sparkfun

START SOMETHING

Quwiic Distance Sensor (VL53L1X, VL53L4CD) Hookup Guide

Introduction

Note: This tutorial was originally written for the Qwiic Distance Sensor - VL53L1X. The Qwiic Distance
Sensor - VL53L4CD is a cousin of the VL53L1X. Overall, the sensor functions the same except for a few
differences in the specifications. We have included the VL53L4CD in this tutorial. If you are looking for a copy
of the original tutorial, we recommend looking at the Qwiic Distance Sensor VL53L1X Hookup Guide.

The VL53L1X and VL53L4CD are Time Of Flight (ToF) sensors. Both uses a VCSEL (vertical cavity surface
emitting laser) to emit a class 1 IR laser (940 nm) and time the reflection to the target. (You can’t see the laser but
cell phones can) What does all this mean? You can measure the distance to an object up to 4 meters away with
millimeter resolution using the VL53L1X and up to 1.3 meters away with 1 millimeter resolution using the
VL53L4CD! That's pretty incredible.

SparkFun Distance Sensor Breakout - 4 Meter,
VL53L1X (Qwiic)
@ SEN-14722

1/36

‘ sparKfU“ .)

istance Sensor
P saLuco

SparkFun Distance Sensor - 1.3 Meter, VL53L4CD
(Qwiic)
@© SEN-18993

We've found the precision of the VL53L1X sensor to be 1mm but the accuracy is around £5mm. The minimum
read distance of this sensor is 4cm (or 40mm). For the VL53L4CD sensor, we've to also found the precision to be
1mm but the accuracy is around £7mm. The minimum read distance of this sensor is 1cm (or 10mm). In this
hookup guide, we'll go over how to read distance, change ranging modes, and check the status of our range

measurement along with the sample rate. We'll also check out how to display distance and speed over an LCD
display.

Product Showcase: VL53L1X Qwiic Distance Sensor

Required Materials

2/36

The Qwiic Distance Sensor does need a few additional items for you to get started. The RedBoard Plus is for the
Arduino examples and the Qwiic SHIM is for the Raspberry Pi example (see note below). You may already have a
few of these items, so feel free to modify your cart based on your needs. Additionally, there are also alternative
parts options that are available as well (click button below to toggle options).

SparkFun Qwiic Cable Kit SparkFun RedBoard Plus
@® KIT-15081 @®© DEV-18158

SparkFun Qwiic SHIM for Raspberry Pi
@© DEV-15794

ALTERNATIVE PARTS (TOGGLE)

Raspberry Pi Example: If you don't already have them, you will need a Raspberry Pi and standard
peripherals. An example setup is listed below. (The Qwiic Distance Sensor and Python library have not been
tested on the newly released Raspberry Pi 4 because we don't carry it in out catalog yet.)

Suggested Reading

If you're unfamiliar with jumper pads, 12C, Qwiic, or Python be sure to checkout some of these foundational
tutorials.

3/36

Serial Communication
Asynchronous serial communication concepts: packets,

signal levels, baud rates, UARTs and more!

12C

An introduction to 12C, one of the main embedded
communications protocols in use today.

Raspberry Pi SPI and [2C Tutorial

Learn how to use serial 12C and SPI buses on your
Raspberry Pi using the wiringPi /O library for C/C++
and spidev/smbus for Python.

Python Programming Tutorial: Getting Started
with the Raspberry Pi

This guide will show you how to write programs on your
Raspberry Pi using Python to control hardware.

Logic Levels
Learn the difference between 3.3V and 5V devices and

logic levels.

Serial Terminal Basics
This tutorial will show you how to communicate with

your serial devices using a variety of terminal emulator
applications.

Raspberry Pi 3 Starter Kit Hookup Guide
Guide for getting going with the Raspberry Pi 3 Model
B and Raspberry Pi 3 Model B+ starter kit.

Qwiic pHAT for Raspberry Pi Hookup Guide
Get started interfacing your Qwiic enabled boards with
your Raspberry Pi. The Qwiic pHAT connects the 12C
bus (GND, 3.3V, SDA, and SCL) on your Raspberry Pi
to an array of Qwiic connectors.

4/36

Qwiic Shield for Arduino & Photon Hookup RedBoard Plus Hookup Guide

Guide This tutorial covers the basic functionality of the
Get started with our Qwiic ecosystem with the Qwiic RedBoard Plus. This tutorial also covers how to get
shield for Arduino or Photon. started blinking an LED and using the Qwiic system.

Q QWIIC

The Qwiic Distance Sensor is intended for the Qwiic connect system. We recommend familiarizing yourself with
the Logic Levels and I2C tutorials before using it. Click on the banner above to learn more about our Qwiic

products.

SparkFun's Qwiic Connect System

Hardware Overview

First, let's check out some of the characteristics of the VL53L1X and VL53L4CD we're dealing with, so we know
what to expect out of the board. Below is a comparison table for both sensors taken from the datasheet. Typically,

the board is powered at 3.3V via the Qwiic connector.

Characteristic VL53L1X VL53L4CD

Operating Voltage 2.6V to 3.5V

5/36

Power Consumption
Current Consumption
Measurement Range
Resolution
Light Source
I°C Address
Field of View

Max Read Rate

Pins

20 mW @10Hz -
18mA 24mA
~40mm to 4,000mm 1mm to 1300mm
1mm
Class 1 940nm VCSEL
0x29

15°to0 27° 18°

50Hz 100Hz

The following table lists all of the VL53L1X and VL53L4CD's pins and their functionality.

sparkfun

Distance Sensor
VL5S3LYCD
5]

rl.--k{_i1 E“-

o |
Nu\“ !l‘ﬂl

%llla%

®® ® @ e or

VL53L1X VL53L4CD
Pin Description Direction
GND Ground In
3.3V Power In
SDA Data In
SCL Clock In
INT Interrupt, goes low when data is ready. Out
SHUT Shutdown, can be pulled low to put the IC in shutdown In

mode.

6/36

Qwiic and I°C

Both breakout boards include 2x Qwiic connectors to easily access the I°C data lines and power. The Qwiic
ecosystem is made for fast prototyping by removing the need for soldering. All you need to do is plug a Qwiic
cable into the Qwiic connector and voila! Of course, you can still solder header pins or wires to the PTHs. The 1°C
address for each sensor is 0x29 (7-bit unshifted) as stated earlier. You may notice that the datasheet and library
use 0x52, which is the address shifted.

@ sprkhn @

VLS§3LucD

pin B

| r--“-ﬂ

e ® ® @ *'.J f.)

VLS3L1X VL53L4CD

LED

The onboard power LED (PWR) will light up when the board is powered. Exclusively for the VL53L4CD, this can
be disabled by cutting the jumper labeled as LED on the back of the board.

sparkfun | sparkfun

Qwiic Distance Distanu Sensor
VLSSLIX | v LS 3L;CD

Piw e pe

. N
ot
=

N e

B L

l@ll

®® ® e e f.)

VL53L1X VL53L4CD

Sensor and IR Laser

On the left side of each sensor IC is a single photon avalanche diode (SPAD) array. On the other side of each
sensor IC is an invisible IR laser. The wavelength of the lasers found in the VL53L1X and VL53L4CD is 940nm
and are classified as a Class 1 laser emitter. We found that the sensors worked best when left uncovered in your
application to avoid crosstalk. If you do place a transparent material (material transmission should be greater than
85%) in front of the sensor, it is recommended to have an air gap that is as small as possible to avoid errors in
sensor readings.

7/36

g
Rl @ perkhn
Diltenci Sensor

VLgl.ﬂ VLSGL;CD

8] — i)
e T _ i ERF—

ElLG) o ; : " '

! z B - . | b £) 1 4 =
F’WQ =1

E E g % ' @) (. ".l (@) ’.J ’.'

