ANALOG DEVICES

Low Power, Low Noise Voltage References with Sink/Source Capability

Data Sheet

ADR360/ADR361/ADR363/ADR364/ADR365/ADR366

FEATURES

Compact TSOT package
Low temperature coefficient
A grade: 25 ppm/°C
B grade: 9 ppm/°C
H grade: 25 ppm/°C
Initial accuracy
A grade: ±6 mV maximum (ADR360, ADR361, and ADR363)
B grade: ±3 mV maximum (ADR360, ADR361, and ADR363)
Ultralow output voltage noise: 6.8 μV p-p (0.1 Hz to 10 Hz)
Low dropout: 300 mV
Low quiescent current: 190 µA maximum
No external capacitor required
Output current: +5 mA (sourcing), –1 mA (sinking)
Wide temperature range
–40°C to +125°C (A grade, B grade)
-40°C to +150°C (H grade)
Qualified for automotive applications
-40°C to +150°C
ADR365WHUJZ-R7
-40°C to +125°C
ADR365WAUJZ-R7, ADR366WAUJZ-REEL7

APPLICATIONS

Battery-powered instruments Portable medical instruments Data acquisition systems Industrial process controls Automotive

GENERAL DESCRIPTION

The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 are precision 2.048 V, 2.500 V, 3.000 V, 4.096 V, 5.000 V, and 3.300 V band gap voltage references that offer low power and high precision in a compact TSOT package. Using proprietary temperature drift curvature correction techniques from Analog Devices, Inc., the ADR360/ADR361/ADR363/ADR364/ ADR365/ADR366 references achieve a low temperature drift of 9 ppm/°C in a TSOT package.

The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 family of micropower, low dropout voltage references provide a

PIN CONFIGURATION

Table 1. ADR360/ADR361/ADR363/ADR364/ADR365/ ADR366 Family of Devices

	Vout	Temperature Coefficient	Accuracy
Model	(V) ¹	(ppm/°C)	(mV)
ADR360B	2.048	9	±3
ADR360A	2.048	25	±б
ADR361B	2.500	9	±3
ADR361A	2.500	25	±6
ADR363B	3.000	9	±3
ADR363A	3.000	25	±6
ADR364B	4.096	9	±4
ADR364A	4.096	25	±8
ADR365B	5.000	9	±4
ADR365A	5.000	25	±8
ADR365H	5.000	25	±8
ADR366B	3.300	9	±4
ADR366A	3.300	25	±8

¹ Contact Analog Devices, Inc., for other voltage options.

stable output voltage from a minimum supply of 300 mV greater than the output. The advanced design of the devices eliminates the need for external capacitors, which further reduces board space and system cost. The combination of low power operation, small size, and ease of use makes the ADR360/ADR361/ADR363/ ADR364/ADR365/ADR366 precision voltage references ideally suited for battery-operated applications.

See the Ordering Guide for automotive grades.

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Applications1
Pin Configuration1
General Description
Revision History 2
Specifications
ADR360 Electrical Characteristics
ADR361 Electrical Characteristics
ADR363 Electrical Characteristics
ADR364 Electrical Characteristics
ADR365 Electrical Characteristics7
ADR366 Electrical Characteristics
Absolute Maximum Ratings9
Thermal Resistance9

REVISION HISTORY

3/2019—Rev. D to Rev. E
Changes to Features Section, Figure 1, Table 1, and General
Description Section
Changes to Table 2
Changes to Table 3 4
Changes to Table 4
Changes to Table 5
Changes to Table 67
Changes to Table 7
Changes to Thermal Resistance Section and Table 99
Added Pin Configuration and Function Descriptions Section,
Figure 2, and Table 10; Renumbered Sequentially 10
Added Figure 711
Changes to Figure 912
Added Figure 1212
Added Figure 16
Changes to Figure 1813
Deleted Negative Precision Reference Without Precision
Resistors Section and Figure 3517
Changes to Theory of Operation Section, Device Power
Dissipation Considerations Section, Input Capacitor Section,
Output Capacitor Section, and Figure 3618
Changes to Applications Information Section, Figure 37 to
Figure 40, Stacking Reference ICs for Arbitrary Outputs Section,
General-Purpose Current Source Section, and Trim Terminal
Section
Updated Outline Dimensions
Changes to Ordering Guide

