

300 mA LDO REGULATOR

No.EA-236-220901

OUTLINE

The RP114x is a CMOS-based voltage regulator IC with high output voltage accuracy, low supply current, low dropout, and high ripple rejection. This IC consists of a voltage reference unit, an error amplifier, resistors for setting output voltage, a short current limit circuit, a chip enable circuit, and so on. The RP114x features a minimum input voltage from 1.4V and the output voltage, which can be set from 0.8V to 3.6V (in 0.1V step). The output voltage of this IC is internally fixed. This IC perform with low dropout voltage due to built-in transistor with low ON resistance. Low supply current and a chip enable function prolong the battery life of each system. The ripple rejection, line transient response and load transient response of the RP114x is excellent, thus this IC is very suitable for the power supply for hand-held communication equipment. Since the packages for this IC are DFN(PL)1010-4, DFN(PL)1010-4B, SC-88A, SOT-23-5, therefore high density mounting of the IC on boards is possible.

FEATURES

	· · · · · · · · · · · · · · · · · · ·	
•	Standby Current	Тур. 0.1μА
•	Supply Current	тур. 50µА

- Output Voltage Range⁽¹⁾.....0.8V to 3.6V (0.1V steps)
- Temperature-Drift Coefficient of Output Voltage......Typ. ±80ppm/°C
- Dropout Voltage......Typ. 0.25V (lout = 300mA, VSET = 2.8V)
- Ripple RejectionTyp. 75dB (f=1kHz)
- Line Regulation.....Typ. 0.02%/V
- Packages DFN(PL)1010-4、 DFN(PL)1010-4B、
 - SC-88A、SOT-23-5
- Built-in Fold Back Protection Circuit Typ. 60mA (Current at short mode)

- Ceramic capacitors are recommended to be used with this IC $\ \ldots \ 1.0 \mu F$ or more

APPLICATIONS

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

⁽¹⁾ For other voltages, please refer to *Product-specific Electrical Characteristics*.

No.EA-236-220901

SELECTION GUIDE

The set output voltage, the auto discharge function⁽¹⁾, and the package type for the ICs are user-selectable options.

Product Name Package		Quantity per Reel	Pb Free	Halogen Free
RP114Kxx1*(y)-TR	DFN(PL)1010-4	10,000 pcs	Yes	Yes
RP114Kxx1*(y)-TRB	DFN(PL)1010-4B	10,000 pcs	Yes	Yes
RP114Qxx2*(y)-TR-FE	SC-88A	3,000 pcs	Yes	Yes
RP114Nxx1*(y)-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes

xx: Specify the set output voltage within the range of 0.8 V (08) to 3.6 V (36) in 0.1 V step.

(y): If the output voltage includes the 3rd digit, indicate the digit of 0.01V.

- Ex. If the output voltage is 1.25V, RP114K121*5-TR
 - If the output voltage is 1.85V, RP114K181*5-TR
- *: Specify a combination of the CE pin polarity and the auto-discharge function.
 - (B) "H" Active, without Auto-Discharge function
 - (D) "H" Active, with Auto-Discharge function

BLOCK DIAGRAMS

⁽¹⁾ Auto-Discharge function quickly lowers the output voltage to 0V by releasing the electrical charge in the external capacitor when the chip enable signal is switched from the active mode to the standby mode.

No.EA-236-220901

RP114K Pin Description [DFN(PL)1010-4 / DFN(PL)1010-4B]

Pin No	Symbol	Pin Description		
1	VOUT	Output Pin		
2	GND	Ground Pin		
3	CE	Chip Enable Pin ("H" Active)		
4	VDD	Input Pin		

* Tab is GND level. (They are connected to the reverse side of this IC.) The tab is better to be connected to the GND, but leaving it open is also acceptable.

