2-Mbit (128K x 16) Static RAM ### **Features** • Temperature Ranges - Industrial: -40°C to 85°C - Automotive-A: -40°C to 85°C - Automotive-E: -40°C to 125°C • High speed: 55 ns Wide voltage range: 2.7V–3.6V · Ultra-low active, standby power • Easy memory expansion with CE and OE features · TTL-compatible inputs and outputs · Automatic power-down when deselected CMOS for optimum speed/power Available in standard Pb-free 44-pin TSOP Type II, Pb-free and non Pb-free 48-ball FBGA packages ### Functional Description[1] The CY62136VN is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected ($\overline{\text{CE}}$ HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$ are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW). <u>Writing</u> to the device is <u>acc</u>omplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0$ through I/O₇), is written into the location specified <u>on the</u> address pins $(A_0$ through A_{16}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8$ through $I/O_{15})$ is written into the location specified on the address pins $(A_0$ through $A_{16})$. Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the Truth Table at the back of this data sheet for a complete description of read and write modes. ### **Logic Block Diagram** # PinConfigurations^[3] TSOP II (Forward) | | | Top Vie | w | • | |----------------|--|---------|--|--| | A ₄ | 1 2 3 4 5 6 7 8 9 100 111 12 13 14 15 16 17 18 19 20 21 22 | | 14
14
13
14
14
14
10
33
33
33
33
33
33
33
33
33
33
33
33
33 | A ₅
A ₆
A ₇
OE
BHE
BLE
I/O 15
I/O 14
I/O 13
I/O 12
VSS
VCC
I/O 11
I/O 9
I/O 8
NC
A ₈
A ₁₀
A ₁₁
NC | #### Note: 1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com. ## **Product Portfolio** | | | | | | | Power Dissipation | | | | |-------------|-----|---------------------|-----|-------|--------------|---------------------|--------------------------|----------------------------|--------------------------------| | | V | _{CC} Range | (V) | | | Operatin | ig, I _{CC} (mA) | Standby | y, I_{SB2} (μΑ) | | Product | Min | Typ. ^[2] | Max | Speed | Ranges | Typ. ^[2] | Maximum | Typ. ^[2] | Maximum | | CY62136VNLL | 2.7 | 3.0 | 3.6 | 55 | Industrial | 7 | 20 | 1 | 15 | | | | | | 55 | Automotive-A | 7 | 20 | 1 | 15 | | | | | | 70 | Industrial | 7 | 15 | 1 | 15 | | | | | | 70 | Automotive-A | 7 | 15 | 1 | 15 | | | | | | 70 | Automotive-E | 7 | 20 | 1 | 20 | # Pin Configurations^[3] ^{2.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C. 3. NC pins are not connected on the die. # **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential -0.5V to +4.6V DC Voltage Applied to Outputs in High-Z State $^{[4]}$-0.5V to V $_{\rm CC}$ + 0.5V DC Input Voltage^[4].....-0.5V to V_{CC} + 0.5V | Output Current into Outputs (LOW) | 20 mA | |---|--------| | Static Discharge Voltage>
