

NTE1376 Integrated Circuit Audio Power Amplifier, 22W

Description:

The NTE1376 is a monolithic integrated circuit in a 5–Lead TO220 type package intended for use as an audio class AB amplifier. Typically, it provides 22W output power (THD = 0.5%) at $V_S = 32V/4\Omega$. This device provides high output current and has very low harmonic and cross–over distortion. Further, the NTE1376 incorporates a short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A thermal shut–down system is also included.

Absolute Maximum Ratings:

Supply Voltage, V _S	±20V
Input Voltage, V _I	V _S
Differential Input Voltage, V ₁	±15V
Output Peak Current (Internally Limited), I _O	4A
Power Dissipation ($T_c = +75^{\circ}C$), P_{tot}	
Operating Junction Temperature Range, T _J	–40° to +150°C
Storage Temperature Range, T _{stg}	–40° to +150°C
Thermal Resistance, Junction-to-Case, R _{thJC}	3°C/W
Typical Thermal Shut–Down Junction Temperature (V _S = \pm 16V, T _A = +25°C), T _{sd} .	+145°C

<u>Electrical Characteristics</u>: ($V_S = \pm 16V$, $T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Supply Voltage	V _S		±2.5	-	±20	V
Quiescent Drain Current	۱ _d	$V_{S} = \pm 4.5 V$	-	—	30	mA
		$V_{S} = \pm 20V$	-	45	100	mA
Input Bias Current	I _b	$V_{S} = \pm 20V$	-	0.3	1.0	μΑ
Input Offset Voltage	V _{OS}	$V_{S} = \pm 20V$	-	±2	±20	mV
Input Offset Current	I _{OS}		-	-	±200	nA
Output Power	Po	THD = 0.5%, T _C = +60°C, f = 1kHz, R _L = 4 Ω	20	22	-	W
		THD = 0.5%, T _C = +60°C, f = 1kHz, R _L = 8 Ω	-	12	_	W
		THD = 0.5%, T _C = +60°C, f = 1.5kHz, R _L = 4 Ω	15	18	_	W

<u>Electrical Characteristics (Cont'd)</u>: (V_S = \pm 16V, T_A = +25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Bandwidth	BW	$P_O = 1W, R_L = 4\Omega$	-	100	-	kHz
Voltage Gain	G _V	f = 1kHz, Open Loop	-	80	-	dB
		f = 1kHz, Closed Loop	29.5	30.0	30.5	dB
Total Harmonic Distortion	THD	$P_{O} = 0.1$ to 10W, $R_{L} = 4\Omega$, f = 40 to 15000Hz	-	0.08	-	%
		$P_{O} = 0.1$ to 10W, $R_{L} = 4\Omega$, f = 1kHz	-	0.03	-	%
Input Noise Voltage	e _N	B = 22Hz to 22kHz	-	3	10	μV
Input Noise Current	I _N	B = 22Hz to 22kHz	-	80	200	pА
Input Resistance (Pin1)	RI		0.5	5.0	-	MΩ
Supply Voltage Rejection	SVR	$ \begin{array}{l} R_{L}=4\Omega, \ R_{g}=22k\Omega, \ G_{V}=30dB, \ f=100Hz, \\ V_{ripple}=0.5V_{RMS} \end{array} $	40	50	_	dB
Efficiency	η	f = 1kHz, P_0 = 12W, R_L = 8Ω	-	66	-	%
		$f = 1 \text{kHz}, P_0 = 22 \text{W}, R_L = 4 \Omega$	-	63	-	%

