LE UW U1A2 01

OSRAM OSTAR® Headlamp Pro

OSRAM OSTAR Headlamp is designed for applications where high brightness is required. Due to a seamless white colour impression at a maximum brightness level and its scalable brightness.

Applications

- Headlamps, LED & Laser & Night Vision

Features:

- Package: compact lightsource in multi chip on board technology
- Chip technology: UX:3
- Typ. Radiation: 120° (Lambertian emitter)
- Color: Cx = 0.322, Cy = 0.334 acc. to CIE 1931 (● ultra white)
- Corrosion Robustness Class: 3B
- Qualifications: The product qualification test plan is based on the guidelines of AEC-Q101-REV-C,
 Stress Test Qualification for Automotive Grade Discrete Semiconductors.
- ESD: 8 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)

Ordering Information

Туре	Luminous Flux $^{1)}$ I _F = 1000 mA Φ_{V}	Ordering Code
LE UW U1A2 01-6P5Q-ebvF68ebzB68	500 800 lm	Q65111A7564

Maximum Ratings			
Parameter	Symbol		Values
Operating Temperature	T_{op}	min. max.	-40 °C 135 °C
Storage Temperature	T _{stg}	min. max.	-40 °C 135 °C
Junction Temperature	T _j	max.	150 °C
Junction temperature for short time applications*	T _j	max.	175 °C
Forward Current T _B = 25 °C	I _F	min. max.	50 mA 1500 mA
Forward Current pulsed (acc. pulse derating on page 10)	I _{F pulse}		2000 mA
ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)	$V_{\rm ESD}$		8 kV
Reverse current 2)	I _R	max.	200 mA

 $^{^*}$ The LED chip exhibits excellent performance but slight package discoloration occurs at highest temperatures. Exemplary median lifetime for Tj = 175°C is 100h.

Characteristics

 I_F = 1000 mA; T_B = 25 °C

Parameter	Symbol	Values	
Chromaticity Coordinate 3)	Сх	typ.	0.322
	Су	typ.	0.334
Viewing angle at 50% I _v	2φ	typ.	120 °
Radiating surface	A _{color}	typ.	2.1 mm²
Forward Voltage 4)	V_{F}	min.	6.0 V
$I_{\rm F} = 1000 \text{ mA}$		typ.	6.3 V
		max.	7.2 V
Reverse voltage (ESD device)	$V_{R ESD}$	min.	45 V
Reverse voltage ²⁾	V_R	max.	1.2 V
I _R = 20 mA	TX		
Real thermal resistance junction/board 5)	R _{thJB real}	typ.	2.6 K / W
	tilob real	max.	3.1 K / W
Electrical thermal resistance junction/board ⁵⁾	R _{thJB elec.}	typ.	1.8 K / W
with efficiency η_e = 30 %	tiob elec.	max.	2.2 K / W

8P

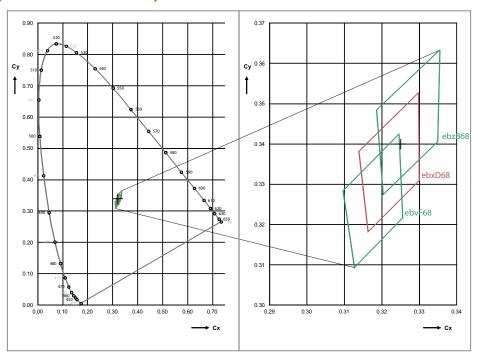
5Q

630 lm

710 lm

Brightness Groups					
Group	Luminous Flux ¹⁾ $I_F = 1000 \text{ mA}$ min. Φ_V	Luminous Flux ¹⁾ $I_F = 1000 \text{ mA}$ max. Φ_V	Luminous Intensity $^{6)}$ I _F = 1000 mA typ. I _v		
6P	500 lm	560 lm	180 cd		
7P	560 lm	630 lm	200 cd		

710 lm


800 lm

220 cd

250 cd

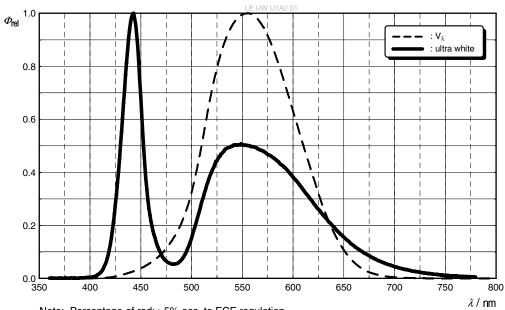
Chromaticity Coordinate Groups 3)

Chromaticity Coordinate Groups 3)