VL53L1X VL53L4CD

Note: While the IR laser is invisible to the human eye, you can view the laser at an angle using a camera. If
you take out your smartphone and view the sensor through the camera, you can see the IR laser being
emitted from the sensor!

Jumpers

The VL53L1X and VL53L4CD breakout boards include jumpers on the back of the board. If you need to
disconnect any of the jumpers, they can be removed by cutting the traces on the corresponding jumpers
highlighted below.

« 12C - By default, this 3-way jumper is closed by default. The 2.2kQ pull-up resistors are attached to the 1°C
bus; if multiple sensors are connected to the bus with the pull-up resistors enabled, the parallel equivalent
resistance will create too strong of a pull-up for the bus to operate correctly. As a general rule of thumb,
disable all but one pair of pull-up resistors if multiple devices are connected to the bus.

» INT - By default, this jumper is closed by default. This is connected to the 10kQ pull-up resistor.

» LED - Exclusive to the VL53L4CD, this jumper is closed by default. Cutting this jumper will disable the PWR
LED.

P Distance Sensor .’
. vLs3Luco Y

DEF ADDR: Ox29%

12C
()

VL53L1X VL53L4CD

8/36

Board Dimensions

The board dimensions of both boards use the Qwiic standard board size of 1.0"x1.0". The VL53L1X has two
mounting holes on two corners of the board while the VL53L4CD has four mounting holes on each corner of the
board.

VL53L1X VL53L4CD

Hardware Assembly

Arduino Examples

If you ordered a Qwiic Shield, you will need to assemble your Qwiic Shield. Head over to the tutorial to solder the
headers to the board. Depending on the microcontroller and shield you've chosen, your assembly may be different,
but here's a handy link to the Qwiic Shield for Arduino and Photon Hookup Guide to get you started!

Qwiic Shield for Arduino & Photon Hookup Guide
OCTOBER 19, 2017

Get started with our Qwiic ecosystem with the Qwiic shield for Arduino or
Photon.

With the shield assembled, SparkFun's Qwiic environment means that connecting the sensor could not be easier.
Just plug one end of the Qwiic cable into either the VL53L1X or VL53L4CD breakout, and the other end into the
Qwiic Shield and you'll be ready to upload a sketch and figure out how far away you are from that thing over there.
It seems like it's too easy too use, but that's why we made it that way!

9/36

SparkFun RedBoard and Qwiic Shield with the Qwiic Distance Sensor - VL53L1X Attached

Of course, you can avoid soldering header pins to a board if you ordered a RedBoard with a built-in Qwiic
connector like the RedBoard Plus. Below is an image of the VL53L4CD connected through the board's Qwiic
connector. While we set LOGIC switch to 5V side on the RedBoard Plus, all logic is translated to 3.3V between the

ATmega328P and the Qwiic connector.

SparkFun RedBoard Plus with the Qwiic Distance Sensor - VL53L4CD Attached

Raspberry Pi Examples

We'll assume that you have a Raspberry Pi flashed with an image and set up for I1°C at this point. To connect the
sensor, all you will need to is slide in the Qwiic SHIM for the Raspberry Pi's GPIO header and insert a Qwiic cable

between the two boards.

10/36

Qwiic SHIM for Raspberry Pi Hookup Guide
DECEMBER 5, 2019
Ever wanted to prototype 12C components on a Pi? Now you can!

Once connected, your setup should look similar to the images below at a minimum. You may need to
connect/disconnect peripherals (i.e. mouse, keyboard, monitor) to the Raspberry Pi depending on your project's
needs.

VL53L1X connected to a VL53L4CD connected to a
Raspberry Pi using a Qwiic SHIM Raspberry Pi using a Qwiic SHIM

Arduino Library Overview

Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If this is
your first time using Arduino, please review our tutorial on installing the Arduino IDE. If you have not
previously installed an Arduino library, please check out our installation guide.

First, you'll need the SparkFun VL53L1X Arduino library, which is an easy to use wrapper of ST's driver. This
library was originally written for VL53L1X but it can also be used for the VL53L4CD. You can obtain these libraries
through the Arduino Library Manager. Search for Sparkfun VL53L1X Arduino Library to install the latest version.
If you prefer downloading the libraries from the GitHub repository and manually installing it, you can grab them
here:

DOWNLOAD THE SPARKFUN VL53L1X ARDUINO LIBRARY (ZIP)

Before we get started developing a sketch, let's look at the available functions of the library.

e boolean init(); --- Initialize the sensor

» void startRanging(); --- Starts taking measurements.

* void stopRanging(); --- Stops taking measurements.

* bool checkForDataReady(); --- Checks if a measurement is ready.

e void setTimingBudgetInMs(uintl6_t timingBudget) --- Set the timing budget for a measurement in ms.
The timing budget is the amount of time over which a measurement is taken. This can be set to any of the
following.

o 15
o 20

11/36

o 33
o 50
o 100 (default)
o 200
o 500
uintl6_t getTimingBudgetInMs(); --- Get's the current timing budget in ms.
void setDistanceModeLong(); --- Sets to 4M range.
void setDistanceModeShort(); --- Sets to 1.3M range
uint8_t getDistanceMode(); --- Returns 1 for short range, 2 for long range.
void setIntermeasurementPeriod(uintl6_t intermeasurement); --- Set's the period in between
measurements. Must be greater than or equal to the timing budget. Default is 100 ms.
uintl6_t getIntermeasurementPeriod(); --- Returns the intermeasurement period in ms.
bool checkBootState(); --- Checks whether the device has been booted. Returns true if the device has
been booted.
uintl6_t getSensorID(); --—- Get the sensor ID, should be OXEEAC.
uintl6_t getDistance(); --- Returns the results from the last measurement, distance in mm
uintl6_t getSignalPerSpad(); --- Returns the average signal rate per SPAD (The sensitive pads that
detect light, the VL53L1X has a 16x16 array of these) in kcps/SPAD, or kilo counts per second per SPAD.
uintl6_t getAmbientPerSpad(); --- Returns the ambient noise when not measuring a signal in keps/SPAD.
uintl6_t getSignalRate(); --- Returns the signal rate in kcps. All SPADs combined.
uintl6_t getSpadNb(); --- Returns the current number of enabled SPADs
uintl6_t getAmbientRate(); --- Returns the total ambinet rate in kcps. All SPADs combined.
uint8_t getRangeStatus(); --- Returns the range status, which can be any of the following.
o 0: No error
1: Signal fail
2: Sigma falil
7: Wrapped target fail
void setOffset(intl6_t offset); --- Manually set an offset for a measurement in mm.
int16_t getOffset(); --- Get the current offset in mm.
void setXTalk(uintl6_t xTalk); --- Manually set the value of crosstalk in counts per second (cps), which
is interference from any sort of window in front of your sensor.
uintle6_t getXTalk(); --- Returns the current crosstalk value in cps.
void setDistanceThreshold(uintl6_t lowThresh, uintl16_t hiThresh, uint8_t window); --- Set bounds
for the interrupt. lowThresh and hiThresh are the bounds of your interrupt while window decides when the
interrupt should fire. The options for window are shown below.
0: Interrupt triggered on measured distance below lowThresh.
1: Interrupt triggered on measured distance above hiThresh.
2: Interrupt triggered on measured distance outside of bounds.
3: Interrupt triggered on measured distance inside of bounds.
uintl6_t getDistanceThresholdWindow(); --- Returns distance threshold window option.
uintl6_t getDistanceThresholdLow(); --- Returns lower bound in mm.
uintl6_t getDistanceThresholdHigh(); --- Returns upper bound in mm
void setROI(uint16_t x, uintl6_t y, uint8_t opticalCenter); --- Set the height and width of the ROI
in SPADs, lowest possible option is 4. The center of the ROI you set is based on the table below. Set the
opticalCenter as the pad above and to the right of your exact center.