RP114Q Pin Description (SC-88A)

Pin No	Symbol	Description
1	CE	Chip Enable Pin ("H" Active)
2	NC	No Connection
3	GND	Ground Pin
4	VOUT	Output Pin
5	VDD	Input Pin

No.EA-236-220901

RP114N Pin Description (SOT-23-5)

Pin No	Symbol	Description
1	VDD	Input Pin
2	GND	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	NC	No Connection
5	VOUT	Output Pin

No.EA-236-220901

ABSOLUTE MAXIMUM RATINGS

Symbol		Item			
Vin	Input Voltage		6.0	V	
Vce	Input Voltage (CE Pir)	6.0	V	
Vout	Output Voltage		-0.3 to VIN+0.3	V	
Іоит	Output Current	Output Current			
		DFN(PL)1010-4, JEDEC STD. 51	800		
PD	Power Dissipation ⁽¹⁾	DFN(PL)1010-4B, JEDEC STD. 51	800	mW	
ΓD		SC-88A, Our Evaluation Board	380	11100	
		SOT-23-5, JEDEC STD. 51	660		
Tj	Junction Temperature	-40 to 125	°C		
Tstg	Storage Temperature	-55 to 125	°C		

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating	Unit
Vin	Input Voltage	1.4 to 5.25 ⁽²⁾	V
Та	Operating Temperature Range	-40 to 85	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

⁽¹⁾ Refer to *POWER DISSIPATION* for detailed information.

⁽²⁾ If the input voltage exceeds the maximum value of 5.25 V for some reasons, the operational accumulated time becomes up to 500 hours at 5.5V.

No.EA-236-220901

ELECTRICAL CHARACTERISTICS

 $V_{IN} = V_{SET}^{(1)} + 1.0 V (V_{SET} > 1.5 V), V_{IN} = 2.5 V (V_{SET} \le 1.5 V), I_{OUT} = 1 mA, C_{IN} = C_{OUT} = 1.0 \mu F,$ unless otherwise noted. The specifications in are guaranteed by design engineering at $-40^{\circ}C \le Ta \le 85^{\circ}C$.

RP114xxxxB/D Electrical Characteristics(Ta=25°C)							a=25°C)
Symbol	ltem	Conditions			Тур.	Max.	Unit
		Ta = 25°C	V _{SET} > 2.0 V	×0.99		×1.01	V
N/	Output Malta as	$1a = 25^{\circ}C$	V _{SET} ≤ 2.0 V	-20		+20	mV
Vout	Output Voltage		V _{SET} > 2.0 V	×0.97		×1.03	V
		-40°C ≤ Ta ≤ 85°C	V _{SET} ≤ 2.0 V	-60		+60	mV
I _{OUT}	Output Current			300			mA
$\Delta V_{OUT} / \Delta I_{OUT}$	Load Regulation	1 mA ≤ I _{OUT} ≤ 300 m/	٩		15	40	mV
V _{DIF}	Dropout Voltage	Please refer to Pro	duct-specific Ele	ctrical Cł	naracter	istics atta	ached.
lss	Supply Current	Iout = 0 mA			50	75	μA
Istandby	Standby Current	V _{CE} = 0 V			0.1	1.0	μA
ΔV_{OUT}	Line Regulation	V_{SET} + 0.5 V \leq $V_{IN} \leq$ 5.25 V			0.02	0.10	%/V
$/\Delta V_{IN}$		(V _{IN} ≥ 1.4 V)			0.0-		, , , ,
		f=1kHz, Ripple 0.2 Vp-p,					
RR	Ripple Rejection	VIN=VSET +1V, IOUT =		75	dB		
	(When $V_{SET} \le 2.0 \text{ V}, V_{IN} = 3.0 \text{ V}$)						
$\Delta V_{OUT} / \Delta Ta$	Output Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 85°C			±80		ppm ∕°C
lsc	Short Current Limit	V _{OUT} = 0 V			60		mA
IPD	CE Pull-down Current				0.3	0.6	μA
VCEH	CE Input Voltage "H"			1.0			V
VCEL	CE Input Voltage "L"					0.4	V
en	Output Noise	BW = 10 Hz to 100 kHz, Iout = 30 mA			75		µVrms
RLOW	Low Output Nch. On Resistance (RP114xxxxD Only)	$V_{IN} = 4.0 V, V_{CE} = 0 V$			50		Ω

D/D Electrical Ch

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C) except for Output Noise, Ripple Rejection, and Output Voltage Temperature Coefficient.