Group	Сх	Су	Group	Cx	Су	Group	Cx	Су
ebvF68	0.3246	0.3424	ebxD68	0.3298	0.3526	ebzB68	0.3355	0.3633
	0.3255	0.3216		0.3300	0.3308		0.3349	0.3404
	0.3127	0.3093		0.3163	0.3181		0.3203	0.3274
	0.3096	0.3282		0.3138	0.3381		0.3186	0.3484

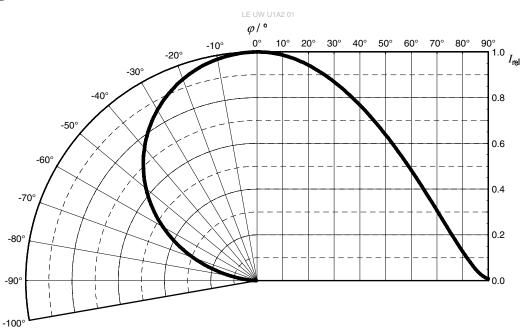
Group Name on Label

Example: 5Q-ebvF68

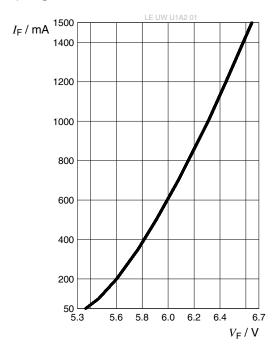

Brightness Color Chromaticity

5Q ebvF68

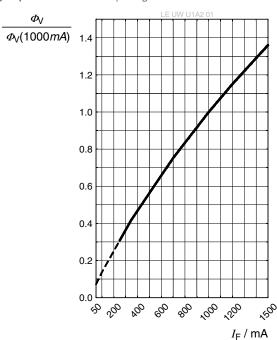
Relative Spectral Emission 6)


 Φ_{rel} = f (λ); I_F = 1000 mA; T_B = 25 °C

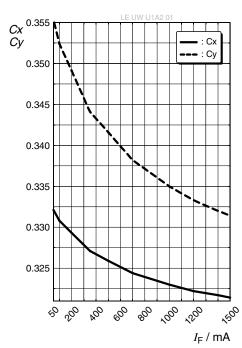
Note: Percentage of red: >5% acc. to ECE regulation Percentage of UV: <10⁻⁵W/lm acc. to ECE regulation


Radiation Characteristics 6)

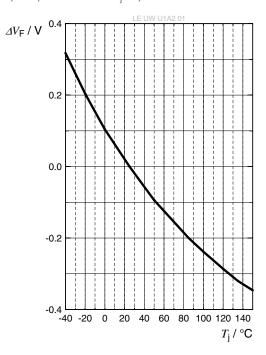
 $I_{rel} = f(\phi); T_B = 25 °C$


Forward current 6), 7)

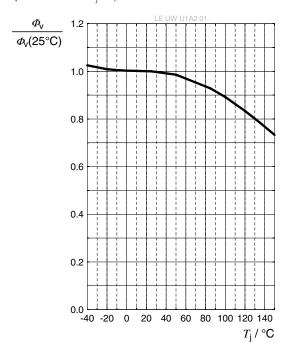
$$I_F = f(V_F); T_B = 25 \, ^{\circ}C$$


Relative Luminous Flux 6), 7)

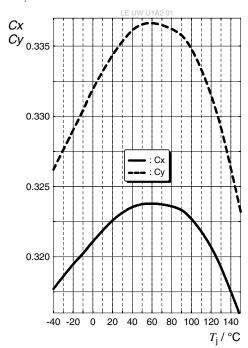
$$\Phi_{V}\Phi_{V}(1000 \text{ mA}) = f(I_{F}); T_{B} = 25 \text{ }^{\circ}\text{C}$$


Chromaticity Coordinate Shift 6)

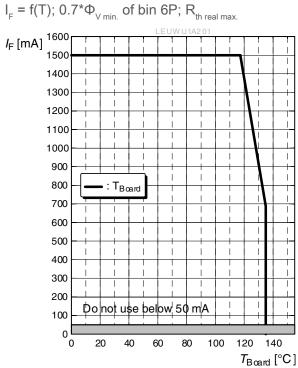
Cx, Cy =
$$f(I_F)$$
; $T_B = 25 \, ^{\circ}C$


Forward Voltage 6)

$$\Delta V_{_F} = V_{_F} - V_{_F} (25~^{\circ}C) = f(T_{_j}); \ I_{_F} = 1000~mA$$

