
Qwiic Distance Sensor (RFD77402) Hookup Guide




Introduction
The RFD77402 uses an infrared VCSEL (Vertical Cavity Surface Emitting Laser) TOF (Time of Flight) module
capable of millimeter precision distance readings up to 2 meters. It’s also part of SparkFun’s Qwiic system, so you
won’t have to do any soldering to figure out how far away things are.

In this hookup guide, we’ll first get started with some basic distance readings, then we’ll add in a confidence value
to ensure the sensor isn’t returning “garbage” data. Finally, we’ll increase our sample rate to obtain readings as
fast as we can.

SparkFun Distance Sensor Breakout - RFD77402
(Qwiic)
 SEN-14539

Product Showcase: Qwiic Distance and Accelerometer Sensor Breakout

https://www.sparkfun.com/
https://www.sparkfun.com/products/14539
https://en.wikipedia.org/wiki/Vertical-cavity_surface-emitting_laser
https://en.wikipedia.org/wiki/Time_of_flight
https://www.sparkfun.com/categories/399
https://www.sparkfun.com/products/14539
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14539
https://www.youtube.com/watch?v=v7ke4qhQAXQ

Required Materials

To get started, you’ll need a microcontroller to, well, control everything.

Now to get into the Qwiic ecosystem, the key will be one of the following Qwiic shields to match your preference of
microcontroller:

SparkFun RedBoard - Programmed with
Arduino
 DEV-13975

SparkFun ESP32 Thing
 DEV-13907

Raspberry Pi 3
 DEV-13825

Particle Photon (Headers)
 WRL-13774

https://www.sparkfun.com/products/13975
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13975
https://www.sparkfun.com/products/13907
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13825
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13825
https://www.sparkfun.com/products/13774
https://www.sparkfun.com/products/13774

You will also need a Qwiic cable to connect the shield to your distance sensor, choose a length that suits your
needs.

SparkFun Qwiic Shield for Arduino
 DEV-14352

SparkFun Qwiic HAT for Raspberry Pi
 DEV-14459

SparkFun Qwiic Shield for Photon
 DEV-14477

Qwiic Cable - 500mm
 PRT-14429

Qwiic Cable - 100mm
 PRT-14427

Qwiic Cable - 200mm Qwiic Cable - 50mm

https://www.sparkfun.com/products/14352
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14352
https://www.sparkfun.com/products/14459
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14459
https://www.sparkfun.com/products/14477
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14477
https://www.sparkfun.com/products/14429
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14429
https://www.sparkfun.com/products/14427
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14427
https://www.sparkfun.com/products/14428
https://www.sparkfun.com/products/14428
https://www.sparkfun.com/products/14426
https://www.sparkfun.com/products/14426

Suggested Reading

If you aren’t familiar with our new Qwiic system, we recommend reading here for an overview. We would also
recommend taking a look at the following tutorials if you aren’t familiar with them.

Hardware Overview
Let’s first check out some of the characteristics of the RFD77402 sensor we’re dealing with, so we know what to
expect out of the board.

Characteristic Range

Operating Voltage 3.3V

Current 7 mA average at 10Hz

Measurement Range ~50mm to 2,000mm

Precision +/-10%

Light Source 850nm VCSEL

I C Address 0x4C

Field of View 55°

Field of Illumination 23°

Max Read Rate 10Hz (We've seen up to 20Hz in practice)

Pins

 PRT-14428  PRT-14426

I2C
An introduction to I2C, one of the main embedded
communications protocols in use today.

Qwiic Shield for Arduino & Photon Hookup
Guide
Get started with our Qwiic ecosystem with the Qwiic
shield for Arduino or Photon.

2

https://www.sparkfun.com/qwiic
https://cdn.sparkfun.com/assets/a/d/3/e/2/Simblee_RFD77402_Datasheet_Rev_1-8__1_.pdf
https://learn.sparkfun.com/static/bubbles/
https://learn.sparkfun.com/static/bubbles/
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/qwiic-shield-for-arduino--photon-hookup-guide

The following table lists all of the RFD77402’s pins and their functionality.

Pin Description Direction

GND Ground In

3.3V Power In

SDA Data In

SCL Clock In

INT Interrupt, goes low when data is ready. Out

Optional Features

The RFD77402 breakout has onboard I C pull up resistors, which can be removed by removing the solder from
the jumper highlighted below.

