Preliminary Data Sheet No. PD60140-K

International **IOR** Rectifier

IR53H(D)420

SELF-OSCILLATING HALF BRIDGE

Features

- Output power MOSFETs in half-bridge configuration
- High side gate drive designed for bootstrap operation
- Bootstrap diode integrated into package (HD type)
- Tighter initial deadtime control
- Low temperature coefficient deadtime
- 15.6V zener clamped Vcc for offline operation
- Half-bridge output is out of phase with RT
- True micropower startup
- Shutdown feature (1/6th V_{CC}) on C_T lead
- Increased undervoltage lockout hysteresis (1Volt)
- Lower power level-shifting circuit
- Lower di/dt gate drive for better noise immunity
- Excellent latch immunity on all inputs and outputs
- ESD protection on all leads
- Constant V_O pulse width at startup
- Heatsink package version (P2 type)

Description

The IR53H(D)420 are complete high voltage, high speed, selfoscillating half-bridge circuits. Proprietary HVIC and latch immune CMOS technologies, along with the HEXFET[®] power MOSFET technology, enable ruggedized single package construction. The front-end features a programmable oscillator which functions similar to the CMOS 555 timer. The supply to the

control circuit has a zener clamp to simplify offline operation. The output features two HEXFETs in a half-bridge configuration with an internally set deadtime designed for minimum cross-conduction in the half-bridge. Propagation delays for the high and low side power MOSFETs are matched to simplify use in 50% duty cycle applications. The device can operate up to the V_{IN} (max) rating.

Typical Connection

www.irf.com

Product Summary

V _{IN} (max)	500V
Duty Cycle	50%
Deadtime (type.)	1.2µs
R _{ds(on)}	3.0Ω
$P_{D}(T_{A} = 25^{\circ}C)$	2.0W or 3.0W
Deadtime (type.) R _{ds(on)}	1.2μs 3.0Ω

Package

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, unless stated otherwise. All currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Minimum	Maximum	Units
V _{IN}	High voltage supply		- 0.3	500	
V _B	High side floating supply		V ₀ - 0.3	V ₀ + 25	
Vo	Half-bridge output		-0.3	V _{IN} + 0.3	V
V _{RT}	R _T voltage		- 0.3	V _{cc} + 0.3	
V _{CT}	C _T voltage		- 0.3	V _{cc} + 0.3	T I
I _{CC}	Supply current (note 1)		—	25	mA
I _{RT}	R _T output current		- 5	5	
dV/dt	Peak diode recovery		—	3.50	V/ns
PD	Package power dissipation @ T _A ≤ +25°C		_	2	14/
		-P2	_	3	W
Rth _{JA}	Thermal resistance, junction to ambient		_	60	
		-P2	_	40	
Rth _{JC}	Thermal resistance, junction to case	-P2		20	°C/W
	(heatsink)				
TJ	Junction temperature		-55	150	
T _S	Storage temperature		-55	150	C
TL	Lead temperature (soldering, 10 seconds)		—	300	

NOTE 1:

This IC contains a zener clamp structure between V_{CC} and COM which has a nominal breakdown voltage of 15.6V. Please note that this supply pin should not be driven by a DC, low impedance power source greater than the V_{CLAMP} specified in the Electrical Characteristics Section

Recommended Component Values

Symbol	Definition	Minimum	Maximum	Units
RT	Timing resistor value	10	_	kΩ
CT	C _T pin capacitor value	330	—	pF

IR53H(D)420 RT vs Frequency

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation, the device should be used within the recommended conditions.

Symbol	Definition			Minimum	Maximum	Units
V _B	High side floating supply	absolute voltage		V ₀ + 10	Vo + V _{clamp}	
V _{IN}	High voltage supply			—	500	V
Vo	Half-bridge output voltage	Э		-3.0 (note 3)	500	
I _D	Continuous drain current	(T _A = 25°C)		—	0.7	
			-P2	_	0.85	
		(T _A = 85°C)		_	0.5	А
	-		-P2	_	0.6	
	-	$(T_{C} = 25^{\circ}C)$	-P2	_	1.2	
I _{CC}	Supply current			(note 3)	5	mA
T _A	Ambient temperature			-40	125	°C

NOTE 2:

Care should be taken to avoid switching conditions where the Vs node flies inductively below ground by more than 5V.