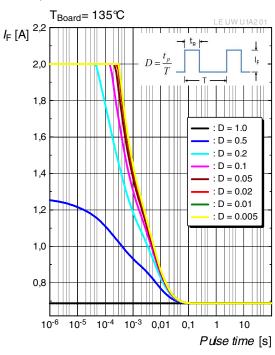

Relative Luminous Flux 6)

$$\Phi_{v}/\Phi_{v}(25 \text{ °C}) = f(T_{i}); I_{F} = 1000 \text{ mA}$$

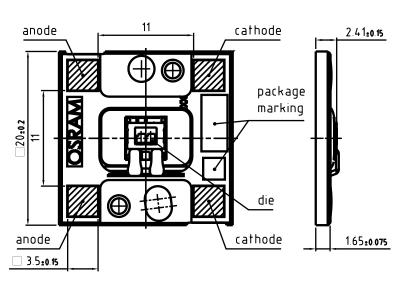

Chromaticity Coordinate Shift 6)

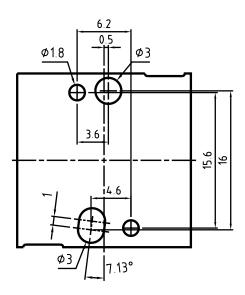
$$Cx, Cy = f(T_i); I_F = 1000 \text{ mA}$$

Max. Permissible Forward Current


Permissible Pulse Handling Capability

 $I_F = f(t_p)$; D: Duty cycle




Permissible Pulse Handling Capability

 $I_F = f(t_p)$; D: Duty cycle

Dimensional Drawing 8)

general tolerance ± 0.1 lead finish Sn

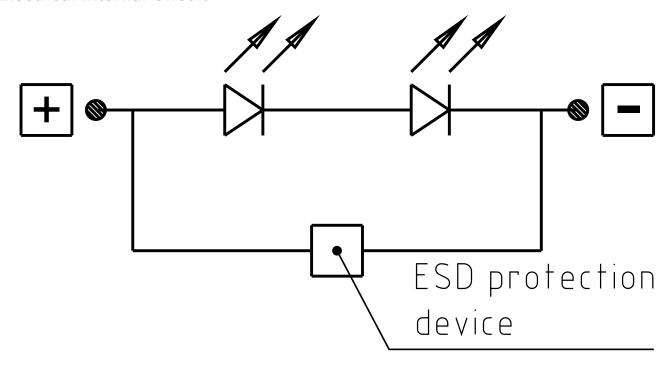
C63062-A4211-A1-03

Further Information:

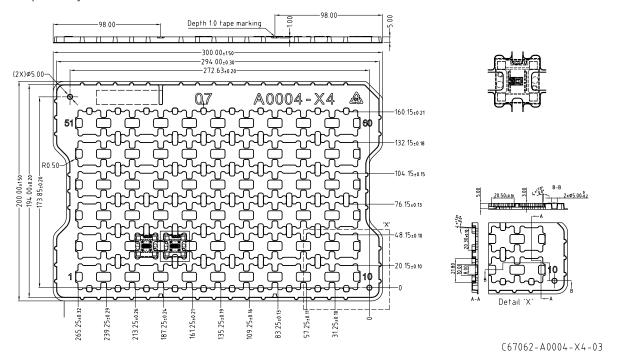
Approximate Weight: 1,800.0 mg

Corrosion test: Class: 3B

Test condition: 40°C / 90 % RH / 15 ppm H₂S / 14 days (stricter than IEC


60068-2-43)

ESD advice: The device is protected by ESD device which is connected in parallel to the

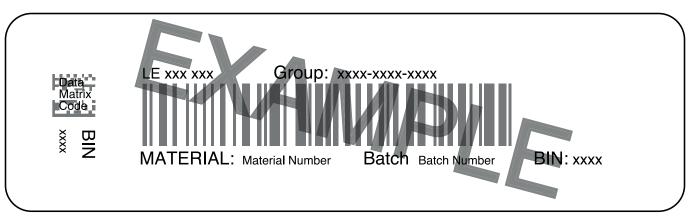

Chip.

Notes: Package not suitable for any kind of wet cleaning or ultrasonic cleaning.