10/10—Rev. C to Rev. D

Changes to Features Section and General Description Section . 1

ESD Caution	9
Pin Configuration and Function Descriptions	10
Typical Performance Characteristics	11
Terminology	17
Theory of Operation	
Device Power Dissipation Considerations	
Input Capacitor	
Output Capacitor	
Applications Information	19
Basic Voltage Reference Connection	19
Outline Dimensions	
Ordering Guide	20
Automotive Products	20

Changed Supply Voltage Headroom to Dropout Voltage

Throughout	3
Changed 0.1 Hz to 10 Hz to $f = 0.1$ Hz to 10 Hz Throughout	
Change to Table 8	9
Changes to Figure 13	. 11
Changes to Figure 14	. 12
Changes to Ordering Guide	. 20
Added Automotive Products Section	. 20

7/07—Rev. B to Rev. C

Changes to Ripple Rejection Ratio in Table 2	3
Changes to Ripple Rejection Ratio in Table 3	4
Changes to Ripple Rejection Ratio in Table 4	5
Changes to Ripple Rejection Ratio in Table 5	
Changes to Ripple Rejection Ratio in Table 6	
Changes to Ripple Rejection Ratio in Table 7	

2/07—Rev. A to Rev. B

Changes to Table 7	8
Changes to Figure 6 1	
Changes to Figure 13, Figure 14, Figure 17,	
and Figure 27 Captions	2
Changes to Ordering Guide 1	9

3/06—Rev. 0 to Rev. A

Changes to Figure 15 Caption	. 13
Changes to Figure 21 Caption	. 14
Changes to Theory of Operation Section	. 16
Changes to Figure 36	. 18

4/05—Revision 0: Initial Version

SPECIFICATIONS

ADR360 ELECTRICAL CHARACTERISTICS

Input voltage (V_{\rm IN}) = 2.35 V to 15 V, T_{\rm A} = 25°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	Vout	A grade	2.042	2.048	2.054	V
		B grade	2.045	2.048	2.051	V
INITIAL ACCURACY	VOUTERR	A grade			±б	mV
		A grade			±0.29	%
		B grade			±3	mV
		B grade			±0.15	%
TEMPERATURE COEFFICIENT	TCVOUT	A grade, -40°C < T _A < +125°C			25	ppm/°C
		B grade, -40°C < T _A < +125°C			9	ppm/°C
DROPOUT VOLTAGE	$V_{\text{IN}} - V_{\text{OUT}}$		300			mV
LINE REGULATION	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 2.45 \text{ V to } 15 \text{ V}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			0.105	mV/V
LOAD REGULATION	$\Delta V_{OUT} / \Delta I_{LOAD}$	Load resistance (I $_{\rm LOAD})=0$ mA to 5 mA, $-40^{\circ}C < T_A < +125^{\circ}C,$ V $_{\rm IN}=3$ V			0.37	mV/mA
		$I_{LOAD} = -1 \text{ mA to } 0 \text{ mA}, -40^{\circ}\text{C} < T_{A} < +125^{\circ}\text{C}, V_{IN} = 3 \text{ V}$			0.82	mV/mA
QUIESCENT CURRENT	l _{iN}	-40°C < T _A < +125°C		150	190	μA
OUTPUT CURRENT	lout					
Sourcing			5			mA
Sinking			-1			mA
VOLTAGE NOISE	e _{Np-p}	Frequency = 0.1 Hz to 10 Hz		6.8		μV p-p
TURN ON SETTLING TIME	t _R			25		μs
LONG-TERM STABILITY ¹	ΔVουτ	1000 hours		50		ppm
OUTPUT VOLTAGE HYSTERESIS	ΔV _{OUT_HYS}			100		ppm
RIPPLE REJECTION RATIO	RRR	Input frequency (f _{IN}) = 60 Hz		-70		dB
SHORT-CIRCUIT TO GND	I _{sc}	$V_{IN} = 5 V$		25		mA
		$V_{IN} = 15 V$		30		mA

ADR361 ELECTRICAL CHARACTERISTICS

 $V_{\rm IN}$ = 2.8 V to 15 V, $T_{\rm A}$ = 25°C, unless otherwise noted.

