

 OpenVINO Development Guide 1 www.terasic.com

 OpenVINO Development Guide 2 www.terasic.com

TABLE OF CONTENTS

Chapter 1 OpenVINO Toolkit & Process Introduction ... 3

1.1 About the Guide .. 3

1.2 OpenVINO Toolkit Features ... 3

1.3 What’s Inside OpenVINO Toolkit .. 3

1.4 OpenVINO Workflow ... 4

1.5 Model Optimizer ... 5

1.6 Inference Engine.. 6

Chapter 2 Run the DEMO on the Starter Platform for OpenVINOTM Toolkit 8

2.1 Introduction ... 8

2.2 Execute the Demo ... 9

Chapter 3 Starter Platform for OpenVINOTM Toolkit Lab .. 21

3.1 Verify the Environment of the Experiment ... 21

3.2 Lab 1. How to use the Model Optimizer to transform the Model? ... 25

3.3 Lab 2. How to compile an Inference Engine app? .. 31

3.4 Lab 3. Execute the created application file, use the Inference Engine for the classification

predication. ………………………………………………………………………………………35

3.5 Advanced Experiment ... 41

 OpenVINO Development Guide 3 www.terasic.com

Chapter 1

OpenVINO Toolkit & Process Introduction

1.1 About the Guide

The OpenVINO (Open Visual Inference and Neural Network Optimization) development guide covers

the workflow, Lab guide of OpenVINO Toolkit. The guide shows users how to deploy applications and

solutions that emulate human vision with Intel OpenVINO Toolkit. It implements the CNN-based deep

learning by using heterogeneous execution acceleration. With the easy-to-use functions library for

computer vision, the OpenVINO Toolkit speeds up time-to-market for the products. This guide also

shows users how to quickly setup the CNN-based deep learning applications running on FPGA.

This guide is created based on Terasic Starter Platform for OpenVINOTM Toolkit , user also can refer to

this guide for DE5a-Net-DDR4 and DE5a-Net boards OpenVINO development, it includes the following

contents:

➢ OpenVINO Toolkit Introduction

➢ OpenVINO Workflow

➢ Model Optimizer and Inference Engine

➢ Run demo on the Starter Platform for OpenVINOTM Toolkit

➢ Starter Platform for OpenVINOTM Toolkit Lab

1.2 OpenVINO Toolkit Features

OpenVINO (Open Visual Inference and Neural Network Optimization) Toolkit can improve the

performance of the Computer Vision, and shorten the time taken for product to market. It can help user

to take the advantages of Terasic FPGA boards easily, including improving performance, reducing power

consumption and significantly improving FPGA utilization. Users can achieve double efficiency with

half effort and open new design possibilities. The main features are:

➢ Enable CNN-based deep learning inference on the edge

➢ Support heterogeneous execution across Intel's CV accelerators, using a common API for the

CPU, Intel® Integrated Graphics, Intel® Movidius™ Neural Compute Stick, and FPGA

➢ Speed up time-to-market through an easy-to-use library of CV functions and pre-optimized

kernels

➢ Include optimized calls for CV standards, including OpenCV*, OpenCL™, and OpenVX*

1.3 What’s Inside OpenVINO Toolkit

OpenVINO Toolkit uses a common API, which is based on the general development standards such as

OpenCL, OpenCV and OpenVX.

 OpenVINO Development Guide 4 www.terasic.com

The Toolkit includes:

1. Deep Learning Deployment Toolkit, which comprises the following two components:

➢ Model Optimizer: This Python*-based command line tool imports trained models from popular

deep learning frameworks such as Caffe, TensorFlow, and Apache MXNet*. Input trained model,

optimize topology, and convert it to an IR (IR, Intermediate Representation) file.

➢ Inference Engine: This execution engine uses a common API to deliver inference solutions on

the platform of your choice: CPU, GPU, VPU, or FPGA to work on heterogeneous processing

and asynchronous execution to save the development time.

2. Optimized computer vision library for OpenCV, OpenVX, and image vision for CPU and GPU.

3. The improved performance of Intel processor graphics card components in Linux, including Intel

Media SDK open source version, OpenCL graphics driver, and runtime environment.

4. The runtime environment (RTE) supports running OpenCL on FPGA and bitstreams for configuring

FPGA.

1.4 OpenVINO Workflow

The steps for OpenVINO optimizing and deploying a trained model are:

1. Configure the Model Optimizer for your framework.

2. Convert a trained model to produce an optimized Intermediate Representation (IR) of the model

based on the trained network topology, weights, and biases values.

3. Test the model in the Intermediate Representation format using the Inference Engine in the target

environment by the Validation application or the sample applications.