⁽¹⁾ V_{SET}: Set Output Voltage

No.EA-236-220901

The specifications in _____ are guaranteed by design engineering at -40°C \leq Ta \leq 85°C.

Dropout Voltage by Set Output Voltage

(Ta=25°C)

Set Output Voltage	Dropout Voltage Vы⊧(V)					
Vset (V)	Condition	Тур.	Max.			
Vset=0.8		0.560	0.720			
Vset=0.9		0.510	0.650			
$1.0 \le V_{\text{SET}} < 1.2$		0.460	0.590			
$1.2 \le V_{\text{SET}} < 1.4$		0.390	0.500			
$1.4 \le V_{\text{SET}} < 1.7$	Іоυт= 300mA	0.350	0.440			
$1.7 \le V_{\text{SET}} < 2.1$		0.300	0.390			
$2.1 \le V_{\text{Set}} < 2.5$		0.260	0.340			
$2.5 \le V_{\text{SET}} < 3.0$		0.250	0.300			
$3.0 \leq V_{\text{SET}} \leq 3.6$		0.220	0.290			

No.EA-236-220901

Product-specific Electrical Characteristics

Product Name	νουτ	[V] (Ta = 2	5°C)	Vout [V]	(−40°C ≤ Ta	≤ 85°C)	VDI	= [V]
Product Name	Min.	Тур.	Max.	Min.	Тур.	Max.	Тур.	Max.
RP114x081x	0.780	0.800	0.820	0.740	0.800	0.860	0.560	0.720
RP114x091x	0.880	0.900	0.920	0.840	0.900	0.960	0.510	0.650
RP114x101x	0.980	1.000	1.020	0.940	1.000	1.060		
RP114x101x5	1.030	1.050	1.070	0.990	1.050	1.110	0.400	0.500
RP114x111x	1.080	1.100	1.120	1.040	1.100	1.160	0.460	0.590
RP114x111x5	1.130	1.150	1.170	1.090	1.150	1.210		
RP114x121x	1.180	1.200	1.220	1.140	1.200	1.260		
RP114x121x5	1.230	1.250	1.270	1.190	1.250	1.310	0.000	0.500
RP114x131x	1.280	1.300	1.320	1.240	1.300	1.360	0.390	0.500
RP114x131x5	1.330	1.350	1.370	1.290	1.350	1.410		
RP114x141x	1.380	1.400	1.420	1.340	1.400	1.460		
RP114x151x	1.480	1.500	1.520	1.440	1.500	1.560	0.350	0.440
RP114x161x	1.580	1.600	1.620	1.540	1.600	1.660		
RP114x171x	1.680	1.700	1.720	1.640	1.700	1.760		0.390
RP114x171x5	1.730	1.750	1.770	1.690	1.750	1.810	- 0.300	
RP114x181x	1.780	1.800	1.820	1.740	1.800	1.860		
RP114x181x5	1.830	1.850	1.870	1.790	1.850	1.910		
RP114x191x	1.880	1.900	1.920	1.840	1.900	1.960		
RP114x201x	1.980	2.000	2.020	1.940	2.000	2.060		
RP114x211x	2.079	2.100	2.121	2.037	2.100	2.163		
RP114x221x	2.178	2.200	2.222	2.134	2.200	2.266		0.040
RP114x231x	2.277	2.300	2.323	2.231	2.300	2.369	0.260	0.340
RP114x241x	2.376	2.400	2.424	2.328	2.400	2.472		
RP114x251x	2.475	2.500	2.525	2.425	2.500	2.575		
RP114x261x	2.574	2.600	2.626	2.522	2.600	2.678		
RP114x271x	2.673	2.700	2.727	2.619	2.700	2.781		
RP114x281x	2.772	2.800	2.828	2.716	2.800	2.884	0.250	0.300
RP114x281x5	2.822	2.850	2.879	2.765	2.850	2.936		
RP114x291x	2.871	2.900	2.929	2.813	2.900	2.987	-	
RP114x301x	2.970	3.000	3.030	2.910	3.000	3.090		
RP114x311x	3.069	3.100	3.131	3.007	3.100	3.193		
RP114x321x	3.168	3.200	3.232	3.104	3.200	3.296	0.220	
RP114x331x	3.267	3.300	3.333	3.201	3.300	3.399		0.00
RP114x341x	3.366	3.400	3.434	3.298	3.400	3.502		0.290
RP114x341x5	3.416	3.450	3.485	3.347	3.450	3.554		
RP114x351x	3.465	3.500	3.535	3.395	3.500	3.605		
RP114x361x	3.564	3.600	3.636	3.492	3.600	3.708	1	

