RS-232/RS-485/RS-422 TRANSCEIVER WITH INTERNAL TERMINATION APRIL 2020 REV. 1.0.7 #### **GENERAL DESCRIPTION** The SP339 is an advanced multiprotocol transceiver supporting RS-232, RS-485, and RS-422 serial standards in a 40 pin QFN package. Integrated cable termination and four configuration modes allow all three protocols to be used interchangeably over a single cable or connector with no additional switching components. Full operation requires only four external charge pump capacitors. The RS-485/422 modes feature one driver and one receiver (1TX/1RX) in both half and full duplex configurations. The RS-232 mode (3TX/5RX) provides full support of all eight signals commonly used with the DB9 RS-232 connector. A dedicated diagnostic loopback mode is also provided. The high speed drivers operate up to 20Mbps in RS-485/422 modes, and up to 1Mbps in RS-232 mode. All drivers can be slew limited to 250kbps in any mode to minimize electromagnetic interference (EMI). All transmitter outputs and receiver inputs feature robust electrostatic discharge (ESD) protection to ±15kV IEC-61000-4-2 Air Gap, ±8kV IEC-61000-4-2 Contact, and ±15kV Human Body Model (HBM). Each receiver output has full fail-safe protection to avoid system lockup, oscillation, or indeterminate states by defaulting to logic-high output level when the inputs are open, shorted, or terminated but undriven. No external biasing resistors are required. The RS-232 receiver inputs include a $5 \mathrm{k}\Omega$ pull-down to ground. The RS-485/422 receiver inputs are high impedance (>96 $\mathrm{k}\Omega$ when termination is disabled), allowing up to 256 devices on a single communication bus (1/8th unit load). The SP339 operates from a single power supply, either 3.3V or 5V, with low idle current (2mA typical in all modes). The shutdown mode consumes less than $10\mu\text{A}$ for low power standby operation. #### **FEATURES** - Pin selectable Cable Termination - No external resistors required for RS-485/422 termination and biasing - 3.3V or 5V Single Supply Operation - Robust ESD Protection on bus pins - ±15kV IEC 61000-4-2 (Air Gap) - ± 8kV IEC 61000-4-2 (Contact) - Max Data Rate of 20Mbps in RS-485/422 Modes and up to 1Mbps in RS-232 Modes - Pin selectable 250kbps Slew Limiting - 3 Drivers, 5 Receivers RS-232/V.28 - 1 Driver, 1 Receiver RS-485/422 - □ Full and Half Duplex Configuration - 1/8th Unit Load, up to 256 receivers on bus - RS-485/422 Enhanced Failsafe for open, shorted, or terminated but idle inputs - Space saving 6mm x 6mm QFN-40 Package - Pin compatible with SP338E #### TYPICAL APPLICATIONS - Dual Protocol Serial Ports (RS-232 or RS-485/422) - Industrial Computers - Industrial and Process Control Equipment - Point-Of-Sale Equipment - Networking Equipment - HVAC Controls Equipment - Building Security and Automation Equipment #### ORDERING INFORMATION(1) | PART NUMBER | OPERATING TEMPERATURE RANGE | PACKAGE | Packaging Method | LEAD-FREE ⁽²⁾ | | | | |----------------------|--|------------|------------------|--------------------------|--|--|--| | SP339EER1-L | -40°C to +85°C | 40-pin QFN | Tray | Yes | | | | | SP339EER1-L/TR | -40°C to +85°C | 40-pin QFN | Tape and Reel | Yes | | | | | XR21B1420IL28-0A-EVB | The XR21B1420 Evaluation Board includes the SP339 transceiver. | | | | | | | #### NOTES: - 1. Refer to www.maxlinear.com/SP339 for most up-to-date Ordering Information. - 2. Visit www.maxlinear.com for additional information on Environmental Rating. ABSOLUTE MAXIMUM RATINGS These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections to the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability and cause permanent damage to the device. | Supply Voltage V _{CC} | -0.3V to +6.0V | |--|-----------------------------------| | Receiver Input Voltage (from Ground) | ±18V | | Driver Output Voltage (from Ground) | ±18V | | Short Circuit Duration, TX out to Ground | Continuous | | Voltage at TTL Input Pins | -0.3V to (V _{CC} + 0.5V) | | Storage Temperature Range | -65°C to +150°C | | Lead Temperature (soldering, 10s) | +300°C | ### **OPERATING CONDITIONS** | Thermal Resistance | from junction to ambient (Θ_{JA}) | 31.6°C/W | |---|--|----------| | Thermal itesistance | from junction to ambient (Θ_{JC}) | 12.4°C/W | | Maximum Junction Temperature | | 125°C | | Power Dissipation 40-pin QFN (derate 17mW/°C above +70°C) | | 500mW | ### **ESD RATINGS** | HBM - Human Body Model (Tx Output & Rx Input pins, R1-R9) | ±15kV | |---|-------| | HBM - Human Body Model (All other pins) | ±4kV | | IEC 61000-4-2 Airgap Discharge (Tx Output & Rx Input pins, R1-R9) | ±15kV | | IEC61000-4-2 Contact Discharge (Tx Output & Rx Input pins, R1-R9) | ±8kV | ### **CAUTION:** ESD (ElectroStatic Discharge) sensitive device. Permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. Personnel should be properly grounded prior to handling this device. The protective foam should be discharged to the destination socket before devices are removed. MAXLINEAR # RS-232/RS-485/RS-422 TRANSCEIVER WITH INTERNAL TERMINATION # PIN DESCRIPTIONS BY MODE (MODE1, MODE0) | Pin | Name | 00 , Figure 1 | 01 , Figure 2 | 10 , Figure 3 | 11 , Figure 4 | | | | |-----|--------|--|---------------------------|---|----------------------|--|--|--| | 1 | L1 | R1 0 | utput | 1 | 1 | | | | | 2 | L2 | R2 O | utput | R1 Output | R1 Output | | | | | 3 | L3 | T1 lı | nput | T1 Input | T1 Input | | | | | 4 | L4 | T2 lı | nput | | | | | | | 5 | L6 | R3 O | utput | 1 | 1 | | | | | 6 | L7 | Т3 Іі | nput | | | | | | | 7 | L8 | R4 O | utput | 1 | 1 | | | | | 8 | L9 | R5 O | utput | 1 | 1 | | | | | 9 | VCC | V _{CC} | | | | | | | | 10 | GND | Ground | | | | | | | | 11 | SLEW | | SLEW = \ | V _{CC} enables 250kbps slew limiting | | | | | | 12 | DIR1 | | | T1 Enable,