Table 3.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	Vout	A grade	2.494	2.500	2.506	V
		B grade	2.497	2.500	2.503	V
INITIAL ACCURACY	VOUTERR	A grade			±б	mV
		A grade			±0.24	%
		B grade			±3	mV
		B grade			±0.12	%
TEMPERATURE COEFFICIENT	TCVout	A grade, $-40^{\circ}C < T_A < +125^{\circ}C$			25	ppm/°C
		B grade, -40°C < T _A < +125°C			9	ppm/°C
DROPOUT VOLTAGE	VIN - VOUT		300			mV
LINE REGULATION	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 2.8 \text{ V to } 15 \text{ V}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			0.125	mV/V
LOAD REGULATION	$\Delta V_{OUT}/\Delta I_{LOAD}$	$I_{LOAD} = 0 \text{ mA to 5 mA}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}, V_{IN} = 3.5 \text{ V}$			0.45	mV/mA
		$I_{LOAD} = -1 \text{ mA to } 0 \text{ mA}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}, V_{IN} = 3.5 \text{ V}$			1	mV/mA
QUIESCENT CURRENT	lin	-40°C < T _A < +125°C		150	190	μA
OUTPUT CURRENT	Іоит					
Sourcing			5			mA
Sinking			-1			mA
VOLTAGE NOISE	e _{N p-p}	Frequency = 0.1 Hz to 10 Hz		8.25		μV p-р
TURN ON SETTLING TIME	t _R			25		μs
LONG-TERM STABILITY ¹	ΔVουτ	1000 hours		50		ppm
OUTPUT VOLTAGE HYSTERESIS	ΔV _{OUT_HYS}			100		ppm
RIPPLE REJECTION RATIO	RRR	$f_{IN} = 60 \text{ Hz}$		-70		dB
SHORT-CIRCUIT TO GND	lsc	$V_{IN} = 5 V$		25		mA
		$V_{IN} = 15 V$		30		mA

ADR363 ELECTRICAL CHARACTERISTICS

 $V_{\rm IN}$ = 3.3 V to 15 V, $T_{\rm A}$ = 25°C, unless otherwise noted.

Table 4.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	Vout	A grade	2.994	3.000	3.006	V
		B grade	2.997	3.000	3.003	V
INITIAL ACCURACY	VOUTERR	A grade			±б	mV
		A grade			±0.2	%
		B grade			±3	mV
		B grade			±0.1	%
TEMPERATURE COEFFICIENT	TCVout	A grade, $-40^{\circ}C < T_{A} < +125^{\circ}C$			25	ppm/°C
		B grade, −40°C < T _A < +125°C			9	ppm/°C
DROPOUT VOLTAGE	VIN - VOUT		300			mV
LINE REGULATION	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 3.3 \text{ V to } 15 \text{ V}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			0.15	mV/V
LOAD REGULATION	$\Delta V_{OUT}/\Delta I_{LOAD}$	$I_{LOAD} = 0 \text{ mA to 5 mA}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}, V_{IN} = 4 \text{ V}$			0.54	mV/mA
		$I_{LOAD} = -1 \text{ mA to } 0 \text{ mA}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}, V_{IN} = 4 \text{ V}$			1.2	mV/mA
QUIESCENT CURRENT	lin	-40°C < T _A < +125°C		150	190	μA
OUTPUT CURRENT	Іоит					
Sourcing			5			mA
Sinking			-1			mA
VOLTAGE NOISE	e _{N p-p}	Frequency = 0.1 Hz to 10 Hz		8.7		μV р-р
TURN ON SETTLING TIME	t _R			25		μs
LONG-TERM STABILITY ¹	ΔVουτ	1000 hours		50		ppm
OUTPUT VOLTAGE HYSTERESIS	ΔV _{OUT_HYS}			100		ppm
RIPPLE REJECTION RATIO	RRR	$f_{IN} = 60 \text{ Hz}$		-70		dB
SHORT-CIRCUIT TO GND	lsc	$V_{IN} = 5 V$		25		mA
		$V_{IN} = 15 V$		30		mA

