

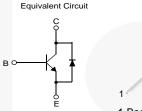
Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

January 2016


FJI5603D NPN Silicon Transistor

Applications

- High Voltage and High Speed Power Switch Application
- · Electronic Ballast Application

Features

- · Wide Safe Operating Area
- · Small Variance in Storage Time
- Built-in Free Wheeling Diode

Ordering Information

Part Number	Marking	Package	Packing Method	
FJI5603DTU	J5603D	TO-262 3L (I2PAK)	Rail	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	1600	V
V _{CEO}	Collector-Emitter Voltage	800	V
V _{EBO}	Emitter-Base Voltage	12	V
I _C	Collector Current (DC)	3	Α
I _{CP}	Collector Current (Pulse) ⁽¹⁾	6	Α
I _B	Base Current (DC)	2	Α
I _{BP}	Base Current (Pulse) ⁽¹⁾	4	Α
P _C	Power Dissipation (T _C = 25°C)	100	W
TJ	Junction Temperature	150	°C
T _{STG}	Storage Junction Temperature Range	-65 to +150	°C
EAS	Avalanche Energy (T _J = 25°C, 8 mH)	3.5	mJ

Notes:

1. Pulse test: pulse width = 5 ms, duty cycle \leq 10%

Thermal Characteristics(2)

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Rating	Unit
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	1.25	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient	80	°C/W

Note:

2. Device mounted on minimum pad size.

Electrical Characteristics(3)

Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit	
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C = 0.5 \text{ mA}, I_E = 0$	7	1600	1689		V	
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_C = 5 \text{ mA}, I_B = 0$		800	870		V	
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = 0.5 \text{ mA}, I_C = 0$		12.0	14.8		>	
I _{CES}	Collector Cut-Off Current	V _{CE} = 1600 V, V _{BE} = 0	$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 125^{\circ}{\rm C}$		0.01	100 1000	μΑ	
I _{CEO}	Collector Cut-Off Current	V _{CE} = 800 V, I _B = 0	$T_{C} = 25^{\circ}C$ $T_{C} = 125^{\circ}C$		0.01	100 1000	μΑ	
I _{EBO}	Emitter Cut-Off Current	V _{EB} = 12 V, I _C = 0			0.05	500	μΑ	
			T _C = 25°C	20	29	35	•	
	DC Current Gain	$V_{CE} = 3 \text{ V, } I_{C} = 0.4 \text{ A}$	T _C = 125°C	6	15			
h _{FE}		$V_{CC} = 10 \text{ V. } I_{C} = 5 \text{ mA}$	T _C = 25°C	20	43			
			T _C = 125°C	20	46			
	0 11 1 5 11 0 1 11	$I_C = 250 \text{ mA}, I_B = 25 \text{ mA}$			0.50	1.25		
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			1.50	2.50	V	
		$I_C = 1 A, I_B = 0.2 A$			1.20	2.50		
		I _C = 500 mA, I _B = 50 mA	$T_C = 25^{\circ}C$		0.74	1.20		
V _{BE} (sat)	Base-Emitter Saturation Voltage	IC = 300 IIIA, IB = 30 IIIA	$T_{\rm C} = 125^{\circ}{\rm C}$		0.61	1.10	V	
v BE(oat)		$I_C = 2 \text{ A}, I_B = 0.4 \text{ A}$ $T_C = 25^{\circ}\text{C}$ $T_C = 125^{\circ}\text{C}$	$T_C = 25^{\circ}C$		0.85	1.20		
			$T_{\rm C} = 125^{\circ}{\rm C}$		0.74	1.10		
C_{ib}	Input Capacitance	$V_{EB} = 10 \text{ V}, I_{C} = 0, f = 1 \text{ MHz}$			745	1000	pF	
C _{ob}	Output Capacitance	$V_{CB} = 10 \text{ V}, I_{E} = 0, f = 1 \text{ MHz}$ $I_{C} = 0.1 \text{ A}, V_{CE} = 10 \text{ V}$			56	500	pF	
f _T	Current Gain Bandwidth Product				5	V	MHz	
V _F	Diode Forward Voltage	I _F = 0.4 A			0.76	1.20	V	
v F	Diodo i orward voltage	I _F = 1 A			0.83	1.50	V	