R1 Disable | T1 Enable | | | | | 13 | N/C | Th | nis pin is not used and i | s not connected interna | lly | | | | | 14 | MODE0 | 0 | 1 | 0 | 1 | | | | | 15 | MODE1 | 0 | 0 | 1 | 1 | | | | | 16 | N/C | This pin is not used and is not connected internally | | | | | | | | 17 | TERM | Enables RS-485/422 receiver termination | | | | | | | | 18 | N/C | This pin is not used and is not connected internally | | | | | | | | 19 | ENABLE | ENABLE = V _{CC} for operation, ENABLE = 0V for shutdown | | | | | | | | 20 | VCC | | V | cc | | | | | # PIN DESCRIPTIONS BY MODE (MODE1, MODE0) | Pin | Name | 00 , Figure 1 | 01 , Figure 2 | 10 , Figure 3 | 11 , Figure 4 | | | | | | |-----|------|--|------------------------------|-----------------------------|----------------------|--|--|--|--|--| | 21 | R9 | | R5 Input | | | | | | | | | 22 | R8 | | | | | | | | | | | 23 | GND | | G | round | | | | | | | | 24 | R7 | | T3 Output | | | | | | | | | 25 | R6 | | R3 Input | | | | | | | | | 26 | GND | | G | round | | | | | | | | 27 | R4 | | T2 Output | | R1 Input B | | | | | | | 28 | R3 | | T1 Output | | R1 Input A | | | | | | | 29 | GND | | Ground | | | | | | | | | 30 | R2 | | R2 Input | R1 Input A, T1 Out A | T1 Out A | | | | | | | 31 | R1 | | R1 Input | R1 Input B, T1 Out B | T1 Out B | | | | | | | 32 | VCC | V _{CC} - | 1.0μF to ground reco | mmended for supply decou | ıpling | | | | | | | 33 | VSS | V _{SS} | - Charge pump negat | tive supply, 0.1μF from gro | und | | | | | | | 34 | C2- | | C ₂₊ - Charge pum | np cap 2 negative lead | | | | | | | | 35 | C1- | | C ₁₋ - Charge pum | ip cap 1 negative lead | | | | | | | | 36 | GND | | Ground | | | | | | | | | 37 | C1+ | C ₁₊ - Charge pump cap 1 positive lead, 0.1μF | | | | | | | | | | 38 | VCC | V _{CC} | | | | | | | | | | 39 | C2+ | C ₂₊ - Charge pump cap 2 positive lead, 0.1μF | | | | | | | | | | 40 | VDD | V_{DD} - Charge pump positive supply, $0.1\mu F$ to ground | | | | | | | | | # SUGGESTED DB9 CONNECTOR PINOUT | DB9
Pin | RS-232 | RS-485/422
Full Duplex | RS-485
Half Duplex | |------------|--------|---------------------------|-----------------------| | 1 | DCD | TX- | Data- | | 2 | RXD | TX+ | Data+ | | 3 | TXD | RX+ | | | 4 | DTR | RX- | | | 5 | | Ground | | | 6 | DSR | | | | 7 | RTS | | | | 8 | CTS | | | | 9 | RI | | | # **ELECTRICAL CHARACTERISTICS** #### UNLESS OTHERWISE NOTED: | SYMBOL | PARAMETERS | MIN. | TYP. | Max. | Units | Conditions | | | |------------------|---|----------------------|------|------|-------|--|--|--| | DC CHARAC | DC CHARACTERISTICS | | | | | | | | | I _{CC} | Supply Current (RS-232) | | 2 | 8 | mA | No load, idle inputs | | | | I _{CC} | Supply Current (RS-485) | | 2 | 8 | mA | No load, idle inputs | | | | I _{CC} | Vcc Shutdown Current | | 1 | 10 | μА | ENABLE = 0V | | | | TRANSMITTI | TRANSMITTER and LOGIC INPUT PINS: Pins 3, 4, 6, 11, 12, 14, 15, 17-19 | | | | | | | | | V _{IH} | Logic Input Voltage High | 2.0 | | | ٧ | V _{CC} = 3.3V | | | | V _{IH} | Logic Input Voltage High | 2.4 | | | ٧ | V _{CC} = 5.0V | | | | V _{IL} | Logic Input Voltage Low | | | 0.8 | ٧ | | | | | I _{IL} | Logic Input Leakage Current Low | | | 1 | μА | Input Low (V _{IN} = 0V) | | | | I _{IH} | Logic Input Leakage Current High | | | 1 | μΑ | Input High ($V_{IN} = V_{CC}$), pins 3, 4 and 6 | | | | I _{PD} | Logic Input Pull-down Current | | | 50 | μА | Input High (V _{IN} = V _{CC}),