ADR364 ELECTRICAL CHARACTERISTICS

 $V_{\rm IN}$ = 4.4 V to 15 V, $T_{\rm A}$ = 25°C, unless otherwise noted.

Table 5.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	Vout	A grade	4.088	4.096	4.104	V
		B grade	4.092	4.096	4.100	V
INITIAL ACCURACY	VOUTERR	A grade			±8	mV
		A grade			±0.2	%
		B grade			±4	mV
		B grade			±0.1	%
TEMPERATURE COEFFICIENT	TCVout	A grade, $-40^{\circ}C < T_{A} < +125^{\circ}C$			25	ppm/°C
		B grade, –40°C < T _A < +125°C			9	ppm/°C
DROPOUT VOLTAGE	VIN - VOUT		300			mV
LINE REGULATION	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 4.4 \text{ V to } 15 \text{ V}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			0.205	mV/V
LOAD REGULATION	$\Delta V_{OUT}/\Delta I_{LOAD}$	$I_{LOAD} = 0 \text{ mA to 5 mA}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}, V_{IN} = 5 \text{ V}$			0.735	mV/mA
		$I_{LOAD} = -1 \text{ mA to } 0 \text{ mA}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}, V_{IN} = 5 \text{ V}$			1.75	mV/mA
QUIESCENT CURRENT	lin	-40°C < T _A < +125°C		150	190	μA
OUTPUT CURRENT	Іоит					
Sourcing			5			mA
Sinking			-1			mA
VOLTAGE NOISE	e _{N p-p}	Frequency = 0.1 Hz to 10 Hz		11		μV p-р
TURN ON SETTLING TIME	t _R			25		μs
LONG-TERM STABILITY ¹	ΔVουτ	1000 hours		50		ppm
OUTPUT VOLTAGE HYSTERESIS	ΔV _{OUT_HYS}			100		ppm
RIPPLE REJECTION RATIO	RRR	$f_{IN} = 60 \text{ Hz}$		-70		dB
SHORT-CIRCUIT TO GND	lsc	$V_{IN} = 5 V$		25		mA
		$V_{IN} = 15 V$		30		mA

ADR365 ELECTRICAL CHARACTERISTICS

 $V_{\rm IN}$ = 5.3 V to 15 V, $T_{\rm A}$ = 25°C, unless otherwise noted.