Hardware Assembly
If you haven’t yet assembled your Qwiic Shield, now would be the time to head on over to that tutorial. With the
shield assembled, Sparkfun’s new Qwiic environment means that connecting the sensor could not be easier. Just
plug one end of the Qwiic cable into the RFD77402 breakout, the other into the Qwiic Shield and you’ll be ready to
upload a sketch and figure out how far away you are from that thing over there. It seems like it’s too easy too use,
but that’s why we made it that way!

2

https://cdn.sparkfun.com/assets/learn_tutorials/7/2/9/PU.png
https://learn.sparkfun.com/tutorials/qwiic-shield-for-arduino--photon-hookup-guide

Library Overview

Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If this is
your first time using Arduino, please review our tutorial on installing the Arduino IDE. If you have not
previously installed an Arduino library, please check out our installation guide.

First, you’ll need to download SparkFun’s RFD77402 Library. This can be done by using the below button or by
utilizing the Arduino library manager. You can also grab the latest, greatest version over on the library’s GitHub
repository.

DOWNLOAD SPARKFUN RFD77402 LIBRARY (ZIP)

Before getting started, let’s check out the publicly available functions of our library.

boolean begin(TwoWire &wirePort = Wire, uint32_t i2cSpeed = I2C_SPEED_STANDARD); — Initializes the
RFD77402 sensor on a given I C bus, with a given I C speed. This function will default to the primary I C
bus and standard I C speed if called without any arguments.
uint8_t takeMeasurement(); — Takes a single measurement and sets the global variables with new data.
uint16_t getDistance(); — Returns the local variable distance to the caller.
uint8_t getValidPixels(); — Returns the number of valid pixels found when taking measurement.
uint16_t getConfidenceValue(); — Returns the qualitative value representing how confident the sensor is

about its reported distance.
uint8_t getMode(); — Read the command opcode and convert to the corresponding mode.
boolean goToStandbyMode(); — Tell MCPU to go to standby mode. Return true if successful.
boolean goToOffMode(); — Tell MCPU to go to off state. Return true if successful.
boolean goToOnMode(); — Tell MCPU to go to on state. Return true if successful.
boolean goToMeasurementMode(); — Tell MCPU to go to measurement mode. Takes a measurement. If

measurement data is ready, return true.
uint8_t getPeak(); — Returns the VCSEL peak 4-bit value.
void setPeak(uint8_t peakValue); — Sets the VCSEL peak 4-bit value.
uint8_t getThreshold(); — Returns the VCSEL Threshold 4-bit value.
void setThreshold(uint8_t threshold); — Sets the VCSEL Threshold 4-bit value.
uint8_t getFrequency(); — Returns the VCSEL Frequency 4-bit value.
void setFrequency(uint8_t threshold); — Sets the VCSEL Frequency 4-bit value.
uint16_t getMailbox(); — Gets whatever is in the ‘MCPU to Host’ mailbox. Check Interrupt Control

Status Register bit 5 before reading.
void reset(); — Software reset the device

2 2 2

2

https://cdn.sparkfun.com/assets/learn_tutorials/7/2/9/Distance_Sensor-02.jpg
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://github.com/sparkfun/SparkFun_RFD77402_Arduino_Library
https://github.com/sparkfun/SparkFun_RFD77402_Arduino_Library/archive/master.zip
darroll_vasek
Typewritten Text
https://github.com/sparkfun/SparkFun_RFD77402_Arduino_Library/archive/master.zip

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

uint16_t getChipID(); — Returns the chip ID. Should be 0xAD01 or higher.
boolean getCalibrationData(); — Retrieves 2 sets of 27 bytes from MCPU for computation of calibration

parameters. 54 bytes are read into the calibration array, true is returned if new calibration data is loaded
successfully.
uint16_t readRegister16(uint8_t addr); — Reads two bytes from a given location from the RFD77402.
uint8_t readRegister(uint8_t addr); — Reads from a given location from the RFD77402.
void writeRegister16(uint8_t addr, uint16_t val); — Write a 16 bit value to a spot in the RFD77402.
void writeRegister(uint8_t addr, uint8_t val); — Write a value to a spot in the RFD77402.

Example Code
You should have downloaded the SparkFun RFD77402 Library in the previous step, if not, go back to the previous
step and go ahead and download it as you’ll be needing it shortly. This hookup guide goes over the 3 examples
contained within the library.

Example 1 - Basic Readings

Example 1 gets us started taking some basic distance readings from the sensor. Simply upload the example code
below, open your serial monitor with a baud rate of 9600 and start getting readings!