[}

o

[}

[}

o

[}

o

128 | 136 | 144 | 152|160 | 168 | 176 [184 | 192 | 200 | 208 | 216 | 224 | 232 | 240 | 248

12/36

129

137

145

153

161

169

177

185

193

201

209

217

225

233

241

249

130

138

146

154

162

170

178

186

194

202

210

218

226

234

242

250

131

139

147

155

163

171

179

187

195

203

21

219

227

235

243

251

132

140

148

156

164

172

180

188

196

204

212

220

228

236

244

252

133

141

149

157

165

173

181

189

197

205

213

221

229

237

245

253

134

142

150

158

166

174

182

190

198

206

214

222

230

238

246

254

135

143

151

159

167

175

183

191

199

207

215

223

231

239

247

255

127

119

11

103

95

87

79

71

63

55

47

39

31

23

15

126

118

110

102

94

86

78

70

62

54

46

38

30

22

14

125

117

109

101

93

85

77

69

61

53

45

37

29

21

13

124

116

108

100

92

84

76

68

60

52

44

36

28

20

12

123

115

107

99

91

83

75

67

59

51

43

35

27

19

11

122

114

106

98

90

82

74

66

58

50

42

34

26

18

10

121

113

105

97

89

81

73

65

57

49

41

33

25

17

120

112

104

96

88

80

72

64

56

48

40

32

24

16

uint16_t getROIX(); -- Returns the width of the ROl in SPADs

» uint16_t getROIY(); --- Returns the height of the ROl in SPADs

e void setSignalThreshold(uintl6_t signalThreshold); --- Programs the necessary threshold to trigger a

measurement. Default is 1024 kcps.
e uintl6_t getSignalThreshold(); --- Returns the signal threshold in kcps

e void setSigmaThreshold(uint16_t sigmaThreshold); --- Programs a new sigma threshold in mm.
(default=15 mm)

uint16_t getSigmaThreshold(); --- Returns the current sigma threshold.

e void startTemperatureUpdate(); --- Recalibrates the sensor for temperature changes. Run this any time

the temperature has changed by more than 8°C

known distance away from the sensor and passing this known distance into the function.
* void calibrateXTalk(uintl6_t targetDistanceInMm); --- Autocalibrate the crosstalk by placing a target a
known distance away from the sensor and passing this known distance into the function.

Arduino Example Code

void calibrateOffset(uint16_t targetDistanceInMm); --- Autocalibrate the offset by placing a target a

13/36

Now that we have our library installed and we understand the basic functions, let's run some examples for our
distance sensor to see how it behaves.

Example 1 - Read Distance

To get started with the first example, open up File > Examples > SparkFun VL53L1x 4M Laser Distance Sensor
> Example1_ReadDistance. In this example, we begin by creating a SFEVL53L1X object called distanceSensor
with our wire port, wWire , and then our shutdown and interrupt pins. Then we initialize our sensor object in the
setup() loop. The code to do this is shown below and is repeated in some form in all of the examples.

#include <Wire.h>
#include "SparkFun_VL53L1X.h"

//Optional interrupt and shutdown pins.
#define SHUTDOWN_PIN 2
#define INTERRUPT_PIN 3

SFEVL53L1X distanceSensor(Wire, SHUTDOWN_PIN, INTERRUPT_PIN);

void setup(void)

{
Wire.begin();

Serial.begin(9600);
Serial.println("VL53L1X Qwiic Test");

if (distanceSensor.init() == false)
Serial.println("Sensor online!");

Once we've initialized our sensor, we can start grabbing measurements from it. To do this, we send some
configuration bytes to our sensor using distanceSensor.startRanging() to initiate the measurement. We then
wait for data to become available and when it does, we read it in, convert it from millimeters to feet, and print it out
over serial. The void loop() function that does this is shown below.

14/36

void loop(void)

{
distanceSensor.startRanging(); //Write configuration bytes to initiate measurement
int distance = distanceSensor.getDistance(); //Get the result of the measurement from the sens
or
distanceSensor.stopRanging();
Serial.print("Distance(mm): ");
Serial.print(distance);
float distanceInches = distance * 0.0393701;
float distanceFeet = distancelnches / 12.9;
Serial.print("\tDistance(ft): ");
Serial.print(distanceFeet, 2);
Serial.println();
}

Opening your serial monitor to a baud rate of 9600 should show the distance between the sensor and the object
it's pointed at in both millimeters and feet. The output should look something like the below image.

& come - [u] *

Send

Nolneending . | | 5500 beud Clear output

Distance readings in mm and ft

Example 2 - Set Distance Mode

In this example, we'll change the distance mode of the VL53L1X. The default long range mode is the most robust
as far as sample rate and range are concerned, but for a slightly higher sample rate, you can bring the range down
to short (~1.3M). To get started with the second example, open up File > Examples > SparkFun VL53L1x 4M
Laser Distance Sensor > Example2_SetDistanceMode. The main difference between this example and the
previous example is that we call distanceSensor.setDistanceModeShort to change the range of our sensor to
short range. Although this feature is available, we'd recommend sticking with long range as it is the most robust.

Example 3 - Status and Rate

In the third example, we'll read and average our distance as well as read the sample rate and status of each
measurement. To get started with the third example, open up File > Examples > SparkFun VL53L1x 4M Laser
Distance Sensor > ExampleStatusandRate. The status of a measurement can be any of 8 values. Our void
loop() interprets the value returned by distanceSensor.getRangeStatus() and prints that value over serial. The
below table shows the possible values of rangeStatus and their corresponding errors.

15/36

Range
Status

14

Error

Valid measurement

Raised if sigma estimator (uncertainty in measurement) check is above the internal defined
threshold

Raised if signal value is below the internal defined threshold
Raised when phase is out of bounds

Raised in case of HW or VCSEL failure

Wrapped target, not matching phases

Internal algorithm underflow or overflow

The reported range is invalid

In the example code, notice how the sketch stores our previous values in the array history so that the average
distance can also be calculated. Uploading this sketch to your microcontroller and opening the serial monitor to a
baud rate of 9600 should give you an output similar to the image shown below.

Click the image for a closer look.

Example 4 - Set Intermeasurement Period

The fourth example allows you to change the time alotted for a measurement. The VL53L1X will send out a laser
pulse and then listen for the alotted time. We'd recommend 20, 33, and 100 ms for short, medium and long
distance modes respectively. To open up the example, head to File > Examples > SparkFun VL53L1x 4M Laser
Distance Sensor > Example4_SetIntermeasurementPeriod. There's not much that needs to be done to change
the intermeasurement period other than a call to distanceSensor.setIntermeasurementPeriod(33) to change the
time alotted time for a measurement to 33 ms. This will give us a data rate of roughly 30 Hz, lengthening the
intermeasurement period will give us a lower sample rate, but will yield higher accuracy at longer ranges. Opening
the serial monitor should yield an output similar to example 1.

Example 5 - LCD Demo

The fifth example requires a serial enabled LCD screen for us to write our distance values to. If you haven't played

around with a Serial enabled LCD before, checkout our hookup guide on the matter. To get started with the fourth
example, open up File > Examples > SparkFun VL53L1x 4M Laser Distance Sensor > Example5_LCDDemo.

We'll first need to connect the RX pin of our Serial LCD to pin A3 on our Arduino. Connect 5V and ground on the
LCD and the backlight should light up. Notice how we also include the SoftwareSerial library. Uploading the
sketch to our Arduino then takes in our sample rate and distances. By using these values, it calculates a velocity.