Table 6.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	Vout	A grade	4.992	5.000	5.008	V
		B grade	4.996	5.000	5.004	V
		H grade	4.992	5.000	5.008	V
INITIAL ACCURACY	VOUTERR	A grade			±8	mV
		A grade			±0.16	%
		B grade			±4	mV
		B grade			±0.08	%
		H grade			±8	mV
		H grade			±0.16	%
TEMPERATURE	TCVOUT	A grade, $-40^{\circ}C < T_A < +125^{\circ}C$			25	ppm/°C
COEFFICIENT		B grade, -40° C < T _A < $+125^{\circ}$ C			9	ppm/°C
		H grade, -40° C $<$ T _A $< +150^{\circ}$ C			25	ppm/°C
DROPOUT VOLTAGE	$V_{\text{IN}}-V_{\text{OUT}}$		300			mV
LINE REGULATION	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 5.3 \text{ V to } 15 \text{ V}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			0.25	mV/V
		$V_{IN} = 5.3 V$ to $15 V$, $-40^{\circ}C < T_A < +150^{\circ}C$ (H grade only)			1.8	mV/V
LOAD REGULATION	$\Delta V_{OUT} / \Delta I_{LOAD}$	$I_{LOAD} = 0 \text{ mA to 5 mA}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}, V_{IN} = 6 \text{ V}$			0.9	mV/mA
		$I_{LOAD} = -1 \text{ mA to } 0 \text{ mA}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}, V_{IN} = 6 \text{ V}$			2	mV/mA
		$I_{LOAD} = 0 \text{ mA to 5 mA}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}, V_{IN} = 6 \text{ V}$ (H grade only)			3.6	mV/mA
		$I_{LOAD} = -1 \text{ mA to } 0 \text{ mA}, -40^{\circ}\text{C} < T_{\text{A}} < +125^{\circ}\text{C}, V_{\text{IN}} = 6 \text{ V (H}$ grade only)			30	mV/mA
QUIESCENT CURRENT	l _{in}	$-40^{\circ}C < T_{A} < +125^{\circ}C$		150	190	μA
		$-40^{\circ}C < T_{A} < +150^{\circ}C$ (H grade only)		150	190	μA
OUTPUT CURRENT	Іоит					
Sourcing			5			mA
Sinking			-1			mA
VOLTAGE NOISE	e _{Np-p}	Frequency = 0.1 Hz to 10 Hz		12.8		μV p-p
TURN ON SETTLING TIME	t _R			20		μs
LONG-TERM STABILITY ¹	ΔVουτ	1000 hours		50		ppm
OUTPUT VOLTAGE HYSTERESIS	ΔV _{OUT_HYS}			100		ppm
RIPPLE REJECTION RATIO	RRR	f _{IN} = 60 Hz		-70		dB
SHORT-CIRCUIT TO GND	lsc	$V_{IN} = 5 V$		25		mA
		$V_{IN} = 15 V$		30		mA

ADR366 ELECTRICAL CHARACTERISTICS

 $V_{\rm IN}$ = 3.6 V to 15 V, $T_{\rm A}$ = 25°C, unless otherwise noted.

Table 7.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	VOUT	A grade	3.292	3.300	3.308	V
		B grade	3.296	3.300	3.304	V
INITIAL ACCURACY	VOUTERR	A grade			±8	mV
		A grade			±0.25	%
		B grade			±4	mV
		B grade			±0.125	%
TEMPERATURE COEFFICIENT	TCVout	A grade, $-40^{\circ}C < T_A < +125^{\circ}C$			25	ppm/°C
		B grade, -40° C < T _A < $+125^{\circ}$ C			9	ppm/°C
DROPOUT VOLTAGE	VIN - VOUT		300			mV
LINE REGULATION	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 3.6 V$ to $15 V$, $-40^{\circ}C < T_A < +125^{\circ}C$			0.165	mV/V
LOAD REGULATION	$\Delta V_{\text{OUT}}/\Delta I_{\text{LOAD}}$	$I_{LOAD} = 0 \text{ mA to 5 mA}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}, V_{IN} = 4.2 \text{ V}$			0.6	mV/mA
		$I_{LOAD} = 0 \text{ mA to } 8 \text{ mA}, -40^{\circ}\text{C} < T_{A} < +125^{\circ}\text{C}, V_{IN} \ge 4.75 \text{ V}$			0.6	mV/mA
		$I_{LOAD} = -1 \text{ mA to } 0 \text{ mA}, -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}, V_{IN} = 4.2 \text{ V}$			1.35	mV/mA
QUIESCENT CURRENT	I _{IN}	$-40^{\circ}C < T_A < +125^{\circ}C$		150	190	μA
OUTPUT CURRENT	Іоит					
Sourcing			5			mA
Sinking			-1			mA
VOLTAGE NOISE	e _{N p-p}	Frequency = 0.1 Hz to 10 Hz		9.3		μV p-p
TURN ON SETTLING TIME	t _R			25		μs
LONG-TERM STABILITY ¹	ΔV _{OUT}	1000 hours		50		ppm
OUTPUT VOLTAGE HYSTERESIS	ΔV_{OUT_HYS}			100		ppm
RIPPLE REJECTION RATIO	RRR	$f_{IN} = 60 \text{ Hz}$		-70		dB
SHORT-CIRCUIT TO GND	lsc	$V_{IN} = 5 V$		25		mA
		$V_{IN} = 15 V$		30		mA

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 8.