No.EA-236-220901

TEST CIRCUITS

Figure 4. Test Circuit for Load Transient Response

No.EA-236-220901

TECHNICAL NOTES ON EXTERNAL COMPONENTS

When using these ICs, consider the following points:

Phase Compensation

In this IC, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with 1.0μ F or more and good ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for

phase compensation, the operation might be unstable. Because of this, test this IC with as same external components as ones to be used on the PCB.)

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as 1.0μ F or more between VDD and GND pins, and as close as possible to the pins.

Set external components, especially the output capacitor C2, as close as possible to the IC, and make wiring as short as possible.

C1 C1 C1 CE Control CE CO

Typical Application Circuit

No.EA-236-220901

ESR vs. Output Current

When using these ICs, consider the following points:

The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under 40µV (Avg.) are marked as the hatched area in the graph.

Measurement conditions

Frequency Band: 10Hz to 2MHz Temperature : -40° C to 85° C C1, C2 : 1.0μ F

RP114x25xx

No.EA-236-220901

TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

2) Output Voltage vs. Input Voltage (C1=1.0µF, C2=1.0µF, Ta=25°C)

No.EA-236-220901

3) Supply Current vs. Input Voltage (C1=1.0µF, C2=1.0µF, Ta=25°C)

No.EA-236-220901

4) Output Voltage vs. Temperature (C1=1.0µF, C2=1.0µF, IouT=1mA)

No.EA-236-220901

No.EA-236-220901

7) Dropout Voltage vs. Set Output Voltage (C1=1.0 μ F, C2=1.0 μ F, Ta=25°C)

No.EA-236-220901

9) Ripple Rejection vs. Input Voltage (C1=none, C2=1.0µF, Ripple=0.2Vp-p, Ta=25°C)

10) Ripple Rejection vs. Frequency (C1=none, C2=1.0µF, Ta=25°C)

No.EA-236-220901

11) Input Transient Response (IouT=30mA, tr=tf=5µs, Ta=25°C)

12) Load Transient Response (C1=1.0µF, C2=1.0µF, tr=tf=0.5µs, Ta=25°C)

No.EA-236-220901

No.EA-236-220901

13) Turn On Speed with CE pin (C1=1.0 μ F, C2=1.0 μ F, Ta=25°C)

14) Turn Off Speed with CE pin (B version) (C1=1.0µF, C2=1.0µF, Ta=25°C)

160

120

0

40

Time t (µs)

80

Nisshinbo Micro Devices Inc.