pins 11, 12, 14, 15, 17-19 | | | | V _{HYS} | Logic Input Hysteresis | | 200 | | mV | | | | | RECEIVER C | RECEIVER OUTPUTS: Pins 1, 2, 5, 7, 8 | | | | | | | | | V _{OH} | Receiver Output Voltage High | V _{CC} -0.6 | | | V | I _{OUT} = -1.5mA | | | | V _{OL} | Receiver Output Voltage Low | | | 0.4 | V | I _{OUT} = 2.5mA | | | | I _{OSS} | Receiver Output Short Circuit Current | | ±20 | ±60 | mA | $0 \le V_O \le V_{CC}$ | | | | l _{OZ} | Receiver Output Leakage Current | | ±0.1 | ±1 | μΑ | $0 \le V_O \le V_{CC}$,
Receivers disabled | | | # RS-232/RS-485/RS-422 TRANSCEIVER WITH INTERNAL TERMINATION # **ELECTRICAL CHARACTERISTICS (Continued)** ### UNLESS OTHERWISE NOTED: | SYMBOL | PARAMETERS | MIN. | TYP. | Max. | Units | Conditions | |------------------|------------------------------|------|------|------|-------|--------------------------------------| | SINGLE-EN | DED RECEIVER INPUTS (RS-232) | | | | | | | V _{IN} | Input Voltage Range | -15 | | +15 | V | | | V _{IL} | Input Throshold Low | 0.6 | 1.2 | | V | V _{CC} = 3.3V | | ۷IL | Input Threshold Low | 0.8 | 1.5 | | V | V _{CC} = 5.0V | | V _{IH} | Input Throshold High | | 1.5 | 2.0 | V | V _{CC} = 3.3V | | VIН | Input Threshold High | | 1.8 | 2.4 | V | V _{CC} = 5.0V | | V _{HYS} | Input Hysteresis | | 0.3 | | V | | | R _{IN} | Input Resistance | 3 | 5 | 7 | kΩ | -15V ≤ V _{IN} ≤ +15V | | SINGLE-ENI | DED DRIVER OUTPUTS (RS-232) | · | | | | | | V _O | Output Voltage Swing | ±5.0 | ±5.5 | | V | Output loaded with $3k\Omega$ to Gnd | | | Sulput Voltage Owing | | | ±7.0 | V | No load output | | I _{SC} | Short Circuit Current | | | ±60 | mA | V _O = 0V | | R _{OFF} | Power Off Impedance | 300 | 10M | | Ω | $V_{CC} = 0V$, $V_O = \pm 2V$ | # **ELECTRICAL CHARACTERISTICS (Continued)** ### UNLESS OTHERWISE NOTED: | SYMBOL | PARAMETERS | MIN. | Typ. | Max. | Units | Conditions | | | |-------------------|--|------|------|-----------------|-------|--|--|--| | DIFFERENTI | DIFFERENTIAL RECEIVER INPUTS (RS-485 / RS-422) | | | | | | | | | R _{IN} | Receiver Input Resistance | 96 | | | kΩ | TERM = $0V$,
$-7V \le V_{IN} \le +12V$ | | | | V _{TH} | Receiver Differential Threshold Voltage | -200 | -125 | -50 | mV | | | | | ΔV_{TH} | Receiver Input Hysteresis | | 25 | | mV | V _{CM} = 0V | | | | I _{IN} | Receiver Input Current | | | 125 | μА | V _{IN} = +12V | | | | 'IN | receiver input ourient | | | -100 | μА | V _{IN} = -7V | | | | R _{TERM} | Termination Resistance | 100 | 120 | 155 | Ω | TERM = V_{CC} , Figure 5
-7V $\leq V_{CM} \leq +12V$ | | | | R _{TERM} | Termination Resistance | 100 | 120 | 140 | Ω | TERM = V _{CC} , Figure 5