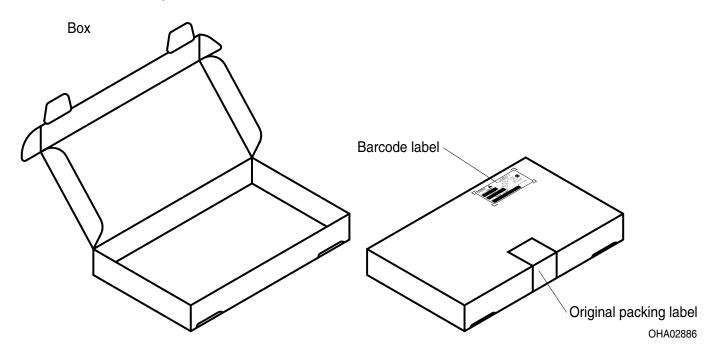
Electrical Internal Circuit



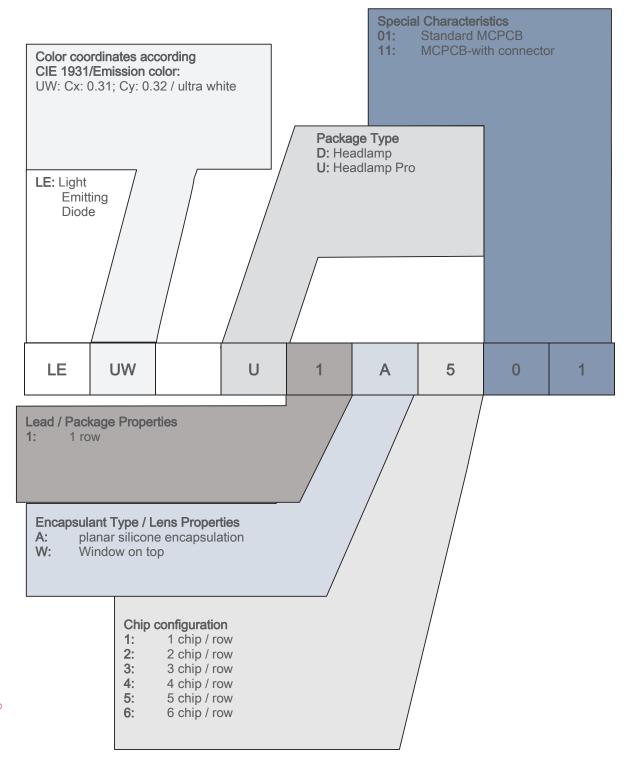
Tray 8)
60 pieces per Tray



Barcode-Product-Label (BPL)


Barcode-Tray-Label (BTL)

OHA02684_1


Schematic Transportation Box 8)

Dimensions of Transportation Box

Width	Length	Height	
333 ± 5 mm	218 ±5 mm	28 ± 5 mm	
337 ± 5 mm	218 ±5 mm	63 ± 5 mm	

Type Designation System

Notes

The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this data sheet fall into the class **moderate risk (exposure time 0.25 s)**. Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.

Subcomponents of this device contain, in addition to other substances, metal filled materials including silver. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers minimize device exposure to aggressive substances during storage, production, and use. Devices that showed visible discoloration when tested using the described tests above did show no performance deviations within failure limits during the stated test duration. Respective failure limits are described in the IEC60810.

For further application related information please visit www.osram-os.com/appnotes

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version on the OSRAM OS website.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product and functional safety devices/applications or medical devices/applications

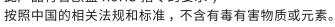
OSRAM OS components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

OSRAM OS products are not qualified at module and system level for such application.

In case buyer – or customer supplied by buyer – considers using OSRAM OS components in product safety devices/applications or medical devices/applications, buyer and/or customer has to inform the local sales partner of OSRAM OS immediately and OSRAM OS and buyer and /or customer will analyze and coordinate the customer-specific request between OSRAM OS and buyer and/or customer.

Glossary

- Brightness: Brightness values are measured during a current pulse of typically 25 ms, with an internal reproducibility of ±8 % and an expanded uncertainty of ±11 % (acc. to GUM with a coverage factor of k = 3).
- Reverse Operation: This product is intended to be operated applying a forward current within the specified range. Applying any continuous reverse bias or forward bias below the voltage range of light emission shall be avoided because it may cause migration which can change the electro-optical characteristics or damage the LED.
- Chromaticity coordinate groups: Chromaticity coordinates are measured during a current pulse of typically 25 ms, with an internal reproducibility of ± 0.005 and an expanded uncertainty of ± 0.01 (acc. to GUM with a coverage factor of k = 3).
- Forward Voltage: The forward voltage is measured during a current pulse of typically 8 ms, with an internal reproducibility of ±0.05 V and an expanded uncertainty of ±0.1 V (acc. to GUM with a coverage factor of k = 3).
- 5) **Thermal Resistance:** Rth max is based on statistic values (6σ).
- Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- Characteristic curve: In the range where the line of the graph is broken, you must expect higher differences between single devices within one packing unit.
- Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.



LE UW U1A2 01

Revision	Revision History			
Version	Date	Change		
1.6	2020-06-03	Features Dimensions of Transportation Box Type Designation System Disclaimer		
1.7	2021-02-19	Chromaticity Coordinate Groups Notes Glossary Not for new design		

Published by OSRAM Opto Semiconductors GmbH EU RoHS and China RoHS compliant product Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

此产品符合欧盟 RoHS 指令的要求;

