1.2 V Ultralow Power High PSRR Voltage Reference **ADR280** ### **FEATURES** 1.2 V precision output Excellent line regulation: 2 ppm/V typical High power supply ripple rejection: –80 dB at 220 Hz Ultralow power supply current: 16 µA maximum Temperature coefficient: 40 ppm/°C maximum Low noise, 12.5 nV/√Hz typical Operating supply range, 2.4 V to 5.5 V Compact 3-lead SOT-23 and SC70 packages # **APPLICATIONS** List GSM, GPRS, 3G mobile stations Portable battery-operated electronics Low voltage converter references Wireless devices ### **GENERAL DESCRIPTION** The ADR280 is a 1.2 V band gap core reference with excellent line regulation and power supply rejection designed specifically for applications experiencing heavy dynamic supply variations, such as data converter references in GSM, GPRS, and 3G mobile station applications. Devices such as the AD6535 that have an analog baseband IC with on-board baseband, audio codecs, voltage regulators, and battery chargers rely on the ability of the ADR280 to reject input battery voltage variations during RF power amplifier activity. In addition to mobile stations, the ADR280 is suitable for a variety of general-purpose applications. Most band gap references include internal gain for specific outputs, which simplifies the user's design, but compromises on the cost, form factor, and flexibility. The ADR280, on the other hand, optimizes the band gap core voltage and allows users to tailor the voltage, current, or transient response by simply adding their preferred op amps. The ADR280 operates on a wide supply voltage range from 2.4 V to 5.5 V. It is available in compact 3-lead SOT-23 and SC70 packages. The device is specified over the extended industrial temperature range of -40° C to $+85^{\circ}$ C. ### **PIN CONFIGURATIONS** Figure 2. 3-Lead SC70 (KS Suffix) Figure 3. Line Regulation vs. Temperature # **ADR280** | TABLE OF CONTENTS | | |--|--------------------------------------| | Features1 | Thermal Resistance4 | | Applications | ESD Caution4 | | General Description | Typical Performance Characteristics5 | | Pin Configurations | Theory of Operation7 | | Revision History | Applications Information8 | | Specifications | Low Cost, Low Power Current Source8 | | Electrical Characteristics | Outline Dimensions | | Absolute Maximum Ratings 4 | Ordering Guide | | REVISION HISTORY | | | 4/07—Rev. B to Rev. C | 6/03—Rev. 0 to Rev. A | | Updated FormatUniversal | Added SC70 packageUniversal | | Changes to Figure 1, Figure 2 | Changes to Congred Description | | Deleted Pin Function Descriptions Section and Pin Configurations Section | Changes to General Description | | Changes to Figure 20 and Figure 21 | Changes to Ordering Guide | | Updated Outline Dimensions | Changes to TPCs 4, 6, and 7 | | | Updated SOT-23 Outline Dimensions | | 10/04—Rev. A to Rev. B | • | | Changes to Pin Configurations | 11/02—Revision 0: Initial Version | | Changes to Ordering Guide | | # **SPECIFICATIONS** # **ELECTRICAL CHARACTERISTICS** $V_{\rm IN}$ = 2.55 V to 5.5 V, $T_{\rm A}$ = 25°C, unless otherwise noted. Table 1. | Parameter | Symbol | Conditions | Min | Typ ¹ | Max | Unit | |--|--|---|-------|------------------|-------|--------| | Output Voltage | V _{OUT} | $2.4 \text{ V} < \text{V}_{\text{IN}} < 5.5 \text{ V}, 0 \ \mu\text{A} < \text{I}_{\text{OUT}} < 10 \ \mu\text{A}, -40 ^{\circ}\text{C} < \text{T}_{\text{A}} < +85 ^{\circ}\text{C}$ | 1.195 | 1.200 | 1.205 | V | | Temperature Coefficient | TCVo | 0°C < T _A < 50°C | | 5 | 20 | ppm/°C | | | | -40° C $<$ T _A $<$ $+85^{\circ}$ C | | 10 | 40 | ppm/°C | | Line Regulation | $\Delta V_{\text{OUT}}/\Delta V_{\text{IN}}$ | 2.55 V < V _{IN} < 5.5 V, no load | | 2 | 12 | ppm/V | | Supply Current | I _{IN} | 2.4 V < V _{IN} < 5.5 V, no load | | 10 | 16 | μΑ | | Ground Current | I _{GND} | V– grounded, I _{LOAD} = 10 μA | | 12 | 20 | μΑ | | Input Voltage Range | V _{IN} | | 2.4 | | 5.5 | V | | Operating Temperature Range | TA | | -40 | | +85 | °C | | Nominal Load Capacitance | Соит | | 1 | | | μF | | Output