Parameter	Rating
Supply Voltage	18 V
Output Short-Circuit Duration to GND	
$V_{IN} < 15 V$	Indefinite
$V_{IN} > 15 V$	10 sec
Storage Temperature Range	–65°C to +125°C
Operating Temperature Range	-40°C to +125°C
Junction Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection, junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.

 θ_{JC} is the junction to case thermal resistance.

Table 9. Thermal Resistance

Package Type	Αιθ	οισ	Unit	
UJ-5	230	146	°C/W	

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 10. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	NIC	Not Internally Connected. This pin is not connected internally.
2	GND	Ground.
3	VIN	Input Voltage Connection.
4	VOUT	Output Voltage.
5	TRIM	Output Voltage Trim.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. ADR360 V_{OUT} vs. Temperature

Figure 5. ADR363 Vout vs. Temperature

Figure 8. ADR361 Supply Current (IDD) vs. VIN

Figure 11. ADR365 Load Regulation vs. Temperature

Figure 12. ADR365 H Grade Load Regulation vs. Temperature

Figure 14. ADR361 Line Regulation vs. Temperature, $V_{IN} = 2.8$ V to 15 V

Figure 15. ADR365 Line Regulation vs. Temperature, $V_{IN} = 5.3$ V to 15 V

Figure 16. ADR365 H Grade Line Regulation vs. Temperature, $V_{IN} = 5.3 V$ to 15 V

Figure 17. ADR361 Dropout Voltage vs. Load Current

Figure 19. ADR361 0.1 Hz to 10 Hz Noise

Figure 20. ADR361 10 Hz to 10 kHz Noise

Figure 21. ADR363 0.1 Hz to 10 Hz Noise

Figure 22. ADR363 10 Hz to 10 kHz Noise

Figure 23. ADR365 0.1 Hz to 10 Hz Noise

Figure 24. ADR365 10 Hz to 10 kHz Noise

Figure 27. ADR361 Line Transient Response (Increasing), No Capacitors

Figure 28. ADR361 Line Transient Response (Decreasing), No Capacitors

Figure 30. ADR361 Load Transient Response

Figure 32. ADR361 Turn On Response Time at 5 V

Figure 33. ADR361 Turn Off Response Time at 5 V

Figure 34. ADR361 Turn On Response Time, 0.1 µF Output Capacitor

Figure 35. ADR361 Turn Off Response Time, 0.1 µF Output Capacitor

TERMINOLOGY

Temperature Coefficient

The temperature coefficient is the change of output voltage with respect to operating temperature changes normalized by the output voltage at 25°C. This parameter is expressed in ppm/°C and can be determined by

$$TCV_{OUT}(\text{ppm/°C}) = \frac{V_{OUT}(T2) - V_{OUT}(T1)}{V_{OUT}(25^{\circ}\text{C}) \times (T2 - T1)} \times 10^{6}$$

where:

 V_{OUT} (*T*2) = V_{OUT} at Temperature 2. V_{OUT} (*T*1) = V_{OUT} at Temperature 1. V_{OUT} (25°C) = V_{OUT} at 25°C.

Line Regulation

Line regulation is the change in output voltage due to a specified change in input voltage. This parameter accounts for the effects of self heating. Line regulation is expressed in either percent per volt, parts per million per volt, or microvolts per volt change in input voltage.

Load Regulation

Load regulation is the change in output voltage due to a specified change in load current. This parameter accounts for the effects of self heating. Load regulation is expressed in either microvolts per milliampere, parts per million per milliampere, or ohms of dc output resistance.