16/36

Like the sketch before, distances are stored in an array. The sketch uses these values in the array to calculate
velocity and the velocity is then displayed along with the current distance on the LCD. The output on the LCD
should look something like the below GIF.

Python Package Overview

Note: This Python package has been tested on a Raspberry Pi 3 and 4 using Python 3.

Update: This package has been updated to version 1.0.1 (released 1-20-2020), which is not backwards
compatible with the previous packages. The package still retains the same functionality as version 0.9.4;
however, most of the methods have been renamed to conform to the more "Pythonic" naming conventions
(i.e. not camel case). For more details, check out the commit history in the GitHub repository.

Note: This example assumes you are using the latest version of Python 3. If this is your first time using
Python or I°C hardware on a Raspberry Pi, please checkout our tutorial on Python Programming with the
Raspberry Pi and the Raspberry Pi SPI and 12C Tutorial.

We've written a Python package to easily get setup and take readings from the Qwiic Distance Sensor. However,
before we jump into getting data from the sensor, let's take a closer look at the available functions in the Python
package. You can install the sparkfun-qwiic-v15311x Python package hosted by PyPi. However, if you prefer to
manually download and build the libraries from the GitHub repository, you can grab them here (*Please be aware
of any package dependencies. You can also check out the repository documentation page, hosted on Read the
Docs.):

DOWNLOAD THE SPARKFUN VL53L1X PYTHON PACKAGE (ZIP)
Installation

Note: Don't forget to double check that the hardware I°C connection is enabled on your Raspberry Pi or other
single board computer.

PyPi Installation

This repository is hosted on PyPi as the sparkfun-qwiic-v15311x package . On systems that support PyPi
installation via pip3 (use pip for Python 2)is simple, using the following commands:

For all users (note: the user must have sudo privileges):

17/36

sudo pip3 install sparkfun-qwiic-v15311x

For the current user:

pip3 install sparkfun-gqwiic-v15311x

Local Installation
To install, make sure the setuptools package is installed on the system.

Direct installation at the command line (use python for Python 2):

python3 setup.py install

To build a package for use with pip3 :
python3 setup.py sdist

A package file is built and placed in a subdirectory called dist. This package file can be installed using pip3 .

cd dist
pip3 install sparkfun_qwiic_v15311x-<version>.tar.gz

Python Package Operation

Below is a description of the basic functionality of the Python package. This includes the package organization,
built-in methods, and their inputs and/or outputs. For more details on how the Python package works, check out
the source code, sensor datasheet, and APl user manual.

Dependencies

This Python package has a very few dependencies in the code, listed below:

import time # Time access and conversion package
import math # Basic math package
import gqwiic_i2c # I2C bus driver package

Default Variables

The default variables, in the code, for this Python package are listed below:

18/36

From vL5311x_class.h Header File

HAHHHAHHHH R R R R R
HEFHHE R HH R R R R A R

SOFT_RESET =
VL53L1_I2C_SLAVE__ DEVICE_ADDRESS =
VL53L1_VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND =
ALGO__CROSSTALK_COMPENSATION_PLANE_OFFSET_KCPS =
ALGO__CROSSTALK_COMPENSATION_X_PLANE_GRADIENT_KCPS
ALGO__CROSSTALK_COMPENSATION_Y_ PLANE_GRADIENT_KCPS
ALGO__PART_TO_PART_RANGE_OFFSET_MM =
MM_CONFIG__INNER_OFFSET_MM
MM_CONFIG__OUTER_OFFSET_ MM
GPIO_HV_MUX_ CTRL =

GPIO__TIO_HV_STATUS =
SYSTEM__INTERRUPT_CONFIG_GPIO =
PHASECAL_CONFIG__ TIMEOUT_MACROP =
RANGE_CONFIG__TIMEOUT MACROP_A HI
RANGE_CONFIG__VCSEL_PERIOD A =
RANGE_CONFIG__VCSEL_PERIOD B =
RANGE_CONFIG__TIMEOUT MACROP_B_HI
RANGE_CONFIG__TIMEOUT_MACROP_B_LO
RANGE_CONFIG__SIGMA_THRESH =
RANGE_CONFIG__MIN_COUNT_RATE_RTN_LIMIT_MCPS =
RANGE_CONFIG__VALID PHASE_HIGH =
VL53L1_SYSTEM__INTERMEASUREMENT_PERIOD =
SYSTEM__THRESH_HIGH =

SYSTEM__THRESH_LOW =

SD_CONFIG__WOI_SD@ =
SD_CONFIG__INITIAL_PHASE_SDO =

ROI_CONFIG__ USER_ROI_CENTRE_SPAD =
ROI_CONFIG__USER_ROI_REQUESTED_ GLOBAL_ XY SIZE
SYSTEM__SEQUENCE_CONFIG =
VL53L1_SYSTEM__GROUPED_PARAMETER_HOLD =
SYSTEM__INTERRUPT_CLEAR =

SYSTEM__MODE_START =
VL53L1_RESULT__RANGE_STATUS =
VL53L1_RESULT__DSS_ACTUAL_EFFECTIVE_SPADS_SD@
RESULT__AMBIENT_COUNT_RATE_MCPS_SD =
VL53L1_RESULT__FINAL_CROSSTALK_CORRECTED RANGE_MM_SD@ =
VL53L1_RESULT__PEAK_SIGNAL_COUNT_RATE_CROSSTALK_CORRECTED_MCPS_SD@ =
VL53L1_RESULT__OSC_CALIBRATE_VAL =

VL53L1_FIRMWARE__SYSTEM_STATUS =

VL53L1_IDENTIFICATION_ _MODEL_ID =
VL53L1_ROI_CONFIG__MODE_ROI_CENTRE_SPAD =

_VL53L1X_DEFAULT_DEVICE_ADDRESS =

HEFHHERF SR AR R RS A R R R AR R R A
HHH R

_DEFAULT_NAME = "Qwiic 4m Distance Sensor (ToF)"

HEFHHHERFHHRFHHEFHH AR HAEHHHAFHH R H AR AR AR R AR R R R

0x0000
0x0001
0x0008
0x0016
0x0018
Ox001A
Ox001E
0x0020
0x0022
0x0030

0x0031
0x0046
0x004B
OX005E
0x0060
0x0063
0x0061
0x0062
0x0064
0x0066
0x0069
0x006C
0x0072
0x0074
0x0078
OX007A
Ox007F
0x0080
0x0081
0x0082
0x0086
0x0087
0x0089
0x008C
0x0090
0x0096
0x0098
Ox00DE
OXO0ES
0x010F
Ox013E

0x52

19/36

HHHHHHAHHHHAHH AR
_FULL_ADDRESS_LIST = list(range(©x08,0x77+1)) # Full I2C Address List (excludi
ng resrved addresses)

_FULL_ADDRESS_LIST.remove(_VL53L1X_DEFAULT_DEVICE_ADDRESS >> 1) # Remove Default Address of VL53
L1X from list

_AVAILABLE_I2C_ADDRESS = [_VL53L1X DEFAULT_DEVICE_ADDRESS >> 1] # Initialize with Default Addres
s of VL53L1X

_AVAILABLE_I2C_ADDRESS.extend(_FULL_ADDRESS_LIST) # Add Full Range of I2C Addresse
s