Noise Voltage | V _N rms | f = 10 Hz to 10 kHz | | 12.5 | | μV rms | | Voltage Noise Density | e _N | f = 400 kHz | | 12.5 | | nV/√Hz | | Power Supply Ripple Rejection ² | PSRR | $I_{LOAD} = 10 \mu\text{A}$ | | -80 | | dB | | Start-Up Time | ton | | | 2 | | ms | ¹ Typical values represent average readings taken at room temperature. ² Power supply ripple rejection measurement applies to a changing input voltage (V_{IN}) waveform with a nominal 3.6 V baseline that drops to a 3 V value for 380 μs at a 4.6 ms repetition rate. # **ADR280** # **ABSOLUTE MAXIMUM RATINGS** $T_A = 25$ °C, unless otherwise noted. #### Table 2. | Parameter | Rating | |--|--| | Supply Voltage | 6 V | | Storage Temperature Range | −65°C to +150°C | | Operating Temperature Range | -65°C to +150°C
-40°C to +85°C
-65°C to +150°C | | Junction Temperature Range | −65°C to +150°C | | Lead Temperature Range (Soldering, 60 Sec) | 300°C | Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ### THERMAL RESISTANCE θ_{JA} is specified for the worst-case conditions, that is, θ_{JA} is specified for a device soldered in circuit board for surface-mount packages. Table 3. | Package Type | θ _{JA} | θ _{JC} | Unit | |--------------|-----------------|-----------------|------| | SOT-23 | 230 | 146 | °C/W | | SC70 | 376 | 102 | °C/W | # **ESD CAUTION** **ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality. # TYPICAL PERFORMANCE CHARACTERISTICS Figure 4. V_{OUT} vs. Temperature Figure 5. Supply Current vs. Temperature Figure 6. Line Regulation vs. Temperature Figure 7. Noise Voltage Peak-to-Peak, 10 Hz to 10 kHz Figure 8. Output Noise Density Plot (V+ = 3.6 V, C_{OUT} = 1 μ F, C_{IN} = 1 μ F) Figure 9. Voltage Noise Density, 0 Hz to 100 kHz Figure 10. Settling Time # THEORY OF OPERATION The ADR280 provides the basic core 1.2 V band gap reference. It contains two NPN transistors, Q9 and Q17, with their emitter areas scaled in a fixed ratio. The difference in the V_{BE} produces a proportional to absolute temperature (PTAT) voltage that cancels the complementary to absolute temperature (CTAT) Q9 V_{BE} voltage. As a result, a core band gap voltage that is almost a constant 1.2 V over temperature is generated (see Figure 11). Precision laser trimming of the internal resistors and other proprietary circuit techniques are used to enhance the initial accuracy, temperature curvature, and temperature drift performance. Figure 11. Simplified Architecture # APPLICATIONS INFORMATION The ADR280 should be decoupled with a 0.1 μ F ceramic capacitor at the output for optimum stability. It is also good practice to include 0.1 μ F ceramic capacitors at the IC supply pin. These capacitors should be mounted close to their respective pins (see Figure 12). Figure 12. Basic Configuration The low supply voltage input pin V– can be elevated above ground; a 1.2 V differential voltage can therefore be established above V– (see Figure 13). Figure 13. Floating References The ADR280 provides the core 1.2 V band gap voltage and is able to drive a maximum load of only 100 μ A. Users can simply buffer the output for high current or sink/source current applications, such as ADC or LCD driver references (see Figure 14). Figure 14. Buffered Output Users can also tailor any specific need for voltage and dynamics with an external op amp and discrete components (see Figure 14 and Figure 15). Depending on the specific op amp and PCB layout, it may be necessary to add a compensation capacitor, C2, to prevent gain peaking and oscillation. The exact value of C2 needed requires some trial and error but usually falls in the range of a few picofarads. Figure 15. 