PHOTONIC Silicon Photodiode, U.V. Enhanced Photoconductive DETECTORS INC. #### **FEATURES** - High speed - U.V. enhanced - Low capacitance - U.V. window #### DESCRIPTION The **PDU-C104** is a silicon, PIN planar diffused, U.V. enhanced photodiode. Ideal for high speed photoconductive applications. Packaged in a hermetic TO-46 metal can with a U.V. transmitting window. ## **APPLICATIONS** - Spectrometers - Fluorescent analysers - U.V. meters - Colorimeters ## ABSOLUTE MAXIMUM RATING (TA=25°C unless otherwise noted) | SYMBOL | PARAMETER | MIN | MAX | UNITS | |------------------|-----------------------------|-----|------|-------| | V _{BR} | Reverse Voltage | | 30 | V | | T _{STG} | Storage Temperature | -55 | +150 | ⊙C | | T _o | Operating Temperature Range | -40 | +125 | ⊙C | | T _s | Soldering Temperature* | | +240 | ∘C | | IL | Light Current | | 500 | mA | ^{*1/16} inch from case for 3 secs max ## **SPECTRALRESPONSE** WAVELENGTH(nm) # ELECTRO-OPTICAL CHARACTERISTICS (TA=25°C unless otherwise noted) | SYMBOL | CHARACTERISTIC | TEST CONDITIONS | MIN | TYP | MAX | UNITS | |-------------------|----------------------------|---|-----|-----------------------|------|-------------------| | l _{sc} | Short Circuit Current | H = 100 fc, 2850 K | 40 | 45 | | μΑ | | I _D | Dark Current | $H = 0, V_R = 5 V$ | | .15 | 1.0 | nA | | R _{SH} | Shunt Resistance | $H = 0, V_R = 10 \text{ mV}$ | .25 | 1.0 | | GΩ | | TCR _{SH} | RSH Temp. Coefficient | $H = 0, V_R = 10 \text{ mV}$ | | -8 | | %/℃ | | C _J | Junction Capacitance | $H = 0, V_R = 5 V^{**}$ | | 25 | | рF | | λrange | Spectral Application Range | Spot Scan | 190 | | 1100 | nm | | R | Responsivity | $V_{R} = 0 \text{ V}, \lambda = 254 \text{ nm}$ | .12 | .18 | | A/W | | V _{BR} | Breakdown Voltage | I = 10 μA | 15 | 25 | | V | | NEP | Noise Equivalent Power | V _R = 10 mV @ Peak | | 1.0x10 ⁻¹⁴ | | W/√ _{Hz} | | tr | Response Time | $RL = 1 K\Omega V_R = 5 V$ | | 48 | | nS |