From vL5311x_class.cpp C++ File
HHH SR R S

HEFHHARFHHRAFHHEFHH AR HAEH AR H AR AR A A R R R

ALGO__PART_TO_PART_RANGE_OFFSET_MM = Ox001E
MM_CONFIG__INNER_OFFSET_MM = 0x0020
MM_CONFIG__OUTER_OFFSET_MM = 0x0022

DEBUG_MODE

VL51L1X DEFAULT_CONFIGURATION = [

0x00, # ox2d : set bit 2 and 5 to 1 for fast plus mode (1MHz I2C), else don't touch

ox01, # Ox2e : bit @ if I2C pulled up at 1.8V, else set bit @ to 1 (pull up at AVDD)

0x01, # Ox2f : bit @ if GPIO pulled up at 1.8V, else set bit @ to 1 (pull up at AVDD)

ox01, # 0x30 : set bit 4 to @ for active high interrupt and 1 for active low (bits 3:0 must be
0x1), use SetInterruptPolarity()

0x02, # 0x31 : bit 1 = interrupt depending on the polarity, use CheckForDataReady()
0x00, # 0x32 : not user-modifiable
0x02, # 0x33 : not user-modifiable
ox08, # 0x34 : not user-modifiable
0x00, # 0x35 : not user-modifiable
ox08, # 0x36 : not user-modifiable
0x109, # 0x37 : not user-modifiable
oxe1, # 0x38 : not user-modifiable
ox01, # 0x39 : not user-modifiable
0x00, # 0x3a : not user-modifiable
0x00, # 0x3b : not user-modifiable
0x00, # Ox3c : not user-modifiable
0x00, # 0x3d : not user-modifiable
oxff, # 0x3e : not user-modifiable
0x00, # ox3f : not user-modifiable
OxOF, # 0x40 : not user-modifiable
0x00, # 0x41 : not user-modifiable
0x00, # 0x42 : not user-modifiable
0x00, # 0x43 : not user-modifiable
0x00, # 0x44 : not user-modifiable
0x00, # 0x45 : not user-modifiable
0x20, # Ox46 : interrupt configuration ©->level low detection, 1-> level high, 2-> Out of wind

ow, 3->In window, ©x20-> New sample ready , TBC
oxeb, # 0x47 : not user-modifiable
0x00, # 0x48 : not user-modifiable
0x00, # 0x49 : not user-modifiable
20/36

not
not
not
not
not
not
not
not
not
not
not
not
not

not
not
not
not
not
not
not
not
not
not
not
not
not

user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable

user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable

Sigma threshold MSB (mm in 14.2 format for MSB+LSB), use SetSigmaThreshold(), d

Sigma threshold LSB

Min
Min
not
not
not
not

count Rate MSB (MCPS in 9.7 format for MSB+LSB), use SetSignalThreshold()
count Rate LSB
user-modifiable
user-modifiable
user-modifiable
user-modifiable

Intermeasurement period MSB, 32 bits register, use SetIntermeasurementInMs()

Intermeasurement period

: Intermeasurement period

Intermeasurement period LSB

not
not

user-modifiable
user-modifiable

: distance threshold high MSB (in mm, MSB+LSB), use SetD:tanceThreshold()
: distance threshold high LSB

distance threshold low MSB (in mm, MSB+LSB), use SetD:tanceThreshold()
distance threshold low LSB

not
not
not
not
not
not

0x02, # Ox4a :
ox0a, # ox4b :
ox21, # Ox4c :
0x00, # ox4d :
0x00, # Oxde :
0x05, # ox4f :
0x00, # x50 :
0x00, # ox51 :
0x00, # Ox52 :
0x00, # Ox53 :
oxc8, # 0x54 :
0x00, # Ox55 :
0x00, # Ox56 :
0x38, # Ox57 :
oxff, # Ox58 :
ox01, # Ox59 :
0x00, # ox5a :
ox0e8, # Ox5b :
0x00, # Ox5c :
0x00, # ox5d :
oxe1, # Ox5e :
oxdb, # Ox5f :
oxef, # Ox60 :
ox0e1, # Ox61 :
oxf1, # 0x62 :
oxed, # Ox63 :
ox01, # Ox64 :
efault value 90 mm
0x68, # Ox65 :
0x00, # Ox66 :
0x80, # Ox67 :
0xe8, # Ox68 :
oxbs, # Ox69 :
0x00, # Ox6a :
0x00, # Ox6b :
0x00, # Ox6¢C :
0x00, # ox6d :
oxef, # Ox6e
ox89, # oxef :
0x00, # Ox70 :
0x00, # ox71 :
0x00, # 0x72
0x00, # Ox73
0x00, # Ox74 :
0x00, # Ox75 :
0x00, # OX76 :
oxe1, # Ox77 :
oxef, # 0x78 :
oxed, # 0x79 :
Ox0e, # Ox7a :
Ox0e, # Ox7b :
0x00, # Ox7c :

not

user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
user-modifiable
21/36

0x00, # 0x7d : not user-modifiable

0x02, # 0x7e : not user-modifiable

Oxc7, # Ox7f : ROI center, use SetROI()

oxff, # 0x80 : XY ROI (X=Width, Y=Height), use SetROI()
Ox9B, # 0x81 : not user-modifiable

0x00, # 0x82 : not user-modifiable

0x00, # 0x83 : not user-modifiable

0x00, # 0x84 : not user-modifiable

oxe1, # 0x85 : not user-modifiable

0x00, # 0x86 : clear interrupt, use ClearInterrupt()
0x00 # Ox87 : start ranging, use StartRanging() or StopRanging(), If you want an automatic st
art after self. 1n1t() call, put ©x4@ in location ©x87

]

HEFHHAAFHHRAFHHEFHH AR HAEHHHAFHH R H ARSI HAF SR AR R A R R R
HHHHHAHHH IR R R

From vL5311 error_codes.h Header File

HH
HEHHHHAHHHH AR
@brief Error Code definitions for VL53L1 API.

@defgroup VL53L1_define_Error_group Error and Warning code returned by API
The following DEFINE are used to identify the PAL ERROR

VL53L1_ERROR_NONE = 0
VL53L1_ERROR_CALIBRATION_WARNING = -1
"""Warning invalid calibration data may be in used

\a VL53L1 InitData()
\a VL53L1_GetOffsetCalibrationData
\a VL53L1_SetOffsetCalibrationData"""

VL53L1_ERROR_MIN_CLIPPED = -2
"""Warning parameter passed was clipped to min before to be applied"""
VL53L1_ERROR_UNDEFINED = -3
"""Unqualified error"""

VL53L1_ERROR_INVALID_PARAMS = -4
"""Parameter passed is invalid or out of range"""

VL53L1_ERROR_NOT_SUPPORTED = -5
"""Function is not supported in current mode or configuration"""
VL53L1_ERROR_RANGE_ERROR = -6
"""Device report a ranging error interrupt status"""

VL53L1_ERROR_TIME_OUT = -7
"""Aborted due to time out"""

VL53L1_ERROR_MODE_NOT_SUPPORTED = -8
"""Asked mode is not supported by the device"""

VL53L1_ERROR_BUFFER_TOO_SMALL = -9
#omm,L L

VL53L1_ERROR_COMMS_BUFFER_TOO_SMALL = -10

22/36

"""Supplied buffer is larger than I2C supports

VL53L1_ERROR_GPIO_NOT_EXISTING = -11
"""User tried to setup a non-existing GPIO pin"""
VL53L1_ERROR_GPIO_FUNCTIONALITY_NOT_SUPPORTED = -12
"""unsupported GPIO functionality"""

VL53L1_ERROR_CONTROL_INTERFACE = -13
"""error reported from IO functions"""

VL53L1_ERROR_INVALID_ COMMAND = -14
"""The command is not allowed in the current device state (power down)"""
VL53L1_ERROR_DIVISION_BY_ZERO = -15
"""In the function a division by zero occurs"""

