Hz; 4min / cy; 4cy/axis service condition 1	1x	sequential samples	for uncasted
Mechanical S MS	Shock <i>JESD22-B110</i> AEC-Q102 #G3	1500g for 0.5ms, 5 blows, 3 orientations	1x	sequential samples	packages only
Hermeticity HER	JESD22-A109 aec-q102 #g4	Leak Test: Fine & Gross	1x	sequential samples	

Additional Tests to AEC Q102

Test Performed		Condition Duration	Sample		Failure	S	
		Condition	Duration	Size	El. Opt.		Vis
Electrostatic E MM	Discharge JESD22-A115 Test PCB: FR4	Machine Model	200 V	2x10	0	0	0

Failure criteria:

Electrical failures:	yellow: $V_f (I_f = 2 \text{ mA})$ green: $V_f (I_f = 2 \text{ mA})$	> 2,2 V; \pm 10% from initial value > 2,2 V; \pm 10% from initial value
Optical failures:	$ I_v (I_f = 2 mA) \lambda_{dom} (I_f = 2 mA) $	absolute limit: \pm 50% max. \pm 2 nm initial value
Visual failures:	acc JEDEC JESD22-B101	

Pre-conditioni	e-conditioning according to Jedec Level II where applicable as per AEC-Q102 AEC-Q102 #A1					LSG T67K (Chi		
_		O 11/1	Describer	Sample		Failure	S	
Test Performed		Condition	Duration	Size	E . AEC-Q102 #E1	Opt.	Vis	
Wet High Tem Life WHTOL1	JESD22-A101 AEC-0102 #A2a Test PCB: IMS-AI	$\begin{split} T_{A} &= 85^{\circ}\text{C}; \text{ r.H.} = 85\%; \\ T_{s} &= 85^{\circ}\text{C}; T_{j} = 105^{\circ}\text{C} \\ I_{F} &= 15 \text{ mA} \\ T_{\text{on/off}} &= 30 \text{ min} \end{split}$	1000 h	2x26	0	AEC-Q102 #E1	AEC-Q102 #E0	
Wet High Tem Life WHTOL2	JESD22-A101 AEC-Q102 #A2b Test PCB: FR4	T _A = 85°C; r.H. = 85% I _F = 5 mA	1000 h	2x26	0	0	0	
Powered Tem PTC	perature Cycle JESD22-A105 AEC-Q102 #A3a Test PCB: IMS-AI	$\begin{array}{l} T_{A} = -40^{\circ}C / +100^{\circ}C \\ T_{s} = 100^{\circ}C; \ T_{j} = 120^{\circ}C \\ I_{F} = 15 \ mA \\ t_{on/off} = 5 \ min \end{array}$	1000 c	2x26	0	0	0	
Temperature (TC	Cycling JESD22-A104 AEC-Q102 #A4a Test PCB: FR4	$T_A = -40^{\circ}C/+100^{\circ}C$ 15 min each extreme	1000 c	2x26	0	0	0	
High Tempera HTOL1	ture Operating Life JESD22-A108 AEC-Q102 #B1a Test PCB: IMS-AI	$T_A = 100^{\circ}C; T_s = 100^{\circ}C$ $T_j = 120^{\circ}C; I_F = 15 \text{ mA}$	1000 h	2x26	0	0	0	
Pulsed Operat PLT	ting Life JESD22-A108 AEC-Q102 #B3 Test PCB: FR4	$T_A = 25^{\circ}C$ $I_F = 35 \text{ mA}; t_p = 0,1\text{ms};$ D = 3%	1000 h	2x26	0	0	0	
Dew DEW	AEC-Q102-001 AEC-Q102#C7 Test PCB: FR4	$\begin{array}{l} T_{A,min} = 10^{\circ}C \\ T_{A,max} = 80^{\circ}C \\ r.H. = 53\text{-}100\% \end{array}$	10 c	2x26	0	0	0	
Solderability SD	IEC 60068-2-58 aec-q102 #c10	$T_A = 235^{\circ}C$ method 2 (reflow simulation)	1x	2x10	-	-	0	
Hydrogen Sulp H2S	Dhide <i>IEC 60068-2-43</i> AEC-Q102 #C12 Test PCB: FR4	15 ppm H₂S 40°C/90% r.H.	336 h	2x26	0	0	0	
Flowing Mixed FMG	Gas <i>IEC 60068-2-60</i> AEC-Q102 #C13 Test PCB: FR4	T _A = 25°C, r.H. = 75% Test method 4	500 h	2x26	0	0	0	
Board Flex Te BF	St AEC-Q102-002 AEC-Q102 #C14 Test PCB: FR4	2 mm	1x	2x10	0	0	0	
Electrostatic D HBM ANSI	Discharge //ESDA/ JEDEC JS-001 AEC-Q102 #E3 Test PCB: FR4	Human Body Model	2000 V	2x10	0	0	0	

