Type CGO Ultra Low ESR Screw Terminal Aluminum Electrolytic

Extremely Low ESR, Low Voltage, Screw Terminal Capacitors

When the manual of the second	Type CGO low voltage, low ESR, screw terminal aluminum electrolytic capacitors have extremely low ESR and are suitable for output filtering in switch mode power supply applications. Highlights • Extremely low ESR • Low voltage • Screw Terminal • 35 mm diameter RoHS Compliant 2,800 to 45,000 μF 5 to 55 WVdc ±20% -40 to +85 °C The maximum ripple current at 85 °C and 20 kHz for CGO capacitors is shown in the standard Rat- ings Tables. Maximum ripple current may be adjust-								
C.N.	ed by the multipliers in the tables below. Ambient Temperature / Ripple Multiplier								
	€ 435 °C +45 °C +55 °C +65 °C +75 °C +85 °C								
	2 15 1.93 1.73 1.50 1.30 1.00								
	Rated Frequency / Ripple Multiplier								
	Voltage 120 Hz 400 Hz 1000 Hz 2500 Hz 10 kHz								
	5 to 55 .84 .85 .86 .87 .95								
DC Leakage Current:	I ≤ 1.5 √CV after 5 minutes C = Capacitance in F V = Rated Voltage I = Leakage current in								
QA Stability Test:	Apply WVdc for 1000 h @ 85 ℃ Capacitance change ≤15% from thitial limits DC leakage current meets initial limits ESR ≤175% of initial measured value								
Click here to see: Hardware & Mounting	Click here to see: Mechanical Details								

<u>Click here to see: Hardware & Mounting</u> <u>Options</u> **<u>Click here to see: Mechanical Details</u>**

Type CGO Ultra Low ESR Screw Terminal Aluminum Electrolytic

Ratings

				Мах								Мах			
	Catalog	Туріса	I ESR	Ripple					Catalog	Туріса	al ESR	Ripple			
Сар	Part Number	120 Hz	20 kHz	20 kHz	Dia.	Length		Сар	Part Number	120 Hz	20 kHz	20 kHz	Dia.	Length	
(µF)		(Ω)	(Ω)	(A) RMS	(ln.)	(ln.)		(µF)		(Ω)	(Ω)	(A) RMS	(ln.)	(ln.)	
CatalogTypical ESRRippleCapPart Number120 Hz20 kHz20 kHzDia.Length(μF)(Ω)(Ω)(A) RMS(In.)(In.)5 WVdc (6 Vdc Surge)									28 WVdc (32 Vdc Surge)						
18000	EEO183M005L	0.016	0.009	9.8	1.375	2.125		6300	CGO632M028L	0.021	0.012	8.3	1.375	2.125	
	7.5 V	VVdc (9	Vdc Su	rge)				8800	CGO882M028L	0.017	0.010	9.9	1.375	2.625	
15000	CG0153177R5L	.0158	0.010	9.4	1.375	2.125		8900	CGO892M028L	0.017	0.010	10.1	1.375	2.625	
	CGO213M7R5		0.008	10.9	1.375	2.625		14000	CGO143M028L	0.012	0.008	13.1	1.375	3.625	
	CGO273M7R5L		0.007	12.7	1.375	3.125		35 WVdc (40 Vdc Surge)							
33000	CGO333M7R5L	0.00	0.006	14.2	1.375	3.625		4,500	CGO452M035L	0.024	0.012	8.2	1.375	2.125	
	CGO393M7R5L	0.009	()	15.5	1.375	4.125		6300	CGO632M035L	0.024	0.012	9.8	1.375	2.625	
45000	CGO453M7R5L	0.008		17.5	1.375	4.625									
		Vdc (12						8100	CGO812M035L	0.015	0.009	11.5	1.375	3.125	
	CGO143M010L	0.018	0.010	A	1.375	2.125		10000	CGO103M035L	0.013	0.008	13.0	1.375	3.625	
19000	CGO193M010L	0.013	0.008	· · · · · · · · · · · · · · · · · · ·	375	2.625		14000	CGO143M035L	0.010	1	16.1	1.375	4.625	
40000		Vdc (18		<u> </u>	1.375	0.405			1	Vdc (50	1	<u> </u>			
	CGO103M016L	.0167	0.010	9.3		2,125		3800	CGO382M045L	0.032	0.018	8.1	1.375	2.125	
	CGO143M016L CGO183M016L	0.008 0.011	0.006	10.9 12.6	1.375 1.375	3.125	5	4600	CGO462M045L	0.024	0.013	9.7	1.375	2.625	
	CGO223M016L	0.011	0.007	14.2	1.375	3.625	S	10000	CGO103M045L	0.022	0.013	15.6	1.375	4.625	
22000		Vdc (22			1.575	0.020		\sim	55 W\	Vdc (64	Vdc Su	rge)			
12000	CGO123M020L	.0142	0.009	10.8	1.375	2.625	1 [280	CGO282M055L	.0302	0.015	7.5	1.375	2.125	
	CGO163M020L	0.012	0.007	12.6	1.375	3.125		3900	CCO392M055L	0.023	0.012	9.0	1.375	2.625	
	CGO203M020L	0.010	0.007	14.1	1.375	3.625		5000	CG0502M055L	0.019	0.010	10.6	1.375	3.125	
22000	CGO223M020L	0.009	0.006	15.4	1.375	4.125		10000	CGO103M055L	0.011	0.006	17.2	1.375	5.625	
27000	CGO273M020L	0.008	0.005	17.4	1.375	4.625		1			1			1	
34000	CGO343M020L	0.007	0.005	19.6	1.375	5.625									
										U S)				
											U's				
											X				
												· ′仑	0		
												•	2		
													Y	2	
												AT PE		Sh,	

Notice and Disclaimer: All product drawings, descriptions, specifications, statements, information and data (collectively, the "Information") in this datasheet or other publication are subject to change. The customer is responsible for checking, confirming and verifying the extent to which the Information contained in this datasheet or other publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without any guaran-tee, warranty, representation or responsibility of any kind, expressed or implied. Statements of suitability For certain applications are based on the knowledge that the Cornell Dubilier company providing such