

Pmod COLOR Reference Manual

The Digilent Pmod COLOR (Revision A) is a color sensor module with the ability to sense red, green, blue and clear light. The onboard AMS TCS3472 integrates an IR blocking filter to accurately determine the color of objects as well as sense ambient light under varying lighting conditions and through attenuating materials.

Features

- Red, green, blue, and clear light sensing
- IR-blocking filter
- White LED for reflective measurements
- Suitable for use behind darkened glass
- Small PCB size for flexible designs 0.8" × 1.25" (2.0 cm × 3.2 cm)
- 6-pin Pmod connector with I²C interface
- Pass-through Pmod host port for daisy chaining
- Follows Digilent Pmod Interface Specification Type 6
- Library and example code available on the Resource Center

Specifications

Parameter	Min	Typical	Max	Units	
Power Supply Voltage	2.7	3	3.6	V	
Parameter	Channel	Min	Max	Units	
	Red Channel ¹	0%	15%	counts/µW/cm ²	
Responsivity to blue light (λ = 465 nm)	Green Channel ¹	10%	42%	counts/µW/cm ²	
Responsivity to blue light ($x = 400$ him)	Blue Channel ¹	65%	88%	counts/µW/cm ²	
	Clear Channel	11.0	16.6	counts/µW/cm ²	
	Red Channel ¹	4%	25%	counts/µW/cm²	
Responsivity to green light (λ = 525 nm)	Green Channel ¹	60%	85%	counts/µW/cm²	
	Blue Channel ¹	10%	45%	counts/µW/cm ²	
	Clear Channel	13.2	20.0	counts/µW/cm ²	
	Red Channel ¹	80%	110%	counts/µW/cm ²	
Responsivity to red light (λ = 615 nm)	Green Channel1	0%	14%	counts/µW/cm ²	
Responsivity to red light (A = 015 hill)	Blue Channel ¹	5%	24%	counts/µW/cm ²	
	Clear Channel	15.6	23.4	counts/µW/cm ²	
Parameter	Value			Units	
Output Resolution	16			bits	

¹ - Percent values are with respect to the counts measured by the clear (non-color filtered) channel

Pinout Table Diagram

Header J1		Header J2			Jumper JP1			
Pin	Signal	Description	Pin	Signal	Description	Pin	Status	Description
1	IO1/~INT	I/O pin 1 or active low interrupt	1	IO1/~INT	I/O pin 1 or active low interrupt	SCL	Loaded/ Unloaded	2.2 kΩ Pullup to Vcc/No Pullup to Vcc
2	IO2/LED_EN	I/O pin 2 or LED enable	2	IO2/LED_EN	I/O pin 2 or LED enable	Jumper	JP2	
3	SCL	Serial Clock	3	SCL	Serial Clock	SDA	Loaded/ Unloaded	2.2 kΩ Pullup to Vcc/No Pullup to Vcc
4	SDA	Serial Data	4	SDA	Serial Data	Jumper	JP3	
5		Power Supply Ground		GND	Power Supply Ground	~INT	Loaded/ Unloaded	Enable/Disable the active low interrupt
6	VCC	Power Supply (3.3V)	6	VCC	Power Supply (3.3V)	Jumper	JP4	
	·	<u> </u>	I	·	·	LED_EN	Loaded/ Unloaded	Enable/Disable the LED enable pin

Physical Dimensions

The pins on the pin header are spaced 100 mil apart. The PCB is 1.34 inches long on the sides parallel to the pins on the pin header and 0.8 inches long on the sides perpendicular to the pin header.

Functional Description

The Pmod Color utilizes the TCS3472 to detect color in the near vicinity. While communicating with the host board via the I²C protocol using an I²C address of 0x29 users can measure color. A user controlled white LED is also provided to help illuminate the color of interest; the LED is very bright so it is recommended that users do not stare at the light.

Serial Communication

The Pmod COLOR communicates with the host board via the I²C protocol. By first sending the 7-bit I²C device address of 0101001 (0x29), users may receive the color data from the TCS3472. Each of the four ADC channels (red, green, blue, and clear) sends it's conversion from the ADC to the host buffer simultaneously.

The TCS3472 can set the gain and integration time for each round of data collection. Integration time provides more time for the color sensor to collect more data, providing accurate data and helping to prevent the data from disproportionately capturing any overexposure that may occur. Each set of the 16-bit data is organized in a low-byte, high-byte arrangement.

Register Details

Data Registers

Each of the three colors (RGB) and the clear color byte has two registers to store the high and low data bytes for each measurement. The data registers are arranged in a low byte, high byte arrangement.

Data Registers addresses 0x14 to 0x1B				
Address	Register Name			
0x14	Clear Data low byte			
0x15	Clear Data low byte			
0x16	Red Data low byte			
0x17	Red Data low byte			
0x18	Green Data low byte			
0x19	Green Data low byte			
0x1A	Blue Data low byte			
0x1B	Blue Data low byte			

Command Register

The Command register controls the functionality of the internal address pointer and clears interrupts.