VL53L1_ERROR_REF_SPAD_INIT = -16
"""Error during reference SPAD initialization"""
VL53L1_ERROR_GPH_SYNC_CHECK_FAIL = -17
"""GPH sync interrupt check fail - API out of sync with device"""
VL53L1_ERROR_STREAM_COUNT_CHECK_FAIL = -18
"""Stream count check fail - API out of sync with device"""
VL53L1_ERROR_GPH_ID_CHECK_FAIL = -19
"""GPH ID check fail - API out of sync with device"""
VL53L1_ERROR_ZONE_STREAM_COUNT_CHECK_FAIL = -20
"""Zone dynamic config stream count check failed - API out of sync"""
VL53L1_ERROR_ZONE_GPH_ID CHECK_FAIL = -21

"""Zone dynamic config GPH ID check failed - API out of sync

VL53L1_ERROR_XTALK_EXTRACTION_NO_ SAMPLE_FAI = -22
"""Thrown when run_xtalk_extraction fn has @ succesful samples when using

the full array to sample the xtalk. In this case there is not enough

information to generate new Xtalk parm info. The function will exit and

leave the current xtalk parameters unaltered"""
VL53L1_ERROR_XTALK_EXTRACTION_SIGMA LIMIT FAIL = -23
"""Thrown when run_xtalk_extraction fn has found that the avg sigma

estimate of the full array xtalk sample is > than the maximal limit

allowed. In this case the xtalk sample is too noisy for measurement.

The function will exit and leave the current xtalk parameters unaltered."""

VL53L1_ERROR_OFFSET_CAL_NO_SAMPLE_FAIL = -24
"""Thrown if there one of stages has no valid offset calibration

samples. A fatal error calibration not valid"""
VL53L1_ERROR_OFFSET_CAL_NO_SPADS_ENABLED_FAIL = -25
"""Thrown if there one of stages has zero effective SPADS Traps the case

when MM1 SPADs is zero. A fatal error calibration not valid"""
VL53L1_ERROR_ZONE_CAL_NO_SAMPLE_FAIL = -26
"""Thrown if then some of the zones have no valid samples. A fatal error

calibration not valid"""

VL53L1_ERROR_TUNING_PARM_KEY_MISMATCH = -27
"""Thrown if the tuning file key table version does not match with

expected value. The driver expects the key table version to match the

compiled default version number in the define

#VL53L1_TUNINGPARM_KEY_TABLE_VERSION_DEFAULT*"""
VL53L1_WARNING_REF_SPAD_CHAR_NOT_ENOUGH_SPADS = -28
"""Thrown if there are less than 5 good SPADs are available."""

23/36

VL53L1_WARNING_REF_SPAD CHAR_RATE_TOO HIGH = -29
"""Thrown if the final reference rate is greater than the upper reference

rate limit - default is 4@ Mcps. Implies a minimum Q3 (x10) SPAD (5)

selected"""

VL53L1_WARNING_REF_SPAD_CHAR_RATE_TOO LOW = -30
"""Thrown if the final reference rate is less than the lower reference

rate limit - default is 10 Mcps. Implies maximum Q1 (x1) SPADs selected"""

VL53L1_WARNING_OFFSET_CAL_MISSING_SAMPLES = -31
"""Thrown if there is less than the requested number of valid samples."""
VL53L1_WARNING_OFFSET_CAL_SIGMA TOO_HIGH = -32
"""Thrown if the offset calibration range sigma estimate is greater than

8.0 mm. This is the recommended min value to yield a stable offset
measurement"""

VL53L1_WARNING_OFFSET_CAL_RATE_TOO_HIGH = -33
"""Thrown when VL53L1_run_offset_calibration() peak rate is greater than

that 50.0Mcps. This is the recommended max rate to avoid pile-up

influencing the offset measurement
VL53L1_WARNING_OFFSET_CAL_SPAD _COUNT_TOO LOW = -34
"""Thrown when VL53L1 run_offset_calibration() when one of stages range

has less that 5.0 effective SPADS. This is the recommended min value to

yield a stable offset"""

VL53L1_WARNING_ZONE_CAL_MISSING_SAMPLES = -35
"""Thrown if one of more of the zones have less than the requested number

of valid samples"""

VL53L1_WARNING_ZONE_CAL_SIGMA_TOO_HIGH = -36
"""Thrown if one or more zones have sigma estimate value greater than

8.0 mm. This is the recommended min value to yield a stable offset

measurement"""

VL53L1_WARNING_ZONE_CAL_RATE_TOO_HIGH = -37
"""Thrown if one of more zones have peak rate higher than that 50.@Mcps.

This is the recommended max rate to avoid pile-up influencing the offset

measurement"""

VL53L1_WARNING_XTALK_MISSING_SAMPLES = -38
"""Thrown to notify that some of the xtalk samples did not yield valid

ranging pulse data while attempting to measure the xtalk signal in

v15311 run_xtalk_extract(). This can signify any of the zones are missing
samples, for further debug information the xtalk_results struct should be
referred to. This warning is for notification only, the xtalk pulse and

#

shape have still been generated"""

VL53L1_WARNING_XTALK_NO_SAMPLES_FOR_GRADIENT = -39
"""Thrown to notify that some of teh xtalk samples used for gradient

generation did not yield valid ranging pulse data while attempting to

measure the xtalk signal in v15311 run_xtalk_extract(). This can signify

that any one of the zones ©-3 yielded no successful samples. The

xtalk_results struct should be referred to for further debug info. This

warning is for notification only, the xtalk pulse and shape have still

24/36

been generated."""

VL53L1_WARNING_XTALK_SIGMA_LIMIT_FOR_GRADIENT = -40
"""Thrown to notify that some of the xtalk samples used for gradient

generation did not pass the sigma limit check while attempting to

measure the xtalk signal in v15311_run_xtalk_extract(). This can signify
that any one of the zones 0-3 yielded an avg sigma_mm value > the limit.
The xtalk_results struct should be referred to for further debug info.

This warning is for notification only, the xtalk pulse and shape have

still been generated.™""

VL53L1_ERROR_NOT_IMPLEMENTED = -41
"""Tells requested functionality has not been implemented yet or not

compatible with the device"""

VL53L1_ERROR_PLATFORM_SPECIFIC_START = -60

"""Tells the starting code for platform
@} VL53L1_define_Error_group"""

Class

QwiicVL53L1X() or QwiicVL53L1X(i2caddr)

This Python package operates as a class object, allowing new instances of that type to be made. An __init_ ()
constructor is used that creates a connection to an 1°C device over the I1°C bus using the default or specified 1°C
address.

The Constructor

A constructor is a special kind of method used to initialize (assign values to) the data members needed by the
object when it is created.

__init_ (address=None, i2c_driver=None)

Input: value
The value of the device address. If not defined, the Python package will use the default I2C address
(0x77) stored under _AVAILABLE_I2C_ADDRESS variable.

Input: i2c_driver
Loads the specified I2C driver; by default the Qwiic I2C driver is used: qwiic_i2c.getI2CDriver() .
Users should use the default I2C driver and leave this field blank.

Output: Boolean
True: Connected to 12C device on the default (or specified) address.
False: No device found or connected.

Functions

A function that is an attribute of the class, which defines a method for instances of that class. In simple terms, they

are objects for the operations (or methods) of the class.

.init_sensor(address)
Initialize the sensor with default values

Input: value
The value of the device address. If not defined, the Python package will use the default I°C address
(0x77) stored under _AVAILABLE_I2C_ADDRESS variable.

Output: Boolean
True: The initialization was successful.

25/36

.sensor_init()
Loads the 135 bytes of default configuration values to initialize the sensor.

Output: Boolean
True: Configuration successful.
False: Configuration failed.