Note:

3. Pulse test: pulse width = 20 μs , duty cycle \leq 10%.

Electrical Characteristics (Continued)

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
RESISTIVE LOAD SWITCHING (D.C ≤ 10%, Pulse Width = 20 μs)						
t _{ON}	Turn-On Time	$I_C = 0.3 \text{ A}, I_{B1} = 50 \text{ mA},$		400	600	ns
t _{STG}	Storage Time	$I_{B2} = 150 \text{ A}, V_{CC} = 125 \text{ V},$	1.9	2.1	2.3	μs
t _F	Fall Time	$R_L = 416 \Omega$		310	1000	ns
t _{ON}	Turn-On Time	I _C = 0.5 A, I _{B1} = 50 mA,		600	1100	ns
t _{STG}	Storage Time	$I_{B2} = 250 \text{ mA}, V_{CC} = 125 \text{ V},$		1.3	1.5	μs
t _F	Fall Time	$R_L = 250 \Omega$		180	350	ns
INDUCTIV	$^{\prime}$ E LOAD SWITCHING (V_{CC} = 15 V)				
t _{STG}	Storage Time	$I_C = 0.3 \text{ A}, I_{B1} = 50 \text{ mA},$	0.8		1.2	μs
t _F	Fall Time	$I_{B2} = 150 \text{ mA}, V_Z = 300 \text{ V},$		170	250	ns
t _C	Cross-Over Time	$L_C = 200 \text{ H}$		180	250	ns
t _{STG}	Storage Time	I _C = 0.5 A, I _{B1} = 50 mA,	0.8		1.2	μs
t _F	Fall Time	$I_{B2} = 250 \text{ mA}, V_Z = 300 \text{ V},$ $L_C = 200 \text{ H}$		140	175	ns
t _C	Cross-Over Time			170	200	ns

Typical Performance Characteristics

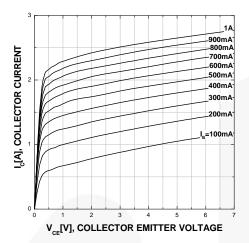


Figure 1. Static Characteristic

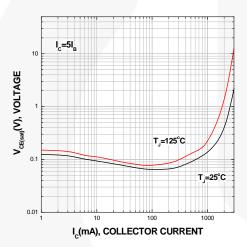


Figure 3. Collector-Emitter Saturation Voltage

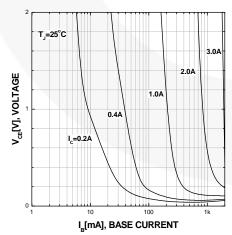


Figure 5. Typical Collector Saturation Voltage

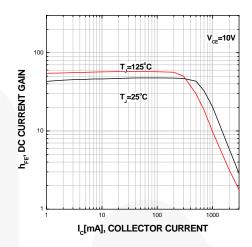


Figure 2. DC Current Gain

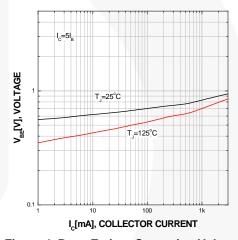


Figure 4. Base-Emitter Saturation Voltage

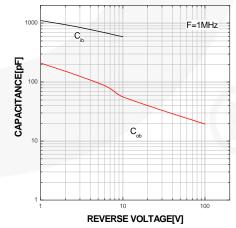


Figure 6. Capacitance

Typical Performance Characteristics (Continued)