Long-Term Stability

Long-term stability is the typical shift of output voltage at 25°C on a sample of devices subjected to a test of 1000 hours at 25°C.

$$\Delta V_{OUT} = V_{OUT}(t_0) - V_{OUT}(t_1)$$
$$\Delta V_{OUT}(ppm) = \left(\frac{V_{OUT}(t_0) - V_{OUT}(t_1)}{V_{OUT}(t_0)} \times 10^6\right)$$

where:

 $V_{OUT}(t_0) = V_{OUT}$ at 25°C at Time 0.

 $V_{OUT}(t_1) = V_{OUT}$ at 25°C after 1000 hours operation at 25°C.

Thermal Hysteresis

Thermal hysteresis (V_{OUT_HYS}) is the change of output voltage after the device is cycled from +25°C to -40°C to +125°C and back to +25°C. This is a typical value from a sample of devices put through this cycle.

$$V_{OUT_HYS} = V_{OUT} (25^{\circ}\text{C}) - V_{OUT_TC}$$
$$V_{OUT_HYS} (\text{ppm}) = \frac{V_{OUT} (25^{\circ}\text{C}) - V_{OUT_TC}}{V_{OUT} (25^{\circ}\text{C})} \times 10^{\circ}$$

where:

 V_{OUT} (25°C) = V_{OUT} at 25°C.

 V_{OUT_TC} = V_{OUT} at 25°C after a temperature cycle at +25°C to -40°C to +125°C and back to +25°C.

THEORY OF OPERATION

Band gap references are the high performance solution for low supply voltage and low power voltage reference applications, and the ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 family is no exception. The uniqueness of these devices lies in their architecture. The ideal zero temperature coefficient band gap voltage is referenced to the output, not to ground (see Figure 36). Therefore, if noise exists on the ground line, the noise is greatly attenuated on V_{OUT}. The band gap cell consists of the PNP transistor pair, Q53 and Q52, running at unequal current densities. The difference in the base emitter voltage (V_{BE}) of Q53 and Q52 results in a voltage with a positive temperature coefficient, which is amplified by a ratio of

 $2 \times (R59/R54)$

VIN [

This proportional to absolute temperature (PTAT) voltage, combined with the V_{BE} of Q53 and Q52, produces the stable band gap voltage.

Reduction in the band gap curvature is performed by the ratio of Resistor R44 and Resistor R59, one of which is linearly temperature dependent. Precision laser trimming and other proprietary circuit techniques are used to further enhance the drift performance.

Figure 36. Simplified Schematic

DEVICE POWER DISSIPATION CONSIDERATIONS

The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 family can deliver load currents up to 5 mA with an input voltage ranging from 2.35 V (ADR360 only) to 15 V. When the ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 devices are used in applications with large input voltages, take care to avoid exceeding the specified maximum power dissipation or junction temperature because this may result in premature device failure. Use the following formula to calculate the maximum junction temperature or dissipation of a device:

$$P_D = \frac{T_J - T_A}{\theta_{JA}}$$

where:

 P_D is the device power dissipation.

 T_J and T_A are the junction and ambient temperatures, respectively. θ_{JA} is the device package thermal resistance.

INPUT CAPACITOR

Input capacitors are not required on the ADR360/ADR361/ ADR363/ADR364/ADR365/ADR366. There is no limit for the value of the capacitor used on the input, but a 1 μ F to 10 μ F capacitor on the input improves transient response in applications where the supply suddenly changes. An additional 0.1 μ F capacitor in parallel also helps reduce noise from the supply.

OUTPUT CAPACITOR

The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 do not require output capacitors for stability under any load condition. An output capacitor, typically 0.1 μ F, filters out low level noise voltage and does not affect the operation of the device. However, the load transient response can improve with an additional 1 μ F to 10 μ F output capacitor placed in parallel with the 0.1 μ F capacitor. The additional capacitor acts as a source of stored energy for a sudden increase in load current, and the only parameter that degrades is the turn on time. The amount of degradation depends on the size of the capacitor chosen.

APPLICATIONS INFORMATION basic voltage reference connection

The circuit in Figure 37 illustrates the basic configuration for the ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 family. Decoupling capacitors are not required for circuit stability. The ADR360/ADR361/ADR363/ADR364/ADR365/ ADR366 family can drive capacitive loads from 0 μ F to 10 μ F. However, a 0.1 μ F ceramic output capacitor is recommended to absorb and deliver the charge, as is required by a dynamic load.

Figure 37. Basic Configuration for the ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 Family

Stacking Reference ICs for Arbitrary Outputs

Some applications require two reference voltage sources, which are a combined sum of standard outputs. Figure 38 shows how this stacked output reference can be implemented.

Two ADR365 devices are used and fed from an unregulated input, V_{IN} . The outputs of the individual ICs are connected in series, which provides two output voltages, V_{OUT1} and V_{OUT2} . V_{OUT1} is the terminal voltage of U1, and V_{OUT2} is the sum of this voltage and the terminal voltage of U2. U1 and U2 are chosen for the two voltages that supply the required outputs (see Table 11). For example, if both U1 and U2 are ADR361 devices, V_{OUT1} is 2.5 V and V_{OUT2} is 5.0 V.

Table 11. Output

U1/U2	V _{OUT1} (V)	V _{OUT2} (V)
ADR361/ADR365	2.5	7.5
ADR361/ADR361	2.5	5.0
ADR365/ADR361	5	7.5

General-Purpose Current Source

Often in low power applications, the need arises for a precision current source that can operate on low supply voltages. The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 can be configured as a precision current source (see Figure 39). The circuit configuration illustrated in Figure 39 is a floating current source with a grounded load. The output voltage of the reference is bootstrapped across R_{SET} , which sets the output current of the load. With this configuration, circuit precision is maintained for load currents ranging from the supply current of the reference, typically 150 μ A, up to approximately 5 mA. In Figure 39, IsY is the supply current of the reference and I_{SET} is the required current output from the reference.

Trim Terminal

The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 trim terminal can be used to adjust the output voltage over a nominal voltage. This feature allows a system designer to trim system errors by setting the reference to a voltage other than the standard voltage option. Resistor R1 is used for fine adjustments and can be omitted if desired. Carefully choose the resistor values to ensure that the maximum current drive of the device is not exceeded.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-193-AB

Figure 41. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters

ORDERING GUIDE

	Output		tial acy, ±	Temperature					
Model ^{1, 2}	Voltage (Vout)	(mV)	(%)	Coefficient (ppm/°C)	Package Description	Package Option	Temperature Range	Ordering Quantity	Marking Code
ADR360AUJZ-REEL7	2.048	6	0.29	25	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	R0C
ADR360BUJZ-REEL7	2.048	3	0.15	9	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	ROD
ADR361AUJZ-REEL7	2.5	6	0.24	25	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	R0E
ADR361BUJZ-REEL7	2.5	3	0.12	9	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	ROF
ADR363AUJZ-REEL7	3.0	6	0.2	25	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	R0G
ADR363BUJZ-REEL7	3.0	3	0.1	9	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	ROH
ADR364AUJZ-REEL7	4.096	8	0.2	25	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	ROJ
ADR364BUJZ-REEL7	4.096	4	0.1	9	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	ROK
ADR365AUJZ-REEL7	5.0	8	0.16	25	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	ROL
ADR365BUJZ-REEL7	5.0	4	0.08	9	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	ROM
ADR365WAUJZ-R7	5.0	8	0.16	25	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	ROL
ADR365WHUJZ-R7	5.0	8	0.16	25	5-Lead TSOT	UJ-5	-40°C to +150°C	3,000	R3M
ADR366AUJZ-REEL7	3.3	8	0.25	25	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	R08
ADR366BUJZ-REEL7	3.3	4	0.125	9	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	R09
ADR366WAUJZ-REEL7	3.3	8	0.25	25	5-Lead TSOT	UJ-5	-40°C to +125°C	3,000	R08

¹ Z = RoHS Compliant Part.

 2 W = Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The ADR365W and ADR366W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

©2005–2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05467-0-3/19(E)

www.analog.com

04-05-2017-B

Rev. E | Page 20 of 20