(per MIL-STD-883, Method 3015) | 2001V | | Latch-up Current> | 200 mA | # **Operating Range** | Range | V _{CC} | | |--------------|-----------------|---------| | Industrial | −40°C to +85°C | 2.7V to | | Automotive-A | −40°C to +85°C | 3.6V | | Automotive-E | -40°C to +125°C | | # **Electrical Characteristics** Over the Operating Range | | | | | | | -55 | | | -70 | | | |------------------|---------------------------|---|--|--------|------|----------------------------|------------------------|------|----------------------------|------------------------|------| | Parameter | Description | Test Conditions | | | Min. | Typ. ^[2] | Max. | Min. | Typ. ^[2] | Max. | Unit | | V _{OH} | Output HIGH Voltage | $V_{CC} = 2.7$ | $I_{CC} = 2.7 \text{V}, I_{OH} = -1.0 \text{ mA}$ | | | | | 2.4 | | | V | | V _{OL} | Output LOW Voltage | $V_{CC} = 2.7$ | /, I _{OL} = 2.1 m | A | | | 0.4 | | | 0.4 | V | | V _{IH} | Input HIGH Voltage | $V_{CC} = 3.6$ | I | | 2.2 | | V _{CC} + 0.5V | 2.2 | | V _{CC} + 0.5V | V | | V _{IL} | Input LOW Voltage | V _{CC} = 2.7 | / | | -0.5 | | 0.8 | -0.5 | | 0.8 | V | | I _{IX} | Input Leakage | GND ≤ V _I | < V _{CC} | Ind'I | -1 | | +1 | -1 | | +1 | μА | | | Current | | | Auto-A | -1 | | +1 | -1 | | +1 | μА | | | | | | Auto-E | | | | -10 | | +10 | μА | | I _{OZ} | Output Leakage | $ \begin{array}{c} GND \leq V_{O} \leq V_{CC}, \\ Output\ Disabled \end{array} \begin{array}{c} Ind'I \\ Auto-A \\ Auto-E \end{array} $ | | Ind'I | -1 | | +1 | -1 | | +1 | μА | | (| Current | | | Auto-A | -1 | | +1 | -1 | | +1 | μА | | | | | | Auto-E | | | | -10 | | +10 | μА | | I _{CC} | V _{CC} Operating | $f = f_{MAX}$ | $V_{CC} = 3.6V,$ | Ind'l | | 7 | 20 | | 7 | 15 | mA | | | Supply
Current | = 1/t _{RC} | I _{OUT} = 0 mA,
CMOS | Auto-A | | 7 | 20 | | 7 | 15 | 1 | | | Curron | | Levels | Auto-E | | | | | 7 | 20 | | | | | f = 1 MHz | | Ind'l | | 1 | 2 | | 1 | 2 | mA | | | | | | Auto-A | | 1 | 2 | | 1 | 2 | 1 | | | | | | Auto-E | | | | | 1 | 2 | 1 | | I _{SB1} | Automatic CE | CE ≥ V _{CC} | - 0.3V, | Ind'l | | | 100 | | | 100 | μА | | | Power-down
Current— | $V_{IN} \ge V_{CC}$
$V_{IN} \le 0.3V$ | $-0.3V$ or $f = f_{MAX}$ | Auto-A | | | 100 | | | 100 | μА | | | CMOS Inputs | 1111 = 0.01 | , · — ·IVIAX | Auto-E | | | | | | 100 | μА | | I _{SB2} | Automatic CE | CE ≥ V _{CC} | - 0.3V | Ind'l | | 1 | 15 | | 1 | 15 | μА | | | Power-down
Current— | $\overline{\text{CE}} \ge V_{\text{CC}}$ $V_{\text{IN}} \ge V_{\text{CC}}$ $V_{\text{IN}} \le 0.3V$ | – 0.3V or
. f = 0 | Auto-A | | 1 | 15 | | 1 | 15 | 1 | | | CMOS Inputs | 110 = 0.00 | $V_{\text{IN}} \leq 0.3 \text{ V}, \text{ I} = 0$ Auto | | | | | | 1 | 20 | 1 | # Capacitance^[6] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|--------------------|---|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 6 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = V_{CC(typ)}$ | 8 | pF | ### Notes: Notes. 4. V_{IL}(min) = -2.0V for pulse durations less than 20 ns. 5. T_A is the "Instant-On" case temperature. 6. Tested initially and after any design or process changes that may affect these parameters. ### Thermal Resistance^[6] | Parameter | Description | Test Conditions | TSOPII | FBGA | Unit | |-------------------|--|---|--------|------|------| | Θ_{JA} | Thermal Resistance (Junction to Ambient) | Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board | 60 | 55 | °C/W | | $\Theta_{\sf JC}$ | Thermal Resistance (Junction to Case) | | 22 | 16 | °C/W | # **AC Test Loads and Waveforms** Equivalent to: THÉVENIN EQUIVALENT | Parameters | Value | Unit | |-----------------|-------|-------| | R1 | 1105 | Ohms | | R2 | 1550 | Ohms | | R _{TH} | 645 | Ohms | | V _{TH} | 1.75 | Volts | # Data Retention Characteristics (Over the Operating Range) | Parameter | Description | Conditions ^[9] | Min. | Typ. ^[2] | Max. | Unit | |---------------------------------|---|--|------|----------------------------|------|------| | V_{DR} | V _{CC} for Data Retention | | 1.0 | | | V | | I _{CCDR} | Data Retention Current | $V_{CC} = 1.0V, \overline{CE} \ge V_{CC} - 0.3V,$