4. Integrate the Inference Engine in your application to deploy the model in the target environment.

 OpenVINO Development Guide 5 www.terasic.com

1.5 Model Optimizer

Model Optimizer is a cross-platform command-line tool that facilitates the transition between the training

and deployment environment, performs static model analysis, and adjusts deep learning models for

optimal execution on end-point target devices.

Model Optimizer produces an OpenVINO supported framework as a trained model input and an

Intermediate Representation (IR) of the network as output. Intermediate Representation is a pair of files

that describe the whole model:

➢ .xml: Describes the network topology

➢ .bin: Contains the weights and biases binary data

◼ How the Model Optimizer Works

Model Optimizer loads a model into memory, followed by reading it and building the internal

representation of the model. The Model Optimizer then optimizes it and produces the Intermediate

Representation. The Intermediate Representation is the only format the Inference Engine accepts. Model

Optimizer has two main purposes:

1) Produce a valid Intermediate Representation.

If this main conversion artifact is not valid, the Inference Engine cannot run. The primary responsibility

of the Model Optimizer is to produce the two files that form the Intermediate Representation.

2) Produce an optimized Intermediate Representation.

Pre-trained models contain layers that are important for training such as the dropout layer. These layers

are useless during inference and might increase the inference time.

 OpenVINO Development Guide 6 www.terasic.com

In many cases, these layers can be automatically removed from the resulting Intermediate Representation.

However, if a group of layers can be represented as one mathematical operation and thus a single layer,

the Model Optimizer recognizes such patterns and replaces these layers with one layer. The result is an

Intermediate Representation that has fewer layers than the original model. This reduces the inference

time.

Many common layers exist across known frameworks and neural network topologies. Examples of these

layers are Convolution, Pooling, and Activation. The Model Optimizer must be able to work with these

layers to read the original model and produce the Intermediate Representation of a model, the layer list

varies by framework. Please refer to the documentation of the Caffe*, TensorFlow* and MXNet* for the

topologies supported by each of these frameworks. If your topology contains only layers from the list of

layers, which is the case for the topologies used by most users, the Model Optimizer can easily create

the Intermediate Representation. Users can proceed to work with the Inference Engine afterwards.

However, if you use a topology with layers that are not recognized by the Model Optimizer, please refer

to Custom Layers in the Model Optimizer to learn how to work with custom layers.

1.6 Inference Engine

After an Intermediate Representation is created by the Model Optimizer, input data can be inferred by

the Inference Engine.

The Inference Engine is a C++ library with a set of C++ classes to infer input data (images) and get a

result. The C++ library provides an API to read the Intermediate Representation, set the input and output

formats, and execute the model on devices.

Each supported target device has a plugin and each plugin is a DLL/shared library. The Heterogeneous

plugin lets you distribute a calculation workload across devices. One needs to make sure those libraries

are specified in the path of host PC or in the place pointed to the plugin loader. Additionally, the related

library for each plugin must be included in the LD_LIBRARY_PATH. When the Inference Engine calls

the FPGA-based DLA plug-in, the DLA runtime software layer is called to use the DLA API. These

 OpenVINO Development Guide 7 www.terasic.com

APIs are converted to the corresponding modules executed on the FPGA device. This part would be

executed in different levels of in-depth learning networks.

Common Workflow for Using the Inference Engine API:

1. Read the Intermediate Representation:

Use the InferenceEngine::CNNNetReaderclass and read an Intermediate Representation file into a

CNNNetwork class. This class represents the network in host memory.

2. Prepare inputs and outputs formats:

After loading the network, specify input and output precision, and the layout on the network

using CNNNetwork::getInputInfo() and CNNNetwork::getOutputInfo().

3. Select Plugin:

Select the plugin to load your network. Create the plugin with the InferenceEngine::

PluginDispatcher load helper class. Pass per device loading configurations specific to this device

and register extensions to this device.

4. Compile and Load:

Use the plugin interface wrapper class InferenceEngine::InferencePlugin to call the LoadNetwork

() API to compile and load the network on the device. Pass in the per-target load configuration for

this compilation and load operation.

5. Set input data:

There’s an ExecutableNetwork object with the network loaded.

Use this object to create an InferRequest in which you signal the input buffers to use for input and

output. Specify a device-allocated memory and copy it into the device memory directly or tell the

device to use your application memory to save a copy.

6. Execute:

Choose the execution mode with the input and output memory defined:

Synchronously - Infer() method. Block until inference finishes.

Asynchronously - StartAsync() method. Check status with the wait() method (0 timeout), wait, or

specify a completion callback.

7. Get the output:

Get the output memory or read the memory provided earlier after inference is complete.

This can be done with the InferRequest GetBlob API.

For more information about integrating the Inference Engine in your application, please refer to the

Inference Engine Developer Guide.

 OpenVINO Development Guide 8 www.terasic.com

Chapter 2

Run the DEMO on the Starter Platform for

OpenVINOTM Toolkit

This chapter describes how to run the demo on the Starter Platform for OpenVINOTM Toolkit and shows

the execution result of the demo. Before running these demos, user needs to finish OpenVINO

Development installation by referring to the manual “OpenVINO_Installation_Guide”.

2.1 Introduction

As shown in the figure below, there are some shell scripts in the terasic_demo/demo folder.

Below is the brief introduction of the demo folder.

1. How to use these Shell script files

Users can run any one of the shell script files with default parameters, and users can also use cpu ,

vpu or fpga to specify the target device to run the demo. There are also other parameters for using,

users can run shell script file with ‘-h’ for more details. And the default parameter is for cpu.

2. The images and video required by the demo are in the pic_video folder.

3. The Caffe model downloaded from internet is in the model folder.

➢ alexnet

➢ squeezenet1.1

➢ GoogleNetV2

➢ Users can add Caffe model by referring to the writing rule of the script. Please pay attention to

the path and name.

 OpenVINO Development Guide 9 www.terasic.com

➢ Please refer to OpenVINO-Using-TensorFlow to transfer the Tensorflow model

4. IR folder

While running the demo, the corresponding model IR file will be generated automatically if it’s

needed.

➢ The model generated under FP16 folder is used for FPGA

➢ The model generated under FP32 folder is used for CPU

2.2 Execute the Demo

There are seven demos included in the OpenVINO Toolkit. To run these demos, users need to open a

terminal and type sudo su, source the setup script, and prepare the running environment.

(login account: here, our username is terasic, password is terasic)

1. Right click on the desktop to open the Terminal, enter command “sudo su” to change user to root

Super User, enter password “terasic”

2. Enter "cd /opt/intel/2019_r1/openvino/deployment_tools/terasic_demo" to switch to terasic_demo

path.

3. Source setup_board_tsp.sh

Note: User needs to setup the corresponding .sh file for the FPGA board, for example, source

setup_board_tsp.sh for TSP GT Edition board or TSP GX Edition board, source

setup_board_de5a_net_ddr4.sh for DE5a-Net-DDR4 board.

 OpenVINO Development Guide 10 www.terasic.com

4. Type “y” to install.

5. Enter aocl diagnose to check the environment, the “DIAGNOSTIC_PASSED” represents the

environment setup is successful.

6. Use an USB cable to connect the TSP USB Blaster II connector and PC. Enter “aocl program acl0

$DLA_AOCX_GT” (note: if user tests the OpenVINO examples for GX edition, please enter “aocl

program acl0 $DLA_AOCX_GX” command) to program an .aocx file (click here to know how to

program an .aocx file) to the FPGA.

 OpenVINO Development Guide 11 www.terasic.com

7. Switch to the demo path.

 OpenVINO Development Guide 12 www.terasic.com

8. Execute the DEMOs:

◼ 01_squeezenet demo

This demo can recognize the objects in the figure by using the squeezenet model

1) ./01_squeezenet_classification.sh fpga (run demo with FPGA)

2) Users can see “HETERO:FPGA, CPU”, which prompts the DEMO is running on FPGA and CPU.

 OpenVINO Development Guide 13 www.terasic.com

3) It prints out the top 10 results.

◼ 02_security_barrier demo

This demo can recognize the car, car license number, and its location by using the three models.

 OpenVINO Development Guide 14 www.terasic.com

1) ./02_security_barrier.sh fpga (run the demo with FPGA)

2) The result is shown in the figure below. Enter Ctrl+C to close the Application.

◼ 03_face_detection

This demo uses four models and it can recognize human face position in the figure. It can also judge the

human gender, age, expression, and head gesture according to the human face.

1) Plug a UVC USB camera to the host PC USB port.

2) Execute “./03_face_detection.sh fpga” to run the demo with FPGA.

 OpenVINO Development Guide 15 www.terasic.com

3) The result is shown in the figure below, enter Ctrl+c to close the Application.

◼ 04_GoogleNetV2_object_detection

This demo can recognize the target object by using GoogleNetV2. The object tags are shown in the figure

below:

 OpenVINO Development Guide 16 www.terasic.com

1) Plug the UVC USB camera to the host PC USB port

2) Execute “./04_GoogleNetV2_object_detection.sh fpga” to run the demo with FPGA

3) Recognize the figures with the camera. The results are shown in the figure below. Enter Ctrl+c to

close the Detection results window.

 OpenVINO Development Guide 17 www.terasic.com

◼ 05_Alexnet_classification

This demo can recognize the target objects by using Alexnet model and print out the top 10 information

(the recognized result in top 10 probabilities).

1) Execute “./05_Alexnet_classification.sh fpga” to run the demo with FPGA.

2) The results are shown in the figure below.

 OpenVINO Development Guide 18 www.terasic.com

◼ 06_human_pose_estimation

This demo can recognize human pose and display it.

1) Plug a UVC USB camera to the host PC USB port.

2) Execute “./06_human_pose_estimation.sh fpga” to run the demo with FPGA.

 OpenVINO Development Guide 19 www.terasic.com

3) The result is shown in the figure below. Enter Ctrl+C to close the Application.

◼ 07_classification_pic_loop

This demo bases demo 01_squeesnet_classification, and adds more pictures to run in a loop.

1) Execute “./07_classification_pic_loop.sh fpga” to run the demo with FPGA.

2) The result is shown in the figure below.

 OpenVINO Development Guide 20 www.terasic.com

Note: Some demos execution result will show the frame rate, the result of these demos is depending on the

performance of user’s PC CPU and the FPGA device. The CPU grade is higher (I7 instead of I5), the result

is better if user executes the demo on the DE5a-Net-DDR4 instead of TSP.

 OpenVINO Development Guide 21 www.terasic.com

Chapter 3

Starter Platform for OpenVINOTM Toolkit Lab

This chapter describes how to verify the experiment environment, implement the acceleration of users

own AI demonstrations on the FPGA platform.

3.1 Verify the Environment of the Experiment

This section will show user how to verify the environment of the experiment by running the demo

“02_security_barrier.sh” with CPU which is provided in terasic demo.

1. Open a terminal by right clicking on the Desktop.

2. Enter command “sudo su” to change the user to the root Super User, the password is terasic.

3. Enter “cd /opt/intel/2019_r1/openvino/deployment_tools/terasic_demo” to switch the path.

4. Enter “source setup_board_tsp.sh”.

Note: User needs to setup the corresponding .sh file for the FPGA board, for example, source

setup_board_tsp.sh for TSP GT Edition board or TSP GX Edition board, source

setup_board_de5a_net_ddr4.sh for DE5a-Net-DDR4 board.

5. Enter “y” for the driver installation.

 OpenVINO Development Guide 22 www.terasic.com

6. Enter cd /root/inference_engine_samples_build/

7. Enter “rm -rf CMakeCache.txt”

8. Enter “cmake -DCMAKE_BUILD_TYPE=Release \

/opt/intel/2019_r1/openvino/deployment_tools/inference_engine/samples/”.

Then you can see the following messages.

 OpenVINO Development Guide 23 www.terasic.com

9. Enter “make -j8”

10. Wait until the build process is finished.

 OpenVINO Development Guide 24 www.terasic.com

11. Enter “cd /opt/intel/2019_r1/openvino/deployment_tools/terasic_demo/demo” to switch the

workspace.

12. Enter “./02_security_barrier.sh fpga”.

 OpenVINO Development Guide 25 www.terasic.com

13. The result of the Demo is as shown below.

3.2 Lab 1. How to use the Model Optimizer to transform the

Model?

This section will show user how to use the Model Optimizer tool to get the IR parameters from pre-

downloaded caffe model file “squeesenet1.1” which will be used by Inference Engine app.

1. Enter “cd /opt/intel/2019_r1/openvino/deployment_tools/terasic_demo/demo/model/caffe/” to

switch the path to the pre-downloaded Model folder.

 OpenVINO Development Guide 26 www.terasic.com

2. Enter “ls” to see the folder information, which includes bvlc_alexnet, squeezent1.1, and

SSD_GoogleNetV2 models.

3. Enter “cd squeezenet1.1” to select the corresponding Model folder.

 OpenVINO Development Guide 27 www.terasic.com

4. Enter “ls” to see the composition of the model, there are 3 files:

➢ squeezenet1.1.caffemodel is the file to describe the adjusted weights and biases for the trained

model.

➢ squeezenet1.1.labels is the label file for classification model.

➢ squeezenet1.1.prototxt is the description file for the model structure.

5. Enter “cd ../../../” to go back to the demo folder.

 OpenVINO Development Guide 28 www.terasic.com

6. Enter “mkdir my_ir” to create a new folder for saving IR files.

7. Enter “cd /opt/intel/2019_r1/openvino/deployment_tools/model_optimizer” to switch the workspace

to the Model Optimizer folder.

 OpenVINO Development Guide 29 www.terasic.com

8. Enter “python3.5 mo_caffe.py \

--input_model /opt/intel/2019_r1/openvino/deployment_tools/terasic_demo/demo/\

model/caffe/squeezenet1.1/squeezenet1.1.caffemodel \

--output_dir /opt/intel/2019_r1/openvino/deployment_tools/terasic_demo/demo/my_ir \

--data_type FP16”.

9. The corresponding IR files are generated in the my_ir folder.

 OpenVINO Development Guide 30 www.terasic.com

10. Copy the .label file from Model folder to the my_ir folder by entering

“cp \

/opt/intel/2019_r1/openvino/deployment_tools/terasic_demo/demo/\

model/caffe/squeezenet1.1/squeezenet1.1.labels \

/opt/intel/2019_r1/openvino/deployment_tools/terasic_demo/demo/my_ir/ ”.

 OpenVINO Development Guide 31 www.terasic.com

3.3 Lab 2. How to compile an Inference Engine app?

1. As the time is limited, we directly copy an existed application, rename it, and make a compilation.

2. Enter “cd ../inference_engine/samples” to switch the workspace to the Inference Engine samples

folder.

3. Enter “cp -r classification_sample my_classification_sample”.

 OpenVINO Development Guide 32 www.terasic.com

4. Enter “cd my_classification_sample” to switch the workspace to the new app folder.

5. Enter “gedit CMakeLists.txt” to open the file, re-name the target_name to my_classification_sample,

save and close the file.

 OpenVINO Development Guide 33 www.terasic.com

6. Enter “cd ../” to go back to the sample folder.

7. Enter “mkdir my_build” to create a new folder for saving the generated executable program.

8. Enter “cd my_build” to switch to the working directory.

9. Enter “cmake -DCMAKE_BUILD_TYPE=Release \

/opt/intel/2019_r1/openvino/deployment_tools/inference_engine/samples/” to copy the file

automatically into the directory-my_build, and it will generate a makefile for the code compilation.

 OpenVINO Development Guide 34 www.terasic.com

10. Enter “make -j8” to compile the application program, please be patient for the compilation process.

Current settings of compilation will compile all the applications in samples folder to executable

program.

11. Under the path: my_build/intel64/Release/, the corresponding my_classification_sample executable

program is generated, and the application is created.

 OpenVINO Development Guide 35 www.terasic.com

For more information of Inference Engine API, user can refer to following link:

https://docs.openvinotoolkit.org/latest/annotated.html

https://docs.openvinotoolkit.org/latest/_docs_IE_DG_Integrate_with_customer_application_new_API.

html

3.4 Lab 3. Execute the created application file, use the Inference

Engine for the classification predication.

1. In the previous steps, we have transformed the model to the IR files which are used by the inference

engine, and generated the corresponding executable file. Before executing the file, let’s have a

general understanding of the operations in the application program.

2. Open the file: classification_sample.h, there is a parameter “showUsage” for executing the app, -h

 OpenVINO Development Guide 36 www.terasic.com

is for help, -i is for the path to a folder with images or the camera parameters, -m is for the path of a

trained Model (IR Path), -d is for the target device.

3. Open the main.cpp in the folder: inference_engine/samples/my_classification_sample, there are

explanations:

➢ Step1, Load Plugin for inference engine, for this lab, the plugin is hetero plugin for FPGA and

CPU.

 OpenVINO Development Guide 37 www.terasic.com

➢ Step2, Read the IR Generated by Model Optimizer (.xml and .bin files).

For this lab, the xml file is squeezenet1.1.xml.

➢ Step3, configure the input & output, prepare the input blobs, read the input size information,

read the images path, set batch size, prepare the output blobs.

 OpenVINO Development Guide 38 www.terasic.com

➢ Step4, Loading model to the plugin.

➢ Step5, create infer request.

➢ Step6, Prepare input.

 OpenVINO Development Guide 39 www.terasic.com

➢ Step7, Do the inference, send data to FPGA for processing, and send the result to CPU.

➢ Step8, Process output, process the result and compare with the label file, the last printf the result

and the average inference time.

 OpenVINO Development Guide 40 www.terasic.com

4. Now, we are clear about the operations executed in the application, next, let us run the executable

file we generated before.

5. Enter “cd \

/opt/intel/2019_r1/openvino/deployment_tools/inference_engine/samples\

/my_build/intel64/Release” to switch the directory to application folder.

6. Enter “./my_classification_sample -i \

/opt/intel/2019_r1/openvino/deployment_tools/terasic_demo/demo/pic_video/car.png \

-m /opt/intel/2019_r1/openvino/deployment_tools/terasic_demo/\

demo/my_ir/squeezenet1.1.xml -d "HETERO:FPGA,CPU" ” to execute the Inference Engine.

 OpenVINO Development Guide 41 www.terasic.com

3.5 Advanced Experiment

1. In the previous steps, we already know how to convert the model to IR, and how to make executable

files which can be used by the inference engine. Next, let’s make a new demo.

2. Since the IR files have been generated already, no need to regenerate it, we continue to use the

previously generated squeezenet1.1.xml and the corresponding bin file.

3. Enter “cd /opt/intel/2019_r1/openvino/deployment_tools/inference_engine/samples” to switch the

workspace to Inference Engine samples folder.

4. Enter “cp -r my_classification_sample my_demo” to copy the files generated in the previous

experiment, and we will modify them to be used in my_demo.

5. Enter “cd my_demo” to switch to the new copied samples folder.

 OpenVINO Development Guide 42 www.terasic.com

6. Enter “gedit CMakeLists.txt” to open the file. Modify the file as follow:

 OpenVINO Development Guide 43 www.terasic.com

set (TARGET_NAME "my_demo")

Find OpenCV components if exist

find_package(OpenCV COMPONENTS highgui QUIET)

if(NOT(OpenCV_FOUND))

 message(WARNING "OPENCV is disabled or not found, " ${TARGET_NAME} " skipped")

 return()

endif()

file (GLOB MAIN_SRC

 ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp

)

file (GLOB MAIN_HEADERS

 ${CMAKE_CURRENT_SOURCE_DIR}/*.h

)

Create named folders for the sources within the .vcproj

Empty name lists them directly under the .vcproj

source_group("src" FILES ${MAIN_SRC})

source_group("include" FILES ${MAIN_HEADERS})

 OpenVINO Development Guide 44 www.terasic.com

link_directories(${LIB_FOLDER})

Create library file from sources.

add_executable(${TARGET_NAME} ${MAIN_SRC} ${MAIN_HEADERS})

add_dependencies(${TARGET_NAME} gflags)

set_target_properties(${TARGET_NAME} PROPERTIES "CMAKE_CXX_FLAGS"

"${CMAKE_CXX_FLAGS} -fPIE"

COMPILE_PDB_NAME ${TARGET_NAME})

#target_link_libraries(${TARGET_NAME} ${InferenceEngine_LIBRARIES} IE::ie_cpu_extension

format_reader gflags)

target_link_libraries(${TARGET_NAME} IE::ie_cpu_extension ${InferenceEngine_LIBRARIES} gflags

${OpenCV_LIBRARIES})

if(UNIX)

 target_link_libraries(${TARGET_NAME} ${LIB_DL} pthread)

endif()

7. Enter “gedit main.cpp” to open the file for application modification. The host application generated

in the previous steps is for the classification of entering a single picture. Next, we will modify the

application to support the classification display on multiply picture entering for loop.

➢ Setp1, add a header file for opencv and video operation.

 OpenVINO Development Guide 45 www.terasic.com

#include <gflags/gflags.h>

#include <functional>

#include <iostream>

#include <random>

#include <algorithm>

#include <iterator>

#include <samples/ocv_common.hpp>

#include <ext_list.hpp>

#include <opencv2/opencv.hpp>

➢ Step2, define a macro for picture number.

#define PIC_NUM 199

➢ Step3, delete the imageNames, because we don’t use it anymore

Before:

 OpenVINO Development Guide 46 www.terasic.com

After:

➢ Step4, delete the imagesData, because it’s used with imageNames.

Before:

 OpenVINO Development Guide 47 www.terasic.com

After:

➢ Step5, Change network.setBatchSize(imagesData.size()) to network.setBatchSize(1).

 OpenVINO Development Guide 48 www.terasic.com

Before:

After:

 OpenVINO Development Guide 49 www.terasic.com

➢ Step6, Delete the highlighted code as below

Before:

After:

 OpenVINO Development Guide 50 www.terasic.com

➢ Step7, delete operation of "step 6, Prepare input"

Before:

After:

 OpenVINO Development Guide 51 www.terasic.com

➢ Step8, add pictures relative information in "step 6, Prepare input"

std::string picture_file_path;

std::string picture_file_path_head = FLAGS_i+"/ILSVRC2012_val_";

slog::info << "picture file path : " << picture_file_path_head << slog::endl;

std::string picture_num="00000000";

std::string picture_retail=".JPEG";

std::string pic_num_str;