#include <SparkFun_RFD77402_Arduino_Library.h> //Use Library Manager or download here: https://g
ithub.com/sparkfun/SparkFun_RFD77402_Arduino_Library
RFD77402 myDistance; //Hook object to the library

void setup()
{
 Serial.begin(9600); //Begins Serial communication
 while (!Serial);
 Serial.println("RFD77402 Read Example");

 if (myDistance.begin() == false) //Initializes the sensor. Tells the user if initialization ha
s failed.
 {
 Serial.println("Sensor failed to initialize. Check wiring.");
 while (1); //Freeze!
 }
 Serial.println("Sensor online!");
}

void loop()
{
 myDistance.takeMeasurement(); //Tell sensor to take measurement and populate distance variable
 with measurement value

 unsigned int distance = myDistance.getDistance(); //Retrieve the distance value

 Serial.print("distance: "); //Print the distance
 Serial.print(distance);
 Serial.print("mm");
 Serial.println();
}

https://learn.sparkfun.com/tutorials/terminal-basics

The first example simply outputs distances one after another, the output should look something like the image
below.

Example 2 - Confidence Values

The second example gets us going on rejecting or accepting our data as a successful reading (i.e. the sensor is
not maxed out). This is done simply by using the getConfidenceValue() function, which returns a value anywhere
between 0 and 2047, with 2047 being the “most confident”. In other words, a confidence value of 2047 means that
the sensor is getting a very strong, clean, TOF flight reading. This is a great way to ignore any data that is out of
the sensors range. The below example code will get you started taking these confidence readings. This sketch will
also check the distance value against error codes to see if the sensor is giving us an error, and if so, which one.

https://cdn.sparkfun.com/assets/learn_tutorials/7/2/9/ex1.PNG

#include <SparkFun_RFD77402_Arduino_Library.h> //Use Library Manager or download here: https://g
ithub.com/sparkfun/SparkFun_RFD77402_Arduino_Library
RFD77402 myDistance; //Hook object to the library

void setup()
{
 Serial.begin(9600);
 while (!Serial);
 Serial.println("RFD77402 Read Example");

 if (myDistance.begin() == false)
 {
 Serial.println("Sensor failed to initialize. Check wiring.");
 while (1); //Freeze!
 }
 Serial.println("Sensor online!");
}

void loop()
{

 byte errorCode = myDistance.takeMeasurement();
 if (errorCode == CODE_VALID_DATA) //Checks to see that data is not any of the error codes
 {
 unsigned int distance = myDistance.getDistance();
 byte pixels = myDistance.getValidPixels();
 unsigned int confidence = myDistance.getConfidenceValue(); //Pulls the confidence value from
 the sensor

 Serial.print("distance: ");
 Serial.print(distance);
 Serial.print("mm pixels: ");
 Serial.print(pixels);
 Serial.print(" confidence: ");
 Serial.print(confidence);

//Error Codes are outlined below

 if(distance > 2000) Serial.print(" Nothing sensed");
 }
 else if (errorCode == CODE_FAILED_PIXELS)
 {
 Serial.print("Not enough pixels valid");
 }
 else if (errorCode == CODE_FAILED_SIGNAL)
 {
 Serial.print("Not enough signal");
 }
 else if (errorCode == CODE_FAILED_SATURATED)
 {
 Serial.print("Sensor pixels saturated");
 }
 else if (errorCode == CODE_FAILED_NOT_NEW)

 {
 Serial.print("New measurement failed");
 }
 else if (errorCode == CODE_FAILED_TIMEOUT)
 {
 Serial.print("Sensors timed out");
 }

 Serial.println();
}

Opening the serial monitor to 9600 baud should yield an output similar to the one shown earlier.

Example 3 - Fast Readings

The following example allows you to use your distance sensor not only to measure distance but time in between
samples as well. Enabling a faster I C speed cuts down on the time where we are talking to the sensor, so we are
able to accurately guage time in between readings. This allows the user to compute velocity and even acceleration
if they’d like. Check out the Equations of Motion for a little bit better explanation if you’re new to physics.

In the below example, make note of two things, the first is in the setup() function. Notice how we call a non-
default begin() function that initializes the sensor with I2C_SPEED_FAST , which increases the clock speed on the
I C bus. The second thing to make note of are the three lines at the beginning of our void loop() , which starts
the timer function and allows us to know the time in between readings.