.get_distance()
This function returns the distance measured by the sensor in mm.

Output: Integer
Returns distance measured by the sensor in mm.

.get_sw_version()
This function returns the SW driver version.

Input: List
[major, minor, build, revision]

.set_i2c_address(new_address)
This function sets the sensor I12C address used in case multiple devices application, default address 0x29 (0x52
>> 1),

Input: Value
I2C address to change device to.

.clear_interrupt()
This function clears the interrupt, to be called after a ranging data reading to arm the interrupt for the next data
ready event.

.set_interrupt_polarity(NewPolarity)
This function programs the interrupt polarity

Input: Value
0: Active Low
1: Active High (Default)

.get_interrupt_polarity()
This function returns the current interrupt polarity.

Output: Value
0: Active Low
1: Active High (Default)

.start_ranging()
This function starts the ranging distance operation The ranging operation is continuous. The clear interrupt has to
be done after each get data to allow the interrupt to raise when the next data is ready:

0: Active Low
1: Active High (Default)

use set_interrupt_polarity() to change the interrupt polarity if required.

.stop_ranging()
This function stops the ranging.

26/36

.check_for_data_ready()
This function checks if the new ranging data is available by polling the dedicated register.

Output: Value
0: Not Ready
1: Ready

.set_timing_budget_in_ms(TimingBudgetInMs)
This function programs the timing budget in ms.

Input: Value (Predefined)

15

20

33

50

100 (Default)

200

500

.get_timing_budget_in_ms()
This function returns the current timing budget in ms.

Output: Value
Timing budget in ms.

.set_distance_mode(DM)
This function programs the distance mode (1=short, 2=long).

Input: Value
1: Short mode max distance is limited to 1.3 m but better ambient immunity.
2: Long mode can range up to 4 m in the dark with 200 ms timing budget (Default)

.get_distance_mode()
This function returns the current distance mode (1=short, 2=long).

Output: Value
1: Short mode max distance is limited to 1.3 m but better ambient immunity.
2: Long mode can range up to 4 m in the dark with 200 ms timing budget (Default)

.set_inter_measurement_in_ms(InterMeasMs)
This function programs the Intermeasurement period in ms.

Input: Value

Intermeasurement period must be >/= timing budget. This condition is not checked by the API, the

customer has the duty to check the condition. Default = 100 ms

.get_inter_measurement_in_ms()
This function returns the Intermeasurement period in ms.

Input: Integer
Intermeasurement period in ms.

.boot_state()
This function returns the boot state of the device (1:booted, 0:not booted)

Output: Integer

27136

com

0: Booted
2: Not Booted

.get_sensor_id()
This function returns the sensor id, sensor |d must be OXEEAC

Output: Integer
Sensor ID

.get_signal_per_spad()
This function returns the returned signal per SPAD (Single Photon Avalanche Diode) in kcps/SPAD (kcps stands
for Kilo Count Per Second).

Output: Integer
Signal per SPAD (Kilo Count Per Second per Single Photon Avalanche Diode).

.get_ambient_per_spad()
This function returns the ambient per (Single Photon Avalanche Diode) in keps/SPAD (kcps stands for Kilo Count
Per Second).

Output: Integer
Ambient per SPAD.

.get_signal_rate()
This function returns the returned signal in kcps (Kilo Count Per Second).

Output: Value
Signal in kcps.

.get_spad_nb()
This function returns the current number of enabled SPADs (Single Photon Avalanche Diodes).

Output: Value
Number of enabled SPADs.

.get_ambient_rate()
This function returns the ambient rate in kcps (Kilo Count Per Second).

Output: Value
Ambient rate in kcps.

.get_range_status()
This function returns the ranging status error.

Output: Value (Ranging status error)
0: No Error
1: Sigma Failed
2: Signal Failed
7: Wrap-around

.set_offset(0OffsetValue)
This function programs the offset correction in mm.

Input: Value
The offset correction value to program in mm.

28/36

.get_offset()
This function returns the programmed offset correction value in mm.

Output: Integer
Offset correction value in mm.

.set_xtalk(Xtalkvalue)
This function programs the xtalk correction value in cps (Count Per Second). This is the number of photons
reflected back from the cover glass in cps.

Input: Integer
Xtalk correction value in count per second to avoid float type.

.get_xtalk()
This function returns the current programmed xtalk correction value in cps (Count Per Second).

Output: Value
Xtalk correction value in cps.

.set_distance_threshold(ThreshLow, ThreshHigh, Window, IntOnNoTarget)
This function programs the threshold detection mode.

Input: Value
The threshold under which one the device raises an interrupt if Window = 0.

Input: Value
The threshold above which one the device raises an interrupt if Window = 1.

Input: Value
Window detection mode:
0: Below
1: Above
2: Out
3:1In
Input: 1

No longer used - just set to 1

Example:
e self.set_distance_threshold(1e0,300,0,1) : Below 100
e self.set distance threshold(100,300,1,1) : Above 300
e self.set_distance_threshold(100,30e,2,1) : Out of window
e self.set distance threshold(1ee,300,3,1) : In window

.get_distance_threshold_window()
This function returns the window detection mode (0=below 1=above 2=out 3=in).

Output: Integer
Window detection mode:
0: Below
1: Above
2: Out
3:In

.get_distance_threshold_low()
This function returns the low threshold in mm.

29/36

Output: Integer
Low threshold in mm.

.get_distance_threshold_high()
This function returns the high threshold in mm.

Output: Integer
High threshold in mm.

.set_roi(X, Y, OpticalCenter = 199)
This function programs the ROI (Region of Interest). The height and width of the ROI (X, Y) are set in SPADs
(Single Photon Avalanche Diodes); the smallest acceptable ROI size = 4 (4 x 4). The optical center is set based on
table below. To set the center, use the pad that is to the right and above (i.e. upper right of) the exact center of the
region you'd like to measure as your optical center.

Table of Optical Centers:

128,136,144,152,160,168,176,184,
129,137,145,153,161,169,177,185,
130,138,146,154,162,170,178,186,
131,139,147,155,163,171,179,187,
132,140,148,156,164,172,180,188,
133,141,149,157,165,173,181,189,
134,142,150,158,166,174,182,190,
135,143,151,159,167,175,183,191,

127,119,111,103,095,087,079,071,
126,118,110, 102,094, 086,078,070,
125,117,109,101,093,085,077,069,
124,116,108,100,092,084,076,068,
123,115,107,099,091, 083,075,067,
122,114,106,098,090, 082,074,066,
121,113,105,097,089, 081,073,065,

192,200,208,216,224,232,240, 248
193,201,209,217,225,233,241,249
194,202,210,218,226,234,242,250
195,203,211,219,227,235,243,251
196,204,212,220,228,236,244,252
197,205,213,221,229,237,245,253
198,206,214,222,230,238,246,254
199,207,215,223,231,239,247, 255

063,055,047,039,031,023,015,007
062,054,046,038,030,022,014,006
061,053,045,037,029,021,013,005
060,052,044,036,028,020,012,004
059,051,043,035,027,019,011,003
958,050,042,034,026,018,010,002
057,049,041,033,025,017,009,001

120,112,104,096,088,080,072,064, ©56,048,040,032,024,016,008,0 Pin 1

(Each SPAD has a number which is not obvious.)
Input: Value
ROI Width

Input: Value
ROI Height

Input: Value
The pad that is to the upper right of the exact center of the ROI (see table above). (Default = 199)

.get_roi_xy()
This function returns width X and height Y.

Output: List [ROI_X, ROL_Y]
Region of Interest Width (X) and Height (Y).

.set_signal_threshold(Signal)
This function programs a new signal threshold in kcps (Kilo Count Per Second).