1.8 V Reference # LOW COST, LOW POWER CURRENT SOURCE Because of its low power characteristics, the ADR280 can be converted to a current source with just a setting resistor. In addition to the ADR280 current capability, the supply voltage and the load limit the maximum current. The circuit in Figure 16 produces 100 μA with 2 V compliance at a 5 V supply. The load current is the sum of I_{SET} and I_{GND} . I_{GND} increases slightly with load; a R_{SET} of 13.6 $k\Omega$ yields 100 μA of load current. Figure 16. Low Cost Current Source #### **Precision Low Power Current Source** By adding a buffer to redirect the I_{GND} in Figure 17, a current can be precisely set by R_{SET} with the equation $I_L = 1.2 \text{ V/}R_{SET}$. Figure 17. Precision Low Power Current Source #### **Boosted Current Source** Adding one more buffer to the previous circuit boosts the current to the level that is limited only by the buffer U2 current handling capability (see Figure 18). Figure 18. Precision Current Source ### **Negative Reference** A negative reference can be precisely configured without using any expensive tight tolerance resistors, as shown in Figure 19. The voltage difference between V_{OUT} and $V_{\text{-}}$ is 1.2 V. Since V_{OUT} is at virtual ground, U2 closes the loop by forcing the $V_{\text{-}}$ pin to be the negative reference output. Figure 19. Negative Reference ## **Boosted Reference with Scalable Output** A precision user defined output with boosted current capability can be implemented with the circuit shown in Figure 20. In this circuit, U2 forces V_0 to be equal to $V_{\text{REF}} \times (1 + \text{R2/R1})$ by regulating the turn-on of M1; the load current is therefore furnished by the 5 V supply. For higher output voltage, U2 must be changed and the supply voltage of M1 and U2 must also be elevated and separated from the U1 input voltage. In this configuration, a 100 mA load is achievable at a 5 V supply. The higher the supply voltage, the lower the current handling is because of the heat generated on the MOSFET. For heavy capacitive loads, additional buffering is needed at the output to enhance the transient response. Figure 20. 2.5 V Boosted Reference # **GSM and 3G Mobile Station Applications** The ADR280 voltage reference is ideal for use with analog baseband ICs in GSM and 3G mobile station applications. Figure 21 illustrates the use of the ADR280 with the AD6535 GSM analog baseband. The AD6535 provides all of the data converters and power management functions needed to implement a GSM mobile station, including baseband codecs, audio codecs, voltage regulators, and a battery charger. Besides low current consumption and a small footprint, the ADR280 is optimized for excellent PSRR, which is necessary for optimum AD6535 device performance when the main battery voltage fluctuates during RF power amplifier activity. Figure 21. GSM Mobile Station Application # **OUTLINE DIMENSIONS** #### COMPLIANT TO JEDEC STANDARDS TO-236-AB Figure 22. 3-Lead Small Outline Transistor Package [SOT-23-3] (RT-3) Dimensions shown in millimeters Figure 23. Tape and Reel Dimensions (RT-3) Dimensions shown in millimeters ALL DIMENSIONS COMPLIANT WITH EIAJ SC70 Figure 24. 3-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-3) Dimensions shown in millimeters 053006-0 # **ORDERING GUIDE** | Model | Temperature
Range | Package
Description | Package
Option | Branding | Output Voltage (V) | Ordering Quantity | |-------------------------------|----------------------|------------------------|-------------------|----------|--------------------|-------------------| | ADR280AKS-R2 | −40°C to +85°C | 3-Lead SC70 | KS-3 | RBA | 1.200 | 250 | | ADR280AKS-REEL | −40°C to +85°C | 3-Lead SC70 | KS-3 | RBA | 1.200 | 10,000 | | ADR280AKS-REEL7 | −40°C to +85°C | 3-Lead SC70 | KS-3 | RBA | 1.200 | 3,000 | | ADR280AKSZ-R21 | −40°C to +85°C | 3-Lead SC70 | KS-3 | L25 | 1.200 | 250 | | ADR280AKSZ-REEL7 ¹ | −40°C to +85°C | 3-Lead SC70 | KS-3 | L25 | 1.200 | 3,000 | | ADR280ART-R2 | −40°C to +85°C | 3-Lead SOT-23 | RT-3 | RBA | 1.200 | 250 | | ADR280ART-REEL | -40°C to +85°C | 3-Lead SOT-23 | RT-3 | RBA | 1.200 | 10,000 | | ADR280ART-REEL7 | −40°C to +85°C | 3-Lead SOT-23 | RT-3 | RBA | 1.200 | 3,000 | | ADR280ARTZ-R21 | −40°C to +85°C | 3-Lead SOT-23 | RT-3 | L25 | 1.200 | 250 | | ADR280ARTZ-REEL7 ¹ | -40°C to +85°C | 3-Lead SOT-23 | RT-3 | L25 | 1.200 | 3,000 | ¹ Z = RoHS Compliant Part. NOTES