No.EA-236-220901

15) Turn Off Speed with CE pin (D version) (C1=1.0 μ F, C2=1.0 μ F, Ta=25°C)

POWER DISSIPATION

DFN(PL)1010-4

(Ta = 25°C, Tjmax = 125°C)

PD-DFN(PL)1010-4-(85125150)-JE-A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions 76.2 mm × 114.3 mm × 0.8 mm	
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	φ 0.2 mm × 11 pcs

Measurement Result

Item	Measurement Result
Power Dissipation	800 mW
Thermal Resistance (θ ja)	θja = 125°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 58°C/W

θja: Junction-to-Ambient Thermal Resistance

wjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

The above graph shows the power dissipation of the package at $Tjmax = 125^{\circ}C$ and $Tjmax = 150^{\circ}C$. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows:

Total Hours of Use	Total Years of Use (4 hours/day)	
13,000 hours	9 years	

PACKAGE DIMENSIONS

DFN(PL)1010-4

DM-DFN(PL)1010-4-JE-C

UNIT: mm

DFN(PL)1010-4 Package Dimensions

POWER DISSIPATION

DFN(PL)1010-4B

PD-DFN(PL)1010-4B-(85125150)-JE-A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

ltem	Measurement Conditions	
Environment	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)	
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm	
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50mm Square Outer Layer (Fourth Layer): Approx. 100% of 50mm Square	
Through-holes	φ 0.2 mm ×11 pcs	
Measurement Result	(Ta = 25°C, Tjmax = 125°C)	

Item	Measurement Result		
Power Dissipation	800 mW		
Thermal Resistance (θja)	θja = 125°C/W		
Thermal Characterization Parameter (wjt)	ψjt = 58°C/W		

θja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

The above graph shows the power dissipation of the package at Tjmax = 125° C and Tjmax = 150° C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows:

Total Hours of Use	Total Years of Use (4 hours/day)
13,000 hours	9 years

PACKAGE DIMENSIONS

DFN(PL)1010-4B

DM-DFN(PL)1010-4B-JE-B

^{*} The tab on the bottom of the package is a substrate potential (GND/V_{DD}) . It is recommended that this tab be connected to the ground plane/VDD pin on the board but it is possible to leave the tab floating.

PART MARKINGS

RP114K

MK-RP114K-JE-B

①②: Product Code … Refer to Part Marking List
③④: Lot Number … Alphanumeric Serial Number

RP114K [DFN(PL)1010-4B], DFN(PL)1010-4 Part Markings

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.

PART MARKINGS

RP114K

MK-RP114K-JE-B

RP114Kxx1B Part Marking List			
Product Name	12	Set Output Voltage	
RP114K081B	L0	0.8V	
RP114K091B	L1	0.9V	
RP114K101B	L2	1.0V	
RP114K111B	L3	1.1V	
RP114K121B	L 4	1.2V	
RP114K131B	L 5	1.3V	
RP114K141B	L6	1.4V	
RP114K151B	L7	1.5V	
RP114K161B	L 8	1.6V	
RP114K171B	L9	1.7V	
RP114K181B	M 0	1.8V	
RP114K191B	M 1	1.9V	
RP114K201B	M 2	2.0V	
RP114K211B	M 3	2.1V	
RP114K221B	M 4	2.2V	
RP114K231B	M 5	2.3V	
RP114K241B	M 6	2.4V	
RP114K251B	M 7	2.5V	
RP114K261B	M 8	2.6V	
RP114K271B	M 9	2.7V	
RP114K281B	N 0	2.8V	
RP114K291B	N 1	2.9V	
RP114K301B	N 2	3.0V	
RP114K311B	N 3	3.1V	
RP114K321B	N 4	3.2V	
RP114K331B	N 5	3.3V	
RP114K341B	N 6	3.4V	
RP114K351B	N 7	3.5V	
RP114K361B	N 8	3.6V	
RP114K121B5	N 9	1.25V	
RP114K181B5	P 0	1.85V	
RP114K281B5	P 1	2.85V	
RP114K341B5	P 2	3.45V	
RP114K101B5	P 3	1.05V	
RP114K171B5	P 4	1.75V	
RP114K111B5	P 5	1.15V	
RP114K131B5	P 6	1.35V	