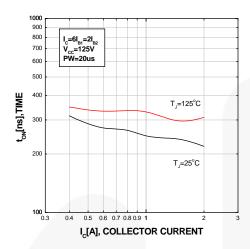


Figure 7. Resistive Switching Time, ton

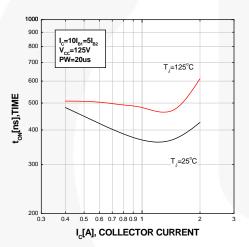


Figure 9. Resistive Switching Time, ton

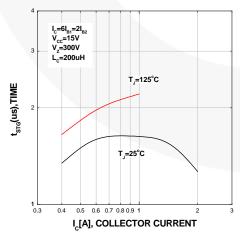


Figure 11. Inductive Switching Time, t_{STG}

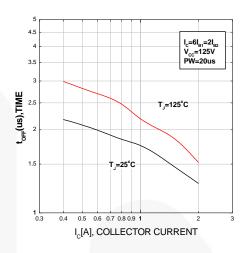


Figure 8. Resistive Switching Time, toff

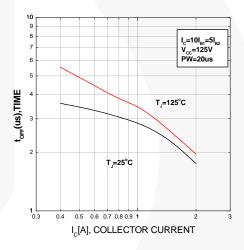


Figure 10. Resistive Switching Time, toff

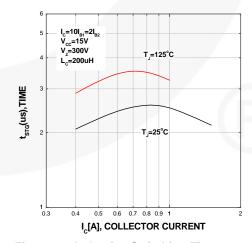


Figure 12. Inductive Switching Time, t_{STG}

Typical Performance Characteristics (Continued)

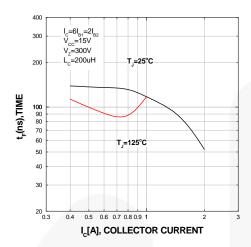


Figure 13. Inductive Switching Time, t_F

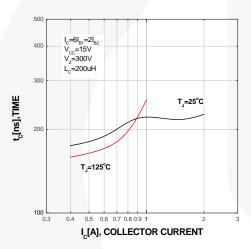


Figure 15. Inductive Switching Time, t_c

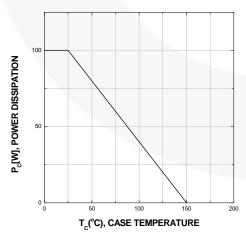


Figure 17. Power Derating

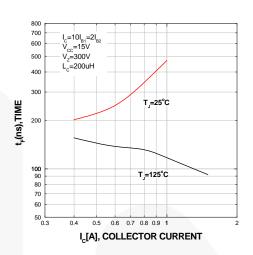


Figure 14. Inductive Switching Time, t_F

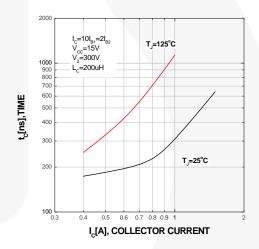
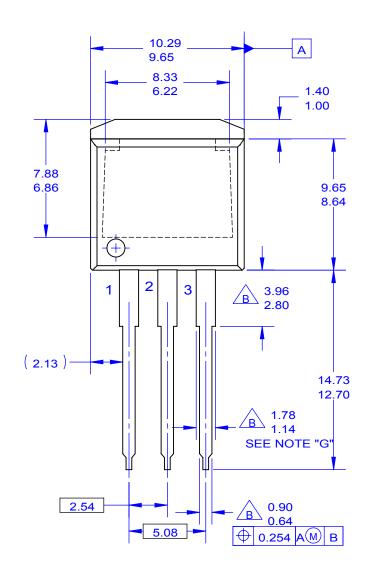
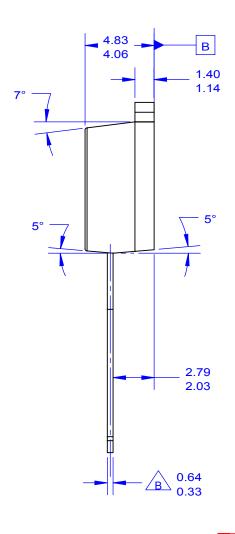




Figure 16. Inductive Switching Time, t_c

NOTES:

A. EXCEPT WHERE NOTED CONFORMS TO
TO262 JEDEC VARIATION AA.
B DOES NOT COMPLY JEDEC STD. VALUE.
C. ALL DIMENSIONS ARE IN MILLIMETERS.
D. DIMENSIONS ARE EXCLUSIVE OF BURRS,
MOLD FLASH AND TIE BAR PROTRUSIONS.
E. DIMENSION AND TOLERANCE AS PER ANSI
Y14 5-1904

Y14.5-1994

F. LOCATION OF PIN HOLE MAY VARY
(LOWER LEFT CORNER, LOWER CENTER
AND CENTER OF PACKAGE)
G. MAXIMUM WIDTH FOR F102 DEVICE = 1.35 MAX.
H. DRAWING FILE NAME: TO262A03REV6

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative