

(€¶1@

Wiring Diagram

V = Voltage UTL = Optional Untimed Load L = Timed Load S1 = Initiate Switch

R_T is used when external adjustment is ordered.

Description

The THDS Series combines accurate timing circuitry with high power solid-state switching. It can switch motors, lamps, and heaters directly without a contactor. You can reduce labor, component cost, and increase reliability with these small, easy-to-use, timers.

Operation (Single Shot)

Input voltage must be applied before and during timing. Upon momentary or maintained closure of the initiate switch, the output energizes for a measured interval of time. At the end of the delay, the output de-energizes. Opening or reclosing the initiate switch during timing has no affect on the time delay. The output energizes if the initiate switch is closed when input voltage is applied.

Reset: Reset occurs when the time delay is complete and the initiate switch is opened. Loss of input voltage resets the time delay and output.

Features & Benefits

FEATURES	BENEFITS
Microcontroller based	Repeat Accuracy + / - 0.5%, Factory calibration +/- 1%
High load currents up to 20A, 200A inrush	Allows direct operation of motors, lamps and heaters without a contactor
Totally solid state and encapsulated	No moving parts to arc and wear out over time and encapsulated to protect against shock, vibration, and humidity
Metalized mounting surface	Facilitates heat transfer in high current applications
Compact, low cost design	Allows flexibility for OEM applications and reduces labor and component costs

Accessories

P1004-95, P1004-95-X Versa-Pot

Panel mountable, industrial potentiometer recommended for remote time delay adjustment.

P0700-7 Versa-Knob Designed for 0.25 in (6.35 mm) shaft of Versa-Pot. Semi-gloss industrial black finish.

strain relief.

P1015-64 (AWG 14/16) **Female Quick Connect** These 0.25 in. (6.35 mm) female terminals are constructed with an insulator barrel to provide

P1015-18 Quick Connect to Screw Adapter

Screw adapter terminal designed for use with all modules with 0.25 in. (6.35 mm) male quick connect terminals.

Ordering Information

MODEL	INPUT VOLTAGE	ADJUSTMENT	TIME DELAY	OUTPUT RATING
THDS410.25SA	120VAC	Fixed	0.25s	6A
THDS431C	120VAC	Onboard	1 - 100s	20A
THDS610.25SA	230VAC	Fixed	0.25s	6A

If you don't find the part you need, call us for a custom product 800-843-8848

THDS SERIES

External Resistance vs. Time Delay

In Secs. or Mins.

This chart applies to externally adjustable part numbers. The time delay is adjustable over the time delay range selected by varying the resistance across the RT terminals; as the resistance increases the tie delay increases

When selecting an external R_T , add the tolerances of the timer and the R_T for the full time range adjustment

Examples:~1 to 50 S adjustable time delay, select time delay range 1 and a 50 K ohn $R_T.$ For 1 to 100 S use a 100 K ohm $R_T.$

Function Diagram

V = Voltage S1 = Initiate Switch NO = NormallyOpen Contact NC = Normally **Closed Contact** TD = Time Delay R = Reset

Specifications

Time Delay Range **Repeat Accuracy** Tolerance (Factory Calibration) **Reset Time Initiate Time** Time Delay vs Temp. & Voltage Input Voltage Tolerance **AC Line Frequency Power Consumption** Output Type Form **Maximum Load Current**

Voltage Drop Off State Leakage Current Minimum Load Current Protection Circuitry **Dielectric Breakdown Insulation Resistance Mechanical** Mounting ** Dimensions

Termination

Environmental Operating/Storage Temperature

```
Humidity
Weight
```

0.1s - 1000m in 6 adjustable ranges or fixed ±0.5% or 20ms, whichever is greater

≤ ±1%

≤150ms ≤ 20ms $\leq \pm 2\%$ 24, 120, or 230VAC ±20% 50/60 Hz ≤2VA Solid state NO, closed during timing Inrush** Output **Steady State** 6A 60A А В 10A 100A С 20A 200A ≈ 2.5V @ rated current ≈ 5mA @ 230VAC 100mA Encapsulated ≥ 2000V RMS terminals to mounting surface $\geq 100 \text{ M}\Omega$ Surface mount with one #10 (M5 x 0.8) screw **H** 50.8 mm (2.0"); **W** 50.8 mm (2.0"); **D** 38.4 mm (1.51") 0.25 in. (6.35 mm) male quick connect terminals

> -40° to 60°C / -40° to 85°C 95% relative, non-condensing ≅ 3.9 oz (111 g)

**Must be bolted to a metal surface using the included heat sink compound. The maximum mounting surface temperature is 90°C. Inrush: Non-repetitive for 16ms.