RP114Kxx1D Part Marking List			
Product Name	12	Set Output Voltage	
RP114K081D	Q 0	0.8V	
RP114K091D	Q 1	0.9V	
RP114K101D	Q 2	1.0V	
RP114K111D	Q 3	1.1V	
RP114K121D	Q 4	1.2V	
RP114K131D	Q 5	1.3V	
RP114K141D	Q 6	1.4V	
RP114K151D	Q 7	1.5V	
RP114K161D	Q 8	1.6V	
RP114K171D	Q 9	1.7V	
RP114K181D	R 0	1.8V	
RP114K191D	R 1	1.9V	
RP114K201D	R 2	2.0V	
RP114K211D	R 3	2.1V	
RP114K221D	R 4	2.2V	
RP114K231D	R 5	2.3V	
RP114K241D	R 6	2.4V	
RP114K251D	R 7	2.5V	
RP114K261D	R 8	2.6V	
RP114K271D	R 9	2.7V	
RP114K281D	S 0	2.8V	
RP114K291D	S 1	2.9V	
RP114K301D	S 2	3.0V	
RP114K311D	S 3	3.1V	
RP114K321D	S 4	3.2V	
RP114K331D	S 5	3.3V	
RP114K341D	S 6	3.4V	
RP114K351D			
RP114K361D	S 8	3.6V	
RP114K121D5	S 9	1.25V	
RP114K181D5	Τ0	1.85V	
RP114K281D5	T 1	2.85V	
RP114K341D5	Τ2	3.45V	
RP114K101D5	Т 3	1.05V	
RP114K171D5	T 4	1.75V	
RP114K111D5	Τ5	1.15V	
RP114K131D5	Τ6	1.35V	

. . . .

POWER DISSIPATION

SC-88A

PD-SC-88A-(85125150)-JE-B

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

Item	Our Evaluation Board		
Environment	Mounting on Board (Wind Velocity = 0 m/s)		
Board Material	Glass Cloth Epoxy Plastic (Double-Sided Board)		
Board Dimensions	40 mm × 40 mm × 1.6 mm		
Copper Ratio	Top Side: Approx. 50%		
	Bottom Side: Approx. 50%		
Through-holes	φ 0.5 mm × 44 pcs		

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

Item	Our Evaluation Board
Power Dissipation	380 mW
Thermal Resistance (θja)	θja = 263°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 75°C/W

θja: Junction-to-Ambient Thermal Resistance

wjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

The above graph shows the power dissipation of the package at $Tjmax = 125^{\circ}C$ and $Tjmax = 150^{\circ}C$. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows:

Total Hours of Use	Total Years of Use (4 hours/day)	
13,000 hours	9 years	

 $\bigcirc 0.10S$

S

SC-88A

DM-SC-88A-JE-A

SC-88A Package Dimensions

0~0.1

Nisshinbo Micro Devices Inc.

i

PART MARKINGS

RP114Q

MK-RP114Q-JE-A

①②③④: Product Code … Refer to Part Marking List
⑤⑥: Lot Number … Alphanumeric Serial Number

RP114Q (SC-88A) Part Markings

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.