➢ Step9, modify “step 7, Do inference”

 OpenVINO Development Guide 52 www.terasic.com

slog::info << "Starting inference (" << FLAGS_ni << " iterations)" << slog::endl;

 typedef std::chrono::high_resolution_clock Time;

 typedef std::chrono::duration<double, std::ratio<1, 1000>> ms;

 typedef std::chrono::duration<float> fsec;

Blob::Ptr frameBlob;

int pic_num=1;

cv::Mat frame;

while (true) {

 // load picture from files

 if (pic_num<=PIC_NUM){

 slog::info << "pic_num = "<< pic_num << slog::endl;

 OpenVINO Development Guide 53 www.terasic.com

 pic_num_str = std::to_string(pic_num);

 picture_file_path=picture_file_path_head+picture_num.substr(0,8-

pic_num_str.length())+pic_num_str+picture_retail;

 slog::info << "pic_path : "<< picture_file_path << slog::endl;

 frame = cv::imread(picture_file_path);

 cv::resize(frame,frame, cv::Size(600,400), 0, 0, cv::INTER_LINEAR);

 pic_num++;

 }else{

 pic_num=1;

 continue;

 }

 /* Resize and copy data from the image to the input blob */

 /** Creating input blob **/

 frameBlob =infer_request.GetBlob(inputInfo.begin()->first);

 matU8ToBlob<uint8_t>(frame, frameBlob);

 double total = 0.0;

 /** Start inference & calc performance **/

 for (unsigned int iter = 0; iter < FLAGS_ni; ++iter) {

 auto t0 = Time::now();

 infer_request.Infer();

 auto t1 = Time::now();

 fsec fs = t1 - t0;

 ms d = std::chrono::duration_cast<ms>(fs);

 total += d.count();

 }

➢ Step10, modify “step 8, Process output”

Add the code as below:

 OpenVINO Development Guide 54 www.terasic.com

auto output_data = output_blob->buffer().as<PrecisionTrait<Precision::FP32>::value_type*>();

 OpenVINO Development Guide 55 www.terasic.com

Add the code as below:

std::vector<unsigned> results;

TopResults(FLAGS_nt, *output_blob, results);

std::cout << std::endl << "Top " << FLAGS_nt << " results:" << std::endl << std::endl;

bool labelsEnabled = false;

Add the code as below:

labelsEnabled = true;

 OpenVINO Development Guide 56 www.terasic.com

Delete the following code:

➢ Step11, add picture display code as below.

 OpenVINO Development Guide 57 www.terasic.com

/** Print the result iterating over each batch **/

 for (unsigned int id = 0, cnt = 0; cnt < FLAGS_nt; ++cnt, ++id) {

 std::cout.precision(7);

 /** Getting probability for resulting class **/

 const auto result = output_data[results[id]];

 std::cout << std::left << std::fixed << results[id] << " " << result;

 if (labelsEnabled) {

 std::cout << " label " << labels[results[id]] << std::endl;

 } else {

 std::cout << " label #" << results[id] << std::endl;

 }

 }

 std::cout << std::endl;

 std::cout << std::endl << "total inference time: " << total << std::endl;

 std::cout << std::endl << "Throughput: " << 1000 * static_cast<double>(FLAGS_ni)

* batchSize / total << " FPS" << std::endl;

 std::cout << std::endl;

 OpenVINO Development Guide 58 www.terasic.com

 /** Show performance results **/

 if (FLAGS_pc) {

 printPerformanceCounts(infer_request, std::cout);

 }

 //----------- paint picture -----------------

 std::ostringstream out;

 out << "Detection time : " << std::fixed << std::setprecision(2) <<total

 << " ms ("

 << 1000.f / total << " fps)";

 cv::putText(frame, out.str(), cv::Point2f(0, 30), cv::FONT_HERSHEY_TRIPLEX,

0.5,

 cv::Scalar(255, 255, 0));

 out.str("");

 out << "Detection result : " << std::fixed << std::setprecision(2) << " Label: " <<

labels[results[0]] << " "<< output_data[results[0]];

 cv::putText(frame, out.str(), cv::Point2f(0, 60), cv::FONT_HERSHEY_TRIPLEX,

0.5,

 cv::Scalar(0, 0, 255));

 //---------------- picture display -------------------

 cv::imshow("Detection results", frame);

 const int key = cv::waitKey(1000);

 if (27 == key) // Esc

 break;

 }

 }

➢ Step12, After the modifying, save it as main.cpp.