Pre-conditioning according to Jedec Level II where applicable as per AEC-Q102 AEC-Q102 #A1

LSG T67K (Chip D)

amu osram

Constant Acc CA	celeration MIL-STD-750-2 AEC-Q102 #G1	Method 2006 2000 gf; 1 min in x/y/z (+/- direction)	1x	2x10	
Vibration Var VVF	riable Frequency JESD22-B103 AEC-Q102 #G2	20g, 20-2000Hz; 4min / cy; 4cy/axis service condition 1	1x	sequential samples	for uncasted
Mechanical S MS	Shock <i>JESD22-B110</i> aec-q102 #g3	1500g for 0.5ms, 5 blows, 3 orientations	1x	sequential samples	packages only
Hermeticity HER	JESD22-A109 aec-q102 #g4	Leak Test: Fine & Gross	1x	sequential samples	

Additional Tests to AEC Q102

Test Performed		Condition Duration	Sample		Failure	S	
		Condition	Duration	Size	El. Opt.		Vis
Electrostatic E MM	Discharge JESD22-A115 Test PCB: FR4	Machine Model	200 V	2x10	0	0	0

Failure criteria:

Electrical failures:	$\begin{array}{ll} \mbox{red:} & V_f \; (I_f = 2 \; mA) \\ \mbox{green:} & V_f \; (I_f = 2 \; mA) \end{array}$	> 2,2 V; \pm 10% from initial value > 2,2 V; \pm 10% from initial value
Optical failures:	$ I_v (I_f = 2 mA) \lambda_{dom} (I_f = 2 mA) $	absolute limit: \pm 50% max. \pm 2 nm initial value
Visual failures:	acc JEDEC JESD22-B101	

Pre-conditioni	ng according to Jedeo	: Level II where applicable a	s per AEC-Q10)2 AEC-Q102 #A1		LYG T67K (Ch		
-				Sample		Failure	S	
Test Performed		Condition	Duration	Size	EI.	Opt.	Vis	
Wet High Tem Life WHTOL1	perature Operating JESD22-A101 AEC-Q102 #A2a Test PCB: IMS-AI	$\begin{split} T_{A} &= 85^{\circ}\text{C}; \text{ r.H.} = 85\%; \\ T_{s} &= 85^{\circ}\text{C}; T_{j} = 105^{\circ}\text{C} \\ I_{F} &= 15 \text{ mA} \\ T_{\text{on/off}} &= 30 \text{ min} \end{split}$	1000 h	1x26	<u>AEC-Q102 #E1</u>	AEC-Q102 #E1	<u>AEC-Q102 #E0</u>	
Wet High Tem Life WHTOL2	Derature Operating JESD22-A101 AEC-Q102 #A2b Test PCB: FR4	T _A = 85°C; r.H. = 85% I _F = 5 mA	1000 h	1x26	0	0	0	
Powered Temp PTC	perature Cycle JESD22-A105 AEC-q102 #A3a Test PCB: IMS-AI	$\begin{array}{l} T_{A} = -40^{\circ}C / +100^{\circ}C \\ T_{s} = 100^{\circ}C; \ T_{j} = 120^{\circ}C \\ I_{F} = 15 \ mA \\ t_{on/off} = 5 \ min \end{array}$	1000 c	1x26	0	0	0	
Temperature C TC	Cycling JESD22-A104 AEC-Q102 #A4a Test PCB: FR4	$T_A = -40^{\circ}C/+100^{\circ}C$ 15 min each extreme	1000 c	1x26	0	0	0	
High Tempera HTOL1	ture Operating Life JESD22-A108 AEC-Q102 #B1a Test PCB: IMS-AI	$T_A = 100^{\circ}C; T_s = 100^{\circ}C$ $T_j = 120^{\circ}C; I_F = 15 \text{ mA}$	1000 h	1x26	0	0	0	
Pulsed Operat PLT	ing Life JESD22-A108 AEC-Q102 #B3 Test PCB: FR4	$T_A = 25^{\circ}C$ $I_F = 35 \text{ mA}; t_p = 0,1\text{ms};$ D = 3%	1000 h	1x26	0	0	0	
Dew DEW	AEC-Q102-001 AEC-Q102#C7 Test PCB: FR4	$\begin{array}{l} T_{A,min} = 10^{\circ}C \\ T_{A,max} = 80^{\circ}C \\ r.H. = 53\text{-}100\% \end{array}$	10 c	1x26	0	0	0	
Solderability SD	IEC 60068-2-58 aec-q102 #c10	$T_A = 235^{\circ}C$ method 2 (reflow simulation)	1x	1x10	-	-	0	
Hydrogen Sulp H2S	Dhide <i>IEC 60068-2-43</i> AEC-Q102 #C12 Test PCB: FR4	15 ppm H₂S 40°C/90% r.H.	336 h	1x26	0	0	0	
Flowing Mixed FMG	Gas <i>IEC 60068-2-60</i> AEC-Q102 #C13 Test PCB: FR4	T _A = 25°C, r.H. = 75% Test method 4	500 h	1x26	0	0	0	
Board Flex Te BF	St AEC-Q102-002 AEC-Q102 #C14 Test PCB: FR4	2 mm	1x	1x10	0	0	0	
Electrostatic D HBM ANSI,	Vischarge /ESDA/ JEDEC JS-001 AEC-q102 #E3 Test PCB: FR4	Human Body Model	2000 V	1x10	0	0	0	