V _{CM} = 0V | | | | DIFFERENTI | AL DRIVER OUTPUTS (RS-485 / RS-42 | 22) | | | • | | | | | | | 2 | | V _{CC} | V | $R_L = 100\Omega$ (RS-422), Figure 6 | | | | V _{OD} | Differential Driver Output | 1.5 | | V _{CC} | V | R_L = 54 Ω (RS-485), Figure 6 | | | | - OB | Differential Driver Output | 1.5 | | V _{CC} | V | -7V ≤ V _{CM} ≤ +12V, Figure 7 | | | | | | | | V _{CC} | V | No Load | | | | ΔV _{OD} | Change In Magnitude of Differential Output Voltage | -0.2 | | +0.2 | V | R_L = 54Ω or 100Ω, Figure 6 | | | | V _{CM} | Driver Common Mode Output Voltage | | | 3 | V | R_L = 54Ω or 100Ω, Figure 6 | | | | ΔV _{CM} | Change In Magnitude of
Common Mode Output Voltage | | | 0.2 | V | $R_L = 54\Omega$ or 100Ω , Figure 6 | | | | I _{OSD} | Driver Output Short Circuit Current | -250 | | 250 | mA | -7V ≤ V _O ≤ +12V, Figure 8 | | | | Io | Driver Output Leakage Current | | | 100 | μА | DIR1 = 0V in Mode 11,
or ENABLE = 0V,
V _O = +12V, V _{CC} = 0V or 5.25V | | | | -0 | | -100 | | | μА | DIR1 = 0V in Mode 11,
or ENABLE = 0V,
$V_O = -7V$, $V_{CC} = 0V$ or 5.25V | | | ### RS-232/RS-485/RS-422 TRANSCEIVER WITH INTERNAL TERMINATION # **TIMING CHARACTERISTICS** ### UNLESS OTHERWISE NOTED: $V_{CC} = +3.3V \pm 5\% \text{ or } +5.0V \pm 5\%, \text{ C1-C4} = 0.1 \mu\text{F}; \text{ } T_{A} = T_{MIN} \text{ to } T_{MAX}. \text{ Typical values are at } V_{CC} = 3.3V, T_{A} = +25 ^{\circ}\text{C}.$ | SYMBOL | PARAMETERS | MIN. | TYP. | Max. | Units | Conditions | | | | |-------------------------------------|---|--------|---------|---------|-------|--|--|--|--| | ALL MODES | | | | | | | | | | | t _{ENABLE} | Enable from Shutdown | | 1000 | | ns | | | | | | t _{SHUTDOWN} | Enable to Shutdown | | 1000 | | ns | | | | | | RS-232, DATA | RS-232, DATA RATE = 250kbps (SLEW = Vcc), ONE TRANSMITTER SWITCHING | | | | | | | | | | | Maximum Data Rate | 250 | | | kbps | $R_L = 3k\Omega$, $C_L = 1000pF$ | | | | | t _{RHL} , t _{RLH} | Receiver Propagation Delay | | 100 | | ns | C ₁ = 150pF, Figure 9 | | | | | t _{RHL} -t _{RLH} | Receiver Propagation Delay Skew | | | 100 | ns | - ο _L = 130μι, πigure 9 | | | | | t _{DHL} , t _{DLH} | Driver Propagation Delay | | 1400 | | ns | $R_L = 3k\Omega, C_L = 2500pF,$ | | | | | t _{DHL} -t _{DLH} | Driver Propagation Delay Skew | | | 600 | ns | Figure 10 | | | | | | | | | | | | | | | | t _{SHL,} t _{SLH} | Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V | 4 | | 30 | V/μs | V_{CC} = 3.3V, R _L = 3kΩ to 7kΩ,
C _L = 150pF to 2500pF,
Figure 10 | | | | | t _{SHL,} t _{SLH} | Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V | 6 | | 30 | V/μs | V_{CC} = 3.3V, R_L = 3k Ω to 7k Ω ,
C_L = 150pF to 2500pF,
T_A = 25°C, Figure 10 | | | | | RS-232, DATA | A RATE = 1Mbps (SLEW = 0V), ONE T | RANSMI | TTER SV | WITCHIN | G | | | | | | | Maximum Data Rate | 1 | | | Mbps | $R_L = 3k\Omega$, $C_L = 250pF$ | | | | | t _{RHL} , t _{RLH} | Receiver Propagation Delay | | 100 | | ns | C ₁ = 150pF, Figure 9 | | | | | t _{RHL} -t _{RLH} | Receiver Propagation Delay Skew | | | 100 | ns | CL - 150pr, Figure 9 | | | | | t _{DHL} , t _{DLH} | Driver Propagation Delay | | 300 | | ns | $R_L = 3k\Omega, C_L = 1000pF,$ | | | | | t _{DHL} -t _{DLH} | Driver Propagation Delay Skew | | | 150 | ns | Figure 10 | | | | | | | | | | | | | | | | ^t shl, ^t slh | Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V | 15 | | 150 | V/μs | V_{CC} = 3.3V, R_L = 3k Ω to 7k Ω ,
