Vishay Siliconix ## N-Channel 40-V (D-S) MOSFET | PRODUCT SUMMARY | | | | | | | |---------------------|-----------------------------------|------------------------------------|-----------------------|--|--|--| | V _{DS} (V) | $R_{DS(on)}(\Omega)$ | I _D (A) ^{a, c} | Q _g (Typ.) | | | | | 40 | 0.0021 at V _{GS} = 10 V | 110 | 240 nC | | | | | 40 | 0.0024 at V _{GS} = 4.5 V | 110 | 240 NO | | | | #### **FEATURES** - TrenchFET® Power MOSFET - 100 % $\rm R_{\rm g}$ and UIS Tested #### **APPLICATIONS** - Synchronous Rectification - Power Supplies N-Channel MOSFET Ordering Information: SUM110N04-2m1P-E3 (Lead (Pb)-free) | ABSOLUTE MAXIMUM RATINGS Parameter | Α , | | Limit | Unit | | |---|-----------------------------------|-----------------|---------------------|------|--| | | Symbol | | Unit | | | | Drain-Source Voltage | | V _{DS} | 40 | V | | | Gate-Source Voltage | | V_{GS} | ± 20 | ľ | | | | T _C = 25 °C | | 110 ^{a, c} | | | | Continuous Drain Current (T _{.I} = 175 °C) | T _C = 70 °C | | 110 ^c | | | | Continuous Diain Curient (1) = 173 C) | T _A = 25 °C | I _D | 29 ^b | A | | | | T _A = 70 °C | | 23 ^b | 7 ^ | | | Pulsed Drain Current | | I _{DM} | 250 | | | | Avalanche Current Pulse | L = 0.1 mH | I _{AS} | 80 | | | | Single Pulse Avalanche Energy | L=0.1 IIII | E _{AS} | 320 | V | | | Continuous Source-Drain Diode Current | T _C = 25 °C | l _a | 110 ^{a, c} | Δ. | | | Continuous Source-Drain Diode Current | T _A = 25 °C | I _S | 2.6 ^b | Α | | | | T _C = 25 °C | | 312 ^a | | | | Manianum Danuar Diagination | T _C = 70 °C | ь - | 200 | 14/ | | | Maximum Power Dissipation | T _A = 25 °C | P _D | 3.13 ^b | W | | | | T _A = 70 °C | | 2.0 ^b | | | | Operating Junction and Storage Temperature R | T _J , T _{stg} | - 55 to 150 | °C | | | | THERMAL RESISTANCE RATINGS | | | | | | | | |--|--------------|-------------------|---------|---------|--------|--|--| | Parameter | | Symbol | Typical | Maximum | Unit | | | | Maximum Junction-to-Ambient ^b | Steady State | R _{thJA} | 32 | 40 | °C/W | | | | Maximum Junction-to-Case | Steady State | R_{thJC} | 0.33 | 0.4 | - C/VV | | | #### Notes: - a. Based on $T_C = 25$ °C. - b. Surface Mounted on 1" x 1" FR4 board. - c. Calculated based on maximum junction temperature. Package limitation current is 110 A. ## SUM110N04-2m1P ## Vishay Siliconix | Parameter | Symbol | Test Conditions | Min. | Тур. | Max. | Unit | | |---|-------------------------|--|------|--------|--------|------------|--| | Static | | | | | | | | | Drain-Source Breakdown Voltage | V _{DS} | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ | 40 | | | V | | | V _{DS} Temperature Coefficient | $\Delta V_{DS}/T_{J}$ | I _D = 250 μA | | 41 | | mV/°C | | | V _{GS(th)} Temperature Coefficient | $\Delta V_{GS(th)}/T_J$ | ι _D = 250 μΑ | | - 8 | | | | | Gate-Source Threshold Voltage | V _{GS(th)} | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | 1.2 | | 2.5 | V | | | Gate-Source Leakage | I _{GSS} | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$ | | | ± 100 | nA | | | Zava Cata Valtaga Drain Current | I _{DSS} | V _{DS} = 40 V, V _{GS} = 0 V | | | 1 | | | | Zero Gate Voltage Drain Current | | $V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$ | | | 10 | <u>μ</u> Α | | | On-State Drain Current ^a | I _{D(on)} | $V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$ | 120 | | | Α | | | Durin Course Or Olete Berieters | D | V _{GS} = 10 V, I _D = 30 A | | 0.0017 | 0.0021 | Ω | | | Drain-Source On-State Resistance ^a | R _{DS(on)} | $V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$ | | 0.002 | 0.0024 | | | | Forward Transconductance ^a | 9 _{fs} | V _{DS} = 15 V, I _D = 30 A | | 180 | | S | | | Dynamic ^b | | , | | • | | | | | Input Capacitance | C _{iss} | | | 18800 | | pF | | | Output Capacitance | C _{oss} | $V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ | | 1550 | | | | | Reverse Transfer Capacitance | C _{rss} | | | 850 | | | | | Total Gate Charge | Q_{g} | | | 240 | 360 | nC | | | Gate-Source Charge | Q_{gs} | $V_{DS} = 20 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 20 \text{ A}$ | | 40 | | | | | Gate-Drain Charge | Q_{gd} | | | 22 | | | | | Gate Resistance | R_{g} | f = 1 MHz | | 0.85 | 1.3 | Ω | | | Turn-On Delay Time | t _{d(on)} | | | 20 | 30 | | | | Rise Time | t _r | $V_{DD} = 20 \text{ V}, R_{L} = 1.0 \Omega$ | | 11 | 17 | | | | Turn-Off Delay Time | t _{d(off)} | $I_D\cong 20$ A, $V_{GEN}=10$ V, $R_g=1$ Ω | | 77 | 115 | | | | Fall Time | t _f | | | 10 | 15 | | | | Turn-On Delay Time | t _{d(on)} | | | 102 | 155 | ns | | | Rise Time | t _r | V_{DD} = 20 V, R_L = 1.0 Ω | | 62 | 95 | | | | Turn-Off Delay Time | t _{d(off)} | $I_D\cong 20$ A, $V_{GEN}=4.5$ V, $R_g=1$ Ω | | 180 | 270 | | | | Fall Time | t _f | | | 60 | 90 | | | | Drain-Source Body Diode Characteristic | s | | | 1 | | | | | Continuous Source-Drain Diode Current | I _S | T _C = 25 °C | | | 110 | ۸ | | | Pulse Diode Forward Current ^a | I _{SM} | | | | 200 | Α | | | Body Diode Voltage | V_{SD} | I _S = 20 A | | 0.8 | 1.2 | V | | | Body Diode Reverse Recovery Time | t _{rr} | | | 50 | 75 | ns | | | Body Diode Reverse Recovery Charge | Q _{rr} | L 00 A di/d+ 100 A/: T 05 00 | | 70 | 105 | nC | | | Reverse Recovery Fall Time | ta | $I_F = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$ | | 30 | | | | | Reverse Recovery Rise Time | t _b | | | 20 | | ns | | #### Notes: - a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$ - b. Guaranteed by design, not subject to production testing. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Vishay Siliconix #### TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted Output Characteristics **Transconductance** I_D - Drain Current (A) $V_{\mbox{GS}}$ - Gate-to-Source Voltage (V) On-Resistance vs. Drain Current ## SUM110N04-2m1P ## Vishay Siliconix # VISHAY #### TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted #### On-Resistance vs. Junction Temperature On-Resistance vs. Gate-to-Source Voltage #### Forward Diode Voltage vs. Temperature #### Threshold Voltage * V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified Safe Operating Area, Junction-to-Ambient ## SUM110N04-2m1P Vishay Siliconix #### TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted * The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit. Normalized Thermal Transient Impedance, Junction-to-Case Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?69983. ## TO-263 (D²PAK): 3-LEAD DETAIL A (ROTATED 90°) | = 1 | b | <u>.</u> | |--------------------|-------------------|----------| | $\geq \frac{1}{1}$ | <i>।।।।।।</i> । ਹ | | | c | | \Box | - 1. Plane B includes maximum features of heat sink tab and plastic. - 2. No more than 25 % of L1 can fall above seating plane by max. 8 mils. - 3. Pin-to-pin coplanarity max. 4 mils. - 4. *: Thin lead is for SUB, SYB. Thick lead is for SUM, SYM, SQM. - 5. Use inches as the primary measurement. 6 This feature is for thick lead. | DIM. | | INC | HES | MILLIMETERS | | | |---------------------------------|------------|-------|-------|-------------|--------|--| | | | MIN. | MAX. | MIN. | MAX. | | | Α | | 0.160 | 0.190 | 4.064 | 4.826 | | | | b | 0.020 | 0.039 | 0.508 | 0.990 | | | | b1 | 0.020 | 0.035 | 0.508 | 0.889 | | | | b2 | 0.045 | 0.055 | 1.143 | 1.397 | | | c* | Thin lead | 0.013 | 0.018 | 0.330 | 0.457 | | | | Thick lead | 0.023 | 0.028 | 0.584 | 0.711 | | | c1 | Thin lead | 0.013 | 0.017 | 0.330 | 0.431 | | | CI | Thick lead | 0.023 | 0.027 | 0.584 | 0.685 | | | | c2 | 0.045 | 0.055 | 1.143 | 1.397 | | | | D | 0.340 | 0.380 | 8.636 | 9.652 | | | | D1 | 0.220 | 0.240 | 5.588 | 6.096 | | | | D2 | 0.038 | 0.042 | 0.965 | 1.067 | | | | D3 | 0.045 | 0.055 | 1.143 | 1.397 | | | | D4 | 0.044 | 0.052 | 1.118 | 1.321 | | | | Е | 0.380 | 0.410 | 9.652 | 10.414 | | | | E1 | 0.245 | - | 6.223 | - | | | E2 | | 0.355 | 0.375 | 9.017 | 9.525 | | | | E3 | 0.072 | 0.078 | 1.829 | 1.981 | | | | е | 0.100 | BSC | 2.54 BSC | | | | K | | 0.045 | 0.055 | 1.143 | 1.397 | | | L | | 0.575 | 0.625 | 14.605 | 15.875 | | | L1 | | 0.090 | 0.110 | 2.286 | 2.794 | | | L2 | | 0.040 | 0.055 | 1.016 | 1.397 | | | L3 | | 0.050 | 0.070 | 1.270 | 1.778 | | | L4 | | 0.010 | BSC | 0.254 BSC | | | | M | | - | 0.002 | - | 0.050 | | | ECN: T13-0707-Rev. K, 30-Sep-13 | | | | | | | DWG: 5843 #### RECOMMENDED MINIMUM PADS FOR D²PAK: 3-Lead Recommended Minimum Pads Dimensions in Inches/(mm) Return to Index ## **Legal Disclaimer Notice** Vishay ### **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.