$V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V,$ | | 0.5 | 7.5 | μА | | t _{CDR} ^[6] | Chip Deselect to Data
Retention Time | | 0 | | | ns | | t _R ^[7] | Operation Recovery Time | | 70 | | | ns | # **Data Retention Waveform** - Note: 7. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100$ ms or stable at $V_{CC(min)} \ge 100$ ms. 8. No input may exceed $V_{CC} + 0.3V$ # Switching Characteristics Over the Operating Range [9] | | | 55 | i ns | 70 |) ns | | |--------------------------------|--|------|------|------|------|------| | Parameter | Description | Min. | Max. | Min. | Max. | Unit | | Read Cycle | , | | | 1 | l . | | | t _{RC} | Read Cycle Time | 55 | | 70 | | ns | | t _{AA} | Address to Data Valid | | 55 | | 70 | ns | | t _{OHA} | Data Hold from Address Change | 10 | | 10 | | ns | | t _{ACE} | CE LOW to Data Valid | | 55 | | 70 | ns | | t _{DOE} | OE LOW to Data Valid | | 25 | | 35 | ns | | t _{LZOE} | OE LOW to Low-Z ^[10] | 5 | | 5 | | ns | | t _{HZOE} | OE HIGH to High-Z ^[10, 11] | | 25 | | 25 | ns | | t _{LZCE} | CE LOW to Low-Z ^[10] | 10 | | 10 | | ns | | t _{HZCE} | CE HIGH to High-Z ^[10, 11] | | 25 | | 25 | ns | | t _{PU} | CE LOW to Power-up | 0 | | 0 | | ns | | t _{PD} | CE HIGH to Power-down | | 55 | | 70 | ns | | t _{DBE} | BLE / BHE LOW to Data Valid | | 25 | | 35 | ns | | t _{LZBE} | BLE / BHE LOW to Low-Z ^[10, 11] | 5 | | 5 | | ns | | t _{HZBE} | BLE / BHE HIGH to High-Z ^[12] | | 25 | | 25 | ns | | Write Cycle ^{[12, 13} |] | | | • | | | | t _{WC} | Write Cycle Time | 55 | | 70 | | ns | | t _{SCE} | CE LOW to Write End | 45 | | 60 | | ns | | t _{AW} | Address Set-up to Write End | 45 | | 60 | | ns | | t _{HA} | Address Hold from Write End | 0 | | 0 | | ns | | t _{SA} | Address Set-up to Write Start | 0 | | 0 | | ns | | t _{PWE} | WE Pulse Width | 40 | | 50 | | ns | | t_{BW} | BLE / BHE LOW to Write End | 50 | | 60 | | ns | | t _{SD} | Data Set-up to Write End | 25 | | 30 | | ns | | t _{HD} | Data Hold from Write End | 0 | | 0 | | ns | | t _{HZWE} | WE LOW to High-Z ^[10, 11] | | 20 | | 25 | ns | | t _{LZWE} | WE HIGH to Low-Z ^[10] | 5 | | 10 | | ns | #### Notes: ^{9.} Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified l_{OL}/l_{OH} and 30-pF load capacitance. 10. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device. 11. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of A<u>C</u> Test Loads. Transition is measured ±500 mV from steady-state voltage. 12. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. 13. The minimum write cycle time for write cycle 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}. # **Switching Waveforms** **Read Cycle No. 1**^[14, 15] **Read Cycle No. 2**^[15, 16] Notes: 14. <u>Dev</u>ice is continuously selected. \overline{OE} , $\overline{CE} = V_{|L}$. 15. \overline{WE} is HIGH for read cycle. 