8. Enter “cd /root/inference_engine_samples_build/” to go to the sample build folder.

 OpenVINO Development Guide 59 www.terasic.com

9. Enter “rm CMakeCache.txt” to clean the build cache.

10. Enter “cmake -DCMAKE_BUILD_TYPE=Release \

/opt/intel/2019_r1/openvino/deployment_tools/inference_engine/samples” to copy the file to the

samples build directory.

 OpenVINO Development Guide 60 www.terasic.com

11. Enter “make -j8 my_demo” to compile the application program, please be patient for the compilation

process.

 OpenVINO Development Guide 61 www.terasic.com

12. Enter “cd intel64/Release” to switch to app directory, then enter "ls", under this folder, the

corresponding executable file for my_demo is generated, a new application is completed

 OpenVINO Development Guide 62 www.terasic.com

13. Enter “./my_demo -d “HETERO:FPGA,CPU” -i \

/opt/intel/2019_r1/openvino/deployment_tools/terasic_demo/demo/\

pic_video/openvino_pictures -m \

/opt/intel/2019_r1/openvino/deployment_tools/terasic_demo/demo/ir/\

FP16/squeezenet1.1/squeezenet1.1.xml” to execute the host app.

14. The results are as below:

 OpenVINO Development Guide 63 www.terasic.com

If you test all of these demos successfully, you will find the result is the same as demo

07_classification_pic_loop.sh.

 OpenVINO Development Guide 64 www.terasic.com

Appendix

FAQ

1. Q: When executing ./bringup_board.sh command, it reports “Error (213013): Programming

hardware cable not detected Error: quartus_pgm SFL failed” as the picture below:

A: Please make sure the USB cable is connected to the UB2 (USB Blaster II) port correctly (the

UB2 port is shown in the following picture).

Using the command “lsusb” to double check if the PC detects the hardware or not.

 OpenVINO Development Guide 65 www.terasic.com

2. Q: Which Nets can the OpenVINO Model Optimizer support?

A: Please refer to Intel website:

https://docs.openvinotoolkit.org/latest/_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGu

ide.html for the more information.

So far, we have tested GoogleNet V2 and ResNet.

3. Q: How to program different aocx file for one FPGA board?

A: Please refer to below command:

aocl program acl0 <terasic_demo path>/bitstreams/<board name>/<aocx name>

User needs to enter the right terasic_demo path, board name and aocx name to the command, for

example, we use DE5a-Net-DDR4 board, we provide below aocx files for DE5a-Net-DDR4:

Below is the command that we use to program one aocx file:

aocl program acl0 /opt/intel/2019_r1/openvino/deployment_tools/terasic_demo/bitstreams/de5a_

net_ddr4/dla_16x48_fp11_sb15000_i1_actk8_poolk8_owk4_image224x224x4096_clamp8.aocx

4. Q: After entering the command “./my_classification_sample -i \

/opt/intel/2019_r1/openvino/deployment_tools/terasic_demo/demo/pic_video/car.png \

-m /opt/intel/2019_r1/openvino/deployment_tools/terasic_demo/\

demo/my_ir/squeezenet1.1.xml -d “HETERO:FPGA,CPU”” to execute the Inference Engine, why

does it report the error “Cannot find plugin for device: Default”?

 OpenVINO Development Guide 66 www.terasic.com

A: Please make sure the syntax of quotation marks in the command is entered correctly

5. Q: After entering the command “cmake -DCMAKE_BUILD_TYPE=Release \

/opt/intel/2019_r1/openvino/deployment_tools/inference_engine/samples” to copy the file to the

samples build directory, it reports the error as the following picture, why?

 OpenVINO Development Guide 67 www.terasic.com

Q: There may be syntax errors in the CMakeLists.txt file you have modified. Please double check

the syntax (especially the syntax of symbols) in the code you added and correct it. And we also

suggest you to double check the syntax in the main.cpp file you modified to prevent errors after

entering “make -j8 my_demo” to compile the application program.

Contact Terasic

Users can refer to below contacts for Terasic technical support and products information:

Tel：+886-3-575-0880

Email: support@terasic.com / sales@terasic.com

Site：http://www.terasic.com

Address：9F., No.176, Sec.2, Gongdao 5th Rd, East Dist, Hsinchu City, 30070. Taiwan

Revision History

Version Changes Log

V1.0 Initial Version

V2.0 Modified for 2019R1

V2.1 Update figures and operation describe for TDK

V2.2
Following this guide to test DE5a-Net-DDR4

OpenVINO 2019R1

V2.3
Following this guide to test TSP GT Edition

OpenVINO 2019R1, and update the figures

Copyright Statement

Copyright © 2019 Terasic Inc. All Rights Reserved.