Pre-conditioning according to Jedec Level II where applicable as per AEC-Q102 AEC-Q102 #A1

LYG T67K (Chip C)

amu osram

Constant Acc CA	celeration MIL-STD-750-2 AEC-Q102 #G1	Method 2006 2000 gf; 1 min in x/y/z (+/- direction)	1x	1x10	
Vibration Var VVF	riable Frequency JESD22-B103 AEC-Q102 #G2	20g, 20-2000Hz; 4min / cy; 4cy/axis service condition 1	1x	sequential samples	for uncasted
Mechanical S MS	Shock <i>JESD22-B110</i> aec-q102 #G3	1500g for 0.5ms, 5 blows, 3 orientations	1x	sequential samples	packages only
Hermeticity HER	JESD22-A109 aec-q102 #g4	Leak Test: Fine & Gross	1x	sequential samples	

Additional Tests to AEC Q102

Test Performed		Condition Duration	Duration	Sample		Failure	S
		Condition	Duration	Size	EI.	Opt.	Vis
Electrostatic D MM	ischarge JESD22-A115 _{Test PCB: FR4}	Machine Model	200 V	1x10	0	0	0

Failure criteria:

Electrical failures:	yellow: V_f (I_f =2 mA) green: V_f (I_f =2 mA)	> 2,2 V; \pm 10% from initial value > 2,2 V; \pm 10% from initial value
Optical failures:	$ I_v (I_f = 2 mA) \lambda_{dom} (I_f = 2 mA) $	absolute limit: \pm 50% max. \pm 2 nm initial value
Visual failures:	acc JEDEC JESD22-B101	

Disclaimer

PLEASE CAREFULLY READ THE BELOW TERMS AND CONDITIONS BEFORE USING THE INFORMATION. IF YOU DO NOT AGREE WITH ANY OF THESE TERMS AND CONDITIONS, DO NOT USE THE INFORMATION.

The Information contained in this Document does not constitute an independent warranty. The committed behavior is described in the Product data sheet and/or further, mutually agreed specifications. Distribution of part or all of the contents of this Document to any 3rd party in any form without the prior permission of ams-

OSRAM International GmbH is prohibited except in accordance with applicable mandatory law.

Further explanations:

Data: The Data used in this Document consider the reliability test results under the mentioned driving conditions only. For Product information on the maximum operating conditions and the OSRAM standard qualification profile please refer to the Product data sheet or contact your local sales partner.

Conditions: The conditions for the generation of the Data are as follows:

1. The Data and curves shown in this Document are based on experiments carried out under laboratory conditions on a random sample size of LED/IRED/Laser/Detector with readouts at discrete readout times (where applicable). Thus, the Data above represent a limited number of production lots only and may differ between different assembly lots over time (including chip or package changes). Thus, the behavior of the LED/IRED/Laser/Detector in the final application may differ from the Data. The behavior of the LED/IRED/Laser/Detector at conditions or readout times deviating from those stated above may not be deduced from the Data.

2. If applicable:

a) Extended driving conditions:

The tested driving conditions exceed the maximum limits stated in the Product data sheet. Therefore, a reduced lifetime or an accelerated degradation is expected. Failure limits noted in the Document refer to the testing condition according to the OSRAM standard Product qualification profile and not to the actual testing condition. b) Extended testing duration:

The testing duration exceed the OSRAM standard qualification profile of the mentioned Product. Failure limits noted in the Document refer to the testing duration according to the OSRAM standard Product qualification profile and not to the actual testing duration.

c) Exceeding standard qualification conditions – (Product data sheet limits not affected):

The tested driving conditions exceed the OSRAM standard qualification profile of the mentioned Product. Therefore a reduced lifetime or an accelerated degradation is expected. Failure limits noted in the Document refer to the testing condition according to the OSRAM standard Product qualification profile and not to the actual testing condition.

3. For long term operation additional failure modes of the chip or package can occur which are not shown in this Document.

4. Possible differences in the thermal management of OSRAM and customer's setup may lead to a different aging behavior.

END OF DOCUMENT

ams-OSRAM AG Tobelbader Strasse 30 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com