2

2

https://cdn.sparkfun.com/assets/learn_tutorials/7/2/9/ex2.PNG
https://en.wikipedia.org/wiki/Equations_of_motion

#include <SparkFun_RFD77402_Arduino_Library.h> //Use Library Manager or download here: https://g
ithub.com/sparkfun/SparkFun_RFD77402_Arduino_Library
RFD77402 myDistance; //Hook object to the library

void setup()
{
 Serial.begin(115200);
 while (!Serial);
 Serial.println("RFD77402 Read Example");

 //Initialize sensor. Tell it use the Wire port (Wire1, Wire2, softWire, etc) and at 400kHz (I2
C_SPEED_FAST or _NORMAL)
 if (myDistance.begin(Wire, I2C_SPEED_FAST) == false)
 {
 Serial.println("Sensor failed to initialize. Check wiring.");
 while (1); //Freeze!
 }
 Serial.println("Sensor online!");
}

void loop()
{
 long startTimer = millis();
 byte errorCode = myDistance.takeMeasurement();
 long timeDelta = millis() - startTimer;

 if (errorCode == CODE_VALID_DATA)
 {
 unsigned int distance = myDistance.getDistance();
 byte pixels = myDistance.getValidPixels();
 unsigned int confidence = myDistance.getConfidenceValue();

 Serial.print("distance: ");
 Serial.print(distance);
 Serial.print("mm timeDelta: ");
 Serial.print(timeDelta);

 if(distance > 2000) Serial.print(" Nothing sensed");
 }
 else if (errorCode == CODE_FAILED_PIXELS)
 {
 Serial.print("Not enough pixels valid");
 }
 else if (errorCode == CODE_FAILED_SIGNAL)
 {
 Serial.print("Not enough signal");
 }
 else if (errorCode == CODE_FAILED_SATURATED)
 {
 Serial.print("Sensor pixels saturated");
 }
 else if (errorCode == CODE_FAILED_NOT_NEW)
 {

 Serial.print("New measurement failed");
 }
 else if (errorCode == CODE_FAILED_TIMEOUT)
 {
 Serial.print("Sensors timed out");
 }

 Serial.println();
}

Opening the serial monitor to 115200 baud should yield something like the below image.

Resources and Going Further
Now that you know exactly how far away that thing is, it’s time to incorporate it into your own project! For more on
the Qwiic Distance Sensor (RFD77402), check out the links below:

Qwiic Distance Sensor (RFD77402) Schematic (PDF)
Qwiic Distance Sensor (RFD77402) KiCad Files (ZIP)
Qwiic Distance Sensor (RFD77402) Datasheet (PDF)
Qwiic System Landing Page
SparkFun Qwiic Distance Sensor (RFD77402) GitHub Repository – Board design files for the Qwiic Qwiic
Distance Sensor (RFD77402).
RFD77402 Arduino Library GitHub Repo

SparkFun RFD77402 Library (ZIP)
SFE Product Showcase

Need some inspiration for your next project? Check out some of these related tutorials:

VL6180 Hookup Guide
Get started with your VL6180 based sensor or the
VL6180 breakout board.

Building an Autonomous Vehicle: The Batmobile
Documenting a six-month project to race autonomous
Power Wheels at the SparkFun Autonomous Vehicle
Competition (AVC) in 2016.

https://cdn.sparkfun.com/assets/learn_tutorials/7/2/9/ex3.PNG
https://cdn.sparkfun.com/assets/7/d/1/e/a/RFD77402_TOF_Sensor_Breakout.pdf
https://cdn.sparkfun.com/assets/0/1/f/4/a/RFD77402_ToF_Sensor.zip
https://cdn.sparkfun.com/assets/a/d/3/e/2/Simblee_RFD77402_Datasheet_Rev_1-8__1_.pdf
https://www.sparkfun.com/qwiic
https://github.com/sparkfun/Qwiic_Distance_RFD77402
https://github.com/sparkfun/SparkFun_RFD77402_Arduino_Library
https://github.com/sparkfun/SparkFun_RFD77402_Arduino_Library/archive/master.zip
https://youtu.be/v7ke4qhQAXQ
https://learn.sparkfun.com/tutorials/vl6180-hookup-guide
https://learn.sparkfun.com/tutorials/building-an-autonomous-vehicle-the-batmobile
https://learn.sparkfun.com/tutorials/lidar-lite-v3-hookup-guide

LIDAR-Lite v3 Hookup Guide
A tutorial for connecting the Garmin LIDAR-Lite v3 to
an Arduino to measure distance.

https://learn.sparkfun.com/tutorials/lidar-lite-v3-hookup-guide