NOTE 3:

Enough current should be supplied to the V_{CC} lead of the IC to keep the internal 15.6V zener diode clamping the voltage at this lead.

Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 12V, C_T = 1 nF and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM.

MOSFE	MOSFET Characteristics						
Symbol	Definition	Min.	Тур.	Max.	Units	Test Cond	litions
trr	Reverse recovery time (MOSFET body diode)	_	240	_			
Qrr	Reverse recovery charge (MOSFET body diode)	_	0.5	_	μC	I⊨=700mA ¹	di/dt =
R _{ds(on)}	Static drain-to-source on resistance	—	3.0	_	Ω		A/us
V _{SD}	Diode forward voltage	—	0.8	_	V		
Dynami	Dynamic Characteristics						
Symbol	Definition	Min.	Тур.	Max.	Units	Test Cond	litions
D	RT duty cycle	_	50	_	%	fosc = 20	kHz
tsd	Shutdown propagation delay		660	—	nsec		

Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 12V, C_T = 1 nF and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VCCUV+	Rising V _{CC} undervoltage lockout threshold	8.1	9.0	9.9		
VCCUV-	Falling V _{CC} undervoltage lockout threshold	7.2	8.0	8.8	V	
VCCUVH	V _{CC} undervoltage lockout Hysteresis	0.5	1.0	1.5	1	
IQCCUV	Micropower startup V _{CC} supply current	_	75	150	μΑ	V _{CC} ≤ V _{CCUV} -
IQCC	Quiescent V _{CC} supply current	_	500	950	_ μΑ	
VCLAMP	VCC zener clamp voltage	14.4	15.6	16.8	V	ICC = 5mA
Floating	Supply Characteristics					
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
IQBSUV	Micropower startup V _{BS} supply current	_	0	10		V _{CC} ≤ V _{CCUV} -
I _{QBS}	Quiescent VBS supply current	_	30	50	μΑ	
VBSMIN	Minimum required V _{BS} voltage for proper	_	4.0	5.0	V	$V_{CC}=V_{CCUV+} + 0.1V$
	functionality from R _T to HO					
los	Offset supply leakage current	_	—	50	μΑ	$V_{B} = V_{S} = 600V$
VF	Bootstrap diode forward voltage (IR2153D)	0.5	—	1.0	V	IF = 250mA
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
fosc	Oscillator frequency	19.4	20	20.6	kHz	$R_T = 36.9 k\Omega$
		94	100	106		RT = 7.43kΩ
	RT pin duty cycle	48	50	52	%	fo < 100kHz
ICT	CT pin current	_	0.001	1.0	uA	
	UV-mode CT pin pulldown current	0.30	0.70	1.2	mA	$V_{CC} = 7V$
	Upper CT ramp voltage threshold		8.0		- ,	
	Lower CT ramp voltage threshold	—	4.0		V	
	CT voltage shutdown threshold	1.8	2.1	2.4		
V _{RT+}	High-level RT output voltage, VCC - VRT		10	50		I _{RT} = 100μA
			100 10	300 50	-	$I_{RT} = 1mA$
Vrt-	Low-level RT output voltage	_	100	300		$I_{RT} = 100\mu A$
N/	LIV/ see de De sector de selte se		0	100	mV	$I_{RT} = 1mA$
	UV-mode RT output voltage	_	10	50	-	$V_{CC} \le V_{CCUV}$ $I_{RT} = 100\mu A,$
Vrtsd	SD-Mode RT output voltage, VCC - VRT	_	10	50		
	+		10	300	-	$V_{CT} = 0V$ $I_{RT} = 1mA,$
		_	10	300		
						$V_{CT} = 0V$

Functional Block Diagram

International **tor** Rectifier

Lead Assignments

Lead Definitions

Symbol	Lead Description
V _{CC}	Logic and internal gate drive supply voltage.
R _T	Oscillator timing resistor output
C _T	Oscillator timing capacitor input
V _B	High side gate drive floating supply.
V _{IN}	High voltage supply
VO	Half Bridge output
COM	Logic and low side of half bridge return

Figure 1. Input/Output Timing Diagram

Case Outline - 7 pin

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 http://www.irf.com Data and specifications subject to change without notice. 8/19/2003

www.irf.com