Bit Name	Bit Number	Bit Description	Bit Values	Functional Description
CMD	7	Command	0 ¹	Select the command register; must be set high
TYPE	6-5	Туре	00¹	Selects the type of data transfer ²
ADDR/SF	4-()	Address/Special Field	00000¹	Register address field and special function field ³

¹ - This is the value on power-up and reset ² - See the Transaction Table below ³ - See the Address Field and Special Function Table below

Transaction Table			
Bit Values	Transaction Type		
00	Repeated bytes at the same register		
01	Auto-increment to the next register		
10	Reserved - Do not write		
11	Special function ³		

³ - See the Address Field and Special Function Table below

 Address Field and Special Function Table

 Address Field and Special Function Field

 Bit Values

 Read Value

 00110
 Clears any pending interrupts and self clears

 Other
 Reserved - Do not write

Control Register (0x0F)

The Control Register (0x0F) sets the gain factor applied to the ADC color data.

Control Register				
Bit Name	Bit Number	Bit Description	Bit Values	Functional Description
Reserved	7-2	Reserved	0000001	Reserved - Write as 0
AGAIN	1-0	Analog gain	00 ¹	RGBC Gain Control ²

¹ - This is the value on power-up and reset ² - See the Gain Value Table below

RGBC Gain Value Table RGBC Gain Value Table				
KGBC Ga	ain value l'able			
Bit ValueRGBC Gain Value				
00	1x gain			
01	4x gain			
10	16x gain			
11	60x gain			

Status Register (0x13)

The Status register (0x13) is a read-only register that provides the state of the channel interrupt and if the ADCs have completed a data collection.

Status Re	egister			
	Bit Number	Bit Description	Bit Values	Functional Description
Reserved	7-5	Reserved	000¹	Reserved
AINT	4	Analog Data Interrupt	0 ¹	RGBC clear channel interrupt
Reserved	3-1	Reserved	000¹	Reserved
AVALID	0	Analog Data Valid	0 ¹	RGBC valid bit when the channels have completed an integration cycle

¹ - This is the value on power-up and reset

Quick Start

Here is the series of commands to acquire a set of data from the Pmod COLOR via pseudo I²C code.

- 1. Power on the Pmod COLOR.
- 2. Provide a START condition and call the device ID with a write bit

I2CBegin(0x52); //device ID 0x29 with a write (0) bit

- 3. Wait to receive an ACK from the Pmod COLOR.
- 4. Provide a command to maintain the pointer address OR'd with the Enable register (0x00)

I2CWrite(0xA0); //Maintain the pointer address at the Enable register

- 5. Wait to receive an ACK from the Pmod COLOR.
- 6. Send the Enable Address and enable the oscillators.

I2CWrite(0x01); //0x01 enables the oscillators for the timers and ADC channels

- 7. Delay at least 2.4 mS before starting a data collection initiation.
- 8. Send the Enable Address and enable the ADCs for all 4 channels.

I2CWrite(0x02); //0x02 enables the ADC channels

- 9. Wait to receive an ACK from the Pmod COLOR and then send a STOP condition.
- 10. Delay 2.4 ms for the ADCs preparing themselves for data measurement and at least 2.4 ms by default for the integration time during the data collection process.
- 11. Send a START condition and call the device ID with a write bit

I2CBegin(0x52); //device ID 0x29 with a write (0) bit

- 12. Wait to receive an ACK from the Pmod COLOR.
- 13. Provide a command to auto-increment the address pointer OR'd with the first data register (0x14)

I2CWrite(0xB4); //Auto-increment the pointer address starting at the Clear Dat a Low Byte register

14. Wait to receive an ACK from the Pmod COLOR

15. Provide a RESTART condition and call the device ID with a read bit

```
I2CBegin(0x53); //device ID 0x29 with a read (1) bit
```

- 16. Wait to receive an ACK from the Pmod COLOR.
- 17. Collect all 8 data bytes corresponding to the low and high data byte registers of the clear, red, green, and blue data, respectively, waiting to receive an ACK from the Pmod Color between each byte.

I2CReadMultiple(8); //read in the 8 data registers taking advantage of the aut
o-incrementing pointer

18. Send a STOP condition.

Applications Information

The Pmod COLOR is ideal for fun applications that perform different tasks based on the color of an object. This is perfect for sorting different objects or controlling a motor based on the detected color temperature.

Data Conversion

The AMS TCS3472 module has four different ADC channels to detect red, green, blue, and clear ambient light data. Colorimeters of this nature do not have perfect sensing capability so some of the color sensors, notably green and blue, do not measure the full data range of the data

Timing Diagrams

An example timing diagram for reading and writing to the Pmod COLOR taken from the AMS datasheet is provided below:

When using an external power supply to run the Pmod, be sure to stay within the parameters provided in Specifications.

Additional Information

The schematics of the Pmod COLOR are available here. Additional information about the color sensor including communication modes and specific timings of the chip can be found by downloading its datasheet from the AMS website here here.

Example code demonstrating how to get information from the Pmod COLOR can be found on its Resource Center here.

If you have any questions or comments about the Pmod COLOR, feel free to post them under the appropriate section ("Add-on Boards") of the Digilent Forum.