16. Address valid prior to or coincident with \overline{CE} transition LOW. # Switching Waveforms (continued) Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) $^{[12, 17, 18]}$ Write Cycle No. 2 (CE Controlled)[12, 17, 18] ^{17.} Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$. 18. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state. 19. During this period, the I/Os are in output state and input signals should not be applied. # Switching Waveforms (continued) # Write Cycle No. 3 (WE Controlled, OE LOW)[13, 18] # Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[19] # **Typical DC and AC Characteristics** SUPPLY VOLTAGE (V) # **Truth Table** | CE | WE | OE | BHE | BLE | Inputs/Outputs | Mode | Power | |----|----|----|-----|-----|--|--------------------------|----------------------------| | Н | Х | Х | Х | X | High-Z | Deselect/Power-down | Standby (I _{SB}) | | L | Н | L | L | L | Data Out (I/O ₀ -I/O ₁₅) | Read | Active (I _{CC}) | | L | Н | L | Н | L | Data Out (I/O ₀ –I/O ₇);
I/O ₈ –I/O ₁₅ in High-Z | Read | Active (I _{CC}) | | L | Н | L | L | Ι | Data Out (I/O ₈ –I/O ₁₅);
I/O ₀ –I/O ₇ in High-Z | Read | Active (I _{CC}) | | L | Н | L | Н | Η | High-Z | Deselect/Output Disabled | Active (I _{CC}) | | L | Н | Н | L | L | High-Z | Deselect/Output Disabled | Active (I _{CC}) | | L | Н | Н | Н | L | High-Z | Deselect/Output Disabled | Active (I _{CC}) | | L | Н | Н | L | Η | High-Z | Deselect/Output Disabled | Active (I _{CC}) | | L | L | Х | L | L | Data In (I/O ₀ -I/O ₁₅) | Write | Active (I _{CC}) | | L | L | X | Н | L | Data In (I/O ₀ –I/O ₇);
I/O ₈ –I/O ₁₅ in High-Z | Write | Active (I _{CC}) | | L | L | Х | L | Н | Data In (I/O ₈ –I/O ₁₅);
I/O ₀ –I/O ₇ in High-Z | Write | Active (I _{CC}) | # **Ordering Information** | Speed
(ns) | Ordering Code | Package
Diagram | Package Type | Operating
Range | |---------------|--------------------|--------------------|--|--------------------| | 55 | CY62136VNLL-55ZXI | 51-85087 | 44-pin TSOP II (Pb-Free) | Industrial | | | CY62136VNLL-55BAI | 51-85096 | 48-Ball (7.00 mm x 7.00 mm) FBGA | | | | CY62136VNLL-55ZSXA | 51-85087 | 44-pin TSOP II (Pb-Free) | Automotive-A | | 70 | CY62136VNLL-70ZXI | 51-85087 | 44-pin TSOP II (Pb-Free) | Industrial | | | CY62136VNLL-70BAI | 51-85096 | 48-Ball (7.00 mm x 7.00 mm) FBGA | | | | CY62136VNLL-70BAXA | 51-85096 | 48-Ball (7.00 mm x 7.00 mm) FBGA (Pb-Free) | Automotive-A | | | CY62136VNLL-70ZSXA | 51-85087 | 44-pin TSOP II (Pb-Free) | | | | CY62136VNLL-70ZSXE | 51-85087 | 44-pin TSOP II (Pb-Free) | Automotive-E | Please contact your local Cypress sales representative for availability of these parts # **Package Diagrams** # 44-pin TSOP II (51-85087) DIMENSION IN MM (INCH) MAX MIN. # Package Diagrams (continued) ### 48-Ball (7.00 mm x 7.00 mm) FBGA (51-85096) MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the products of their respective holders. # **Document History Page** | Document Title: CY62136VN MoBL [®] 2-Mbit (128K x 16) Static RAM Document Number: 001-06510 | | | | | |--|---------|------------|--------------------|---| | REV. | ECN NO. | Issue Date | Orig. of
Change | Description of Change | | ** | 426503 | See ECN | RXU | New Data Sheet | | *A | 488954 | See ECN | NXR | Added Automotive product Updated ordering Information table |