PART MARKINGS

RP114Q

MK-RP114Q-JE-A

RP114Qxx2B Part Marking List		RP114Qxx2D Part Marking List			
Product Name	0234	Set Output Voltage	Product Name	0234	Set Output Voltage
RP114Q082B	A G 0 8	0.8 V	RP114Q082D	AH08	0.8 V
RP114Q092B	A G 0 9	0.9 V	RP114Q092D	AH09	0.9 V
RP114Q102B	A G 1 0	1.0 V	RP114Q102D	AH10	1.0 V
RP114Q112B	A G 1 1	1.1 V	RP114Q112D	AH11	1.1 V
RP114Q122B	A G 1 2	1.2 V	RP114Q122D	AH12	1.2 V
RP114Q132B	A G 1 3	1.3 V	RP114Q132D	AH13	1.3 V
RP114Q142B	A G 1 4	1.4 V	RP114Q142D	AH14	1.4 V
RP114Q152B	A G 1 5	1.5 V	RP114Q152D	AH15	1.5 V
RP114Q162B	AG16	1.6 V	RP114Q162D	AH16	1.6 V
RP114Q172B	A G 1 7	1.7 V	RP114Q172D	AH17	1.7 V
RP114Q182B	A G 1 8	1.8 V	RP114Q182D	AH18	1.8 V
RP114Q192B	AG19	1.9 V	RP114Q192D	AH19	1.9 V
RP114Q202B	A G 2 0	2.0 V	RP114Q202D	A H 2 0	2.0 V
RP114Q212B	A G 2 1	2.1 V	RP114Q212D	A H 2 1	2.1 V
RP114Q222B	A G 2 2	2.2 V	RP114Q222D	A H 2 2	2.2 V
RP114Q232B	A G 2 3	2.3 V	RP114Q232D	A H 2 3	2.3 V
RP114Q242B	A G 2 4	2.4 V	RP114Q242D	A H 2 4	2.4 V
RP114Q252B	A G 2 5	2.5 V	RP114Q252D	A H 2 5	2.5 V
RP114Q262B	A G 2 6	2.6 V	RP114Q262D	A H 2 6	2.6 V
RP114Q272B	A G 2 7	2.7 V	RP114Q272D	AH27	2.7 V
RP114Q282B	A G 2 8	2.8 V	RP114Q282D	A H 2 8	2.8 V
RP114Q292B	A G 2 9	2.9 V	RP114Q292D	A H 2 9	2.9 V
RP114Q302B	A G 3 0	3.0 V	RP114Q302D	AH30	3.0 V
RP114Q312B	A G 3 1	3.1 V	RP114Q312D	AH31	3.1 V
RP114Q322B	A G 3 2	3.2 V	RP114Q322D	AH32	3.2 V
RP114Q332B	A G 3 3	3.3 V	RP114Q332D	A H 3 3	3.3 V
RP114Q342B	A G 3 4	3.4 V	RP114Q342D	AH34	3.4 V
RP114Q352B	A G 3 5	3.5 V	RP114Q352D	AH35	3.5 V
RP114Q362B	A G 3 6	3.6 V	RP114Q362D	AH36	3.6 V
RP114Q122B5	A G 3 7	1.25 V	RP114Q122D5	AH37	1.25 V
RP114Q182B5	A G 3 8	1.85 V	RP114Q182D5	AH38	1.85 V
RP114Q282B5	A G 3 9	2.85 V	RP114Q282D5	AH39	2.85 V
RP114Q342B5	A G 4 0	3.45 V	RP114Q342D5	AH40	3.45 V
RP114Q102B5	A G 4 1	1.05 V	RP114Q102D5	AH41	1.05 V

RP114Qxx2B Part Marking List

POWER DISSIPATION

SOT-23-5

PD-SOT-23-5-(85/125/150)-JE-A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

ltem	Measurement Conditions		
Environment	Mounting on Board (Wind Velocity = 0 m/s)		
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)		
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm		
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square		
Through-holes	φ 0.3 mm × 7 pcs		

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

Item	Measurement Result
Power Dissipation	660 mW
Thermal Resistance (θja)	θja = 150°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 51°C/W

θja: Junction-to-Ambient Thermal Resistance

wjt: Junction-to-Top Thermal Characterization Parameter

76.2

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

The above graph shows the power dissipation of the package at $Tjmax = 125^{\circ}C$ and $Tjmax = 150^{\circ}C$. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows:

Total Hours of Use	Total Years of Use (4 hours/day)	
13,000 hours	9 years	

SOT-23-5

i

DM-SOT-23-5-JE-B

PART MARKINGS

RP114N

MK-RP114N-JE-A

①②③: Product Code … Refer to *Part Marking List*④⑤: Lot Number … Alphanumeric Serial Number

RP114N (SOT-23-5) Part Markings

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.

PART MARKINGS

<u>RP114N</u>

MK-RP114N-JE-A

RP114Nxx1B Part Marking List		RP114Nxx1D Part Marking List			
Product Name	023	Set Output Voltage	Product Name	003	Set Output Voltage
RP114N081B	QAA	0.8 V	RP114N081D	QBA	0.8 V
RP114N091B	QAB	0.9 V	RP114N091D	QBB	0.9 V
RP114N101B	QAC	1.0 V	RP114N101D	QBC	1.0 V
RP114N111B	QAD	1.1 V	RP114N111D	QBD	1.1 V
RP114N121B	QAE	1.2 V	RP114N121D	QBE	1.2 V
RP114N131B	QAF	1.3 V	RP114N131D	QBF	1.3 V
RP114N141B	QAG	1.4 V	RP114N141D	QBG	1.4 V
RP114N151B	QAH	1.5 V	RP114N151D	QBH	1.5 V
RP114N161B	QAJ	1.6 V	RP114N161D	QBJ	1.6 V
RP114N171B	QAK	1.7 V	RP114N171D	QBK	1.7 V
RP114N181B	QAL	1.8 V	RP114N181D	QBL	1.8 V
RP114N191B	QAM	1.9 V	RP114N191D	QBM	1.9 V
RP114N201B	QAN	2.0 V	RP114N201D	QBN	2.0 V
RP114N211B	QAP	2.1 V	RP114N211D	QBP	2.1 V
RP114N221B	QAQ	2.2 V	RP114N221D	QBQ	2.2 V
RP114N231B	QAR	2.3 V	RP114N231D	QBR	2.3 V
RP114N241B	QAS	2.4 V	RP114N241D	QBS	2.4 V
RP114N251B	QAT	2.5 V	RP114N251D	QBT	2.5 V
RP114N261B	QAU	2.6 V	RP114N261D	QBU	2.6 V
RP114N271B	QAV	2.7 V	RP114N271D	QBV	2.7 V
RP114N281B	QAW	2.8 V	RP114N281D	QBW	2.8 V
RP114N291B	QAX	2.9 V	RP114N291D	QBX	2.9 V
RP114N301B	QAY	3.0 V	RP114N301D	QBY	3.0 V
RP114N311B	QAZ	3.1 V	RP114N311D	QBZ	3.1 V
RP114N321B	RAA	3.2 V	RP114N321D	RBA	3.2 V
RP114N331B	RAB	3.3 V	RP114N331D	RBB	3.3 V
RP114N341B	RAC	3.4 V	RP114N341D	RBC	3.4 V
RP114N351B	RAD	3.5 V	RP114N351D	RBD	3.5 V
RP114N361B	RAE	3.6 V	RP114N361D	RBE	3.6 V
RP114N121B5	RAF	1.25 V	RP114N121D5	RBF	1.25 V
RP114N181B5	RAG	1.85 V	RP114N181D5	RBG	1.85 V
RP114N281B5	RAH	2.85 V	RP114N281D5	RBH	2.85 V
RP114N341B5	RAJ	3.45 V	RP114N341D5	RBJ	3.45 V
RP114N101B5	RAK	1.05 V	RP114N101D5	RBK	1.05 V

RP114Nxx1B Part Marking List

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - Life Maintenance Medical Equipment
 - Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period

In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.

8-2. Quality Warranty Remedies

When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.

- Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
- 8-3. Remedies after Quality Warranty Period

With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.

- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website https://www.nisshinbo-microdevices.co.jp/en/ Purchase information https://www.nisshinbo-microdevices.co.jp/en/buy/