30/36

Input: Value
Signal threshold in kcps (Default=1024 kcps)

.get_signal_threshold()
This function returns the current signal threshold in kcps (Kilo Count Per Second).

Output: Value
Signal threshold in kcps.

.set_sigma_threshold(Sigma)
This function programs a new sigma threshold in mm (default=15 mm).

Input: Value
Sigma threshold in mm (**default=15 mm™*)

.get_sigma_threshold()
This function returns the current sigma threshold in mm

Output: Integer
Sigma threshold in mm.

.start_temperature_update()
This function performs the temperature calibration. It is recommended to call this function any time the
temperature might have changed by more than 8 deg C without sensor ranging activity for an extended period.

.calibrate_offset(TargetDistInMm)
This function performs the offset calibration. The function returns the offset value found and programs the offset
compensation into the device.

Input: Value
Target distance in mm, ST recommended 100 mm. (Target reflectance = grey 17%)

Output: Boolean
0: Success
10: Failed

.calibrate_xtalk(TargetDistInMm)
This function performs the xtalk calibration. The function returns the xtalk value found and programs the xtalk
compensation to the device

Input: Value
Target distance in mm (the distance where the sensor starts to "under range" due to the influence of the
photons reflected back from the cover glass becoming strong; also called the inflection point). (Target
reflectance = grey 17%)

Output: Boolean
0: Success
10: Failed

Upgrading the Package

In the future, changes to the Python package might be made. Updating the installed packages has to be done
individually for each package (i.e. sub-modules and dependencies won't update automatically and must be
updated manually). For the sparkfun-qwiic-v15311x Python package, use the following command (use pip for
Python 2):

31/36

For all users (note: the user must have sudo privileges):

language:bash
sudo pip3 install --upgrade sparkfun-qwiic-v15311x

For the current user:

language:bash
pip3 install --upgrade sparkfun-qwiic-v15311x

Python Examples

The example code for this product is located in the GitHub repository for the Python package,; it is also hosted with
the ReadtheDocs documentation:

Example 1: Basic Distance Measurement

» Example 2: Set Sensor Distance Mode to Short

» Example 3: Get Sensor Status and Sampling Rate, with Running Average
» Example 4: Set Intermeasurement Period

To run the examples, simple download or copy the code into a file. Then, open/save the example file (if needed)
and execute the code in your favorite Python IDE. For example, with the default Python IDLE click Run > Run
Module or use the F5 key. To terminate the example use the ctrl + C key combination.

Example 1

This example prints the distance to an object. If you are getting weird readings, be sure the vacuum tape has been
removed from the sensor.

Import Dependencies

The first part of the code, imports the required dependencies to operate.
language:python
import qwiic
import time

Initialize Constructor

These lines instantiates an object for the device and initializes the sensor.
language:python
ToF = qwiic.QwiicVL53L1X()
if (ToF.sensor_init() == None): # Begin returns © on a good init

print("Sensor online!\n")
Test Run

This section of the code, illustrates how readings are taken from the sensor and displayed, while being looped. In
the first section of the code, sensors readings are initiated, recorded, and then terminated. The second part of the
code converts the units of the readings and displays them.

32/36

language:python
while True:
try:
ToF.start_ranging() # Write configuration bytes to initiate measure
ment
time.sleep(.005)
distance = ToF.get_distance() # Get the result of the measurement from the sensor
time.sleep(.005)
ToF.stop_ranging()

distanceInches = distance / 25.4
distanceFeet = distanceInches / 12.0

print("Distance(mm): %s Distance(ft): %s" % (distance, distanceFeet))

except Exception as e:
print(e)

Example 2

This example configures the sensor to short distance mode and then prints the distance to an object. If you are
getting weird readings, be sure the vacuum tape has been removed from the sensor.

Import Dependencies

The first part of the code, imports the required dependencies to operate.
language:python
import qwiic
import time

Initialize Constructor

These lines instantiates an object for the device and initializes the sensor.
language:python
ToF = gqwiic.QwiicVL53L1X()
if (ToF.sensor_init() == None): # Begin returns © on a good init

print("Sensor online!\n")
Test Run

This section of the code, illustrates how readings are taken from the sensor and displayed. In the first part of the
code, the sensor is configured to read with the short distance mode (the sensor is configured for long distance

mode on power up). The second part of the code reads and displays data; as mentioned in the previous example.

33/36

language:python
ToF.set_distance_mode(1) # Sets Distance Mode Short (Long- Change value to 2)

while True:
try:
ToF.start_ranging() # Write configuration bytes to initiate measure
ment

time.sleep(.005)
distance = ToF.get_distance() # Get the result of the measurement from the sensor

time.sleep(.005)
ToF.stop_ranging()

distanceInches = distance / 25.4
distanceFeet = distanceInches / 12.0

print("Distance(mm): %s Distance(ft): %s" % (distance, distanceFeet))

except Exception as e:
print(e)

Troubleshooting

© Not working as expected and need help?

If you need technical assistance and more information on a product that is not working as you expected, we
recommend heading on over to the SparkFun Technical Assistance page for some initial troubleshooting.

SPARKFUN TECHNICAL ASSISTANCE PAGE

If you don't find what you need there, the SparkFun Forums are a great place to find and ask for help. If this
is your first visit, you'll need to create a Forum Account to search product forums and post questions.

CREATE NEW FORUM ACCOUNT LOG INTO SPARKFUN FORUMS

Resources and Going Further

Now that you've successfully got your Qwiic Distance Sensor up and running, it's time to incorporate it into your
own project! For more information, check out the resources below:

o VL53L1X -4M
o Schematic (PDF)
o Eagle Files (ZIP)
o Board Dimensions (PNG)
o Datasheet (PDF)
o User Manual (PDF)
o Application Note: Cover Window Guidelines (PDF)

34/36

e VL53L4CD - 1.3M
o Schematic (PDF)
o Eagle Files (ZIP)
o Board Dimensions (PNG)
o Datasheet (PDF)
o User Manual (PDF)
» GitHub Repos:
o Hardware Repo
s VLS3L1X
= VL53L4CD
o SparkFun VL53L1X Arduino Library
o SparkFun VL53L1X Python Package
= ReadtheDocs Documentation
» Quwiic Landing Page
o SparkFun Product Showcase: VL53L1X Qwiic Distance Sensor

Want a great use case for your ToF sensor? How about integrating one into your AVC submission? Have a look
here:

AVC Sensor Test
JUNE 20, 2016

Need even more inspiration for your next project? Check out some of these related tutorials:

Three Quick Tips About Using U.FL SparkFun Air Quality Sensor - SGP30 (Qwiic)
Quick tips regarding how to connect, protect, and Hookup Guide
disconnect U.FL connectors. A hookup guide to get started with the SparkFun Air

Quality Sensor - SGP30 (Qwiic).

35/36

Artemis Development with the Arduino IDE
This is an in-depth guide on developing in the Arduino
IDE for the Artemis module and any Artemis
microcontroller development board. Inside, users will
find setup instructions and simple examples from
blinking an LED and taking ADC measurements; to
more complex features like BLE and 12C.

Or check out this blog post for more ideas!

Enginursday: A New Sensory Experience with
the Cthulhu Shield
FEBRUARY 13, 2020

https://learn.sparkfun.com/tutorials/qwiic-distance-sensor-vI5311x-vI53l4cd-hookup-guide/all

Qwiic SHIM Kit for Raspberry Pi Hookup Guide
Get started with the Serial LCD with RGB backlight and

9DoF IMU (ICM-20948) via 12C using the Qwiic system
and Python on a Raspberry Pi! Take sensor readings
and display them in the serial terminal or SerLCD.

36/36