C_L = 150pF to 1000pF,
Figure 10 | | | | | ^t shl, ^t slh | Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V | 24 | | 150 | V/μs | V_{CC} = 3.3V, R _L = 3kΩ to 7kΩ,
C _L = 150pF to 1000pF,
T _A = 25°C, Figure 10 | | | | # **TIMING CHARACTERISTICS (Continued)** ### UNLESS OTHERWISE NOTED: | SYMBOL | PARAMETERS | MIN. | TYP. | Max. | Units | Conditions | | |--|----------------------------------|-----------|--------|---------|---------|---|--| | RS-485/RS-422, DATA RATE = 250kbps (SLEW = Vcc), ONE TRANSMITTER SWITCHING | | | | | | | | | | Maximum Data Rate | 250 | | | kbps | $R_L = 54\Omega$, $C_L = 50pF$ | | | t _{RPHL} , t _{RPLH} | Receiver Propagation Delay | | 50 | 150 | ns | C ₁ = 15pF, Figure 11 | | | t _{RPHL} -t _{RPLH} | Receiver Propagation Delay Skew | | | 20 | ns | OL = 1991, rigure 11 | | | t _{DPHL} , t _{DPLH} | Driver Propagation Delay | | 500 | 1000 | ns | | | | t _{DPHL} -t _{DPLH} | Driver Propagation Delay Skew | | | 100 | ns | $R_L = 54\Omega$, $C_L = 50pF$, Figure 12 | | | $t_{DR,} t_{DF}$ | Driver Rise and Fall Time | 300 | 650 | 1200 | ns | , rigure 12 | | | | | _ | 1 | 1 | 1 | | | | t _{RZH} , t _{RZL} | Receiver Output Enable Time | | | 200 | ns | C _I = 15pF, Figure 13 | | | t _{RHZ} , t _{RLZ} | Receiver Output Disable Time | | | 200 | ns | | | | t_{DZH} , t_{DZL} | Driver Output Enable Time | | | 1000 | ns | $R_L = 500\Omega, C_L = 50pF,$ | | | t_{DHZ},t_{DLZ} | Driver Output Disable Time | | | 200 | ns | Figure 14 | | | RS-485/RS-42 | 2, DATA RATE = 20Mbps (SLEW = 0V | '), ONE T | RANSMI | TTER SI | MITCHII | NG | | | | Maximum Data Rate | 20 | | | Mbps | $R_L = 54\Omega$, $C_L = 50pF$ | | | t_{RPHL} , t_{RPLH} | Receiver Propagation Delay | | 50 | 150 | ns | C ₁ = 15pF, Figure 11 | | | t _{RPHL} -t _{RPLH} | Receiver Propagation Delay Skew | | | 10 | ns | or Topi, rigule 11 | | | t _{DPHL} , t _{DPLH} | Driver Propagation Delay | | 30 | 100 | ns | | | | t _{DPHL} -t _{DPLH} | Driver Propagation Delay Skew | | | 10 | ns | $R_L = 54\Omega$, $C_L = 50pF$, Figure 12 | | | t _{DR} , t _{DF} | Driver Rise and Fall Time | | 10 | 20 | ns | 119410 12 | | | | | | | | | | | | t_{RZH} , t_{RZL} | Receiver Output Enable Time | | | 200 | ns | C ₁ = 15pF, Figure 13 | | | t _{RHZ} , t _{RLZ} | Receiver Output Disable Time | | | 200 | ns | | | | t _{DZH} , t _{DZL} | Driver Output Enable Time | | | 200 | ns | $R_L = 500\Omega, C_L = 50pF,$ | | | t _{DHZ} , t _{DLZ} | Driver Output Disable Time | | | 200 | ns | Figure 14 | | # **BLOCK DIAGRAM BY MODE (MODE1, MODE0)** FIGURE 1. MODE 00 - LOOPBACK FIGURE 2. MODE 01 - RS-232 FIGURE 3. MODE 10 - RS-485 HALF DUPLEX ### FIGURE 4. MODE 11 - RS-485/422 FULL DUPLEX ### **TEST CIRCUITS** #### FIGURE 5. RS-485/422 RECEIVER TERMINATION RESISTANCE #### FIGURE 6. RS-485/422 DIFFERENTIAL DRIVER OUTPUT VOLTAGE FIGURE 7. RS-485/422 DIFFERENTIAL DRIVER OUTPUT VOLTAGE OVER COMMON MODE FIGURE 8. RS-485/422 DRIVER OUTPUT SHORT CIRCUIT CURRENT FIGURE 9. RS-232 RECEIVER PROPAGATION DELAY FIGURE 10. RS-232 DRIVER PROPAGATION DELAY FIGURE 11. RS-485/422 RECEIVER PROPAGATION DELAY FIGURE 12. RS-485/422 DRIVER PROPAGATION DELAY AND RISE/FALL TIMES ### FIGURE 13. RS-485/422 RECEIVER OUTPUT ENABLE/DISABLE TIMES FIGURE 14. RS-485/422 DRIVER OUTPUT ENABLE/DISABLE TIMES #### PRODUCT SUMMARY The SP339 is an advanced multiprotocol transceiver supporting RS-232, RS-485, and RS-422 serial standards in a 40 pin QFN package. Integrated cable termination and four configuration modes allow all three protocols to be used interchangeably over a single cable or connector with no additional switching components. The RS-485/422 modes feature one driver and one receiver (1TX/1RX) in both half and full duplex configurations. The RS-232 mode (3TX/5RX) provides full support of all eight signals commonly used with the DB9 RS-232 connector. A dedicated mode is also available for diagnostic loopback testing. #### INTERNALLY SWITCHED CABLE TERMINATION Enabling and disabling the RS-485/422 termination resistor is one of the largest challenges system designers face when sharing a single connector or pair of lines across multiple serial protocols. A termination resistor may be necessary for accurate RS-485/422 communication, but must be removed when the lines are used for RS-232. SP339 provides an elegant solution to this problem by integrating the termination resistor and switching control, and allowing it to be switched in and out of the circuit with a single pin. No external switching components are required. #### **ENHANCED FAILSAFE** Ordinary RS-485 differential receivers will be in an indeterminate state whenever the data bus is not being actively driven. The enhanced failsafe feature of the SP339 guarantees a logic-high receiver output when the receiver inputs are open, shorted, or terminated but idle/undriven. The enhanced failsafe interprets 0V differential as a logic high with a minimum 50mV noise margin, while maintaining compliance with the EIA/TIA-485 standard of ±200mV. No external biasing resistors are required, further easing the usage of multiple protocols over a single connector. #### ±15kV ESD PROTECTION ESD protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The bus pins (driver outputs and receiver inputs) have extra protection structures, which have been tested up to ±15kV without damage. These structures withstand high ESD in all states: normal operation, shutdown and powered down. ESD protection is be tested in various ways. MaxLinear uses the following methods to qualify the protection structures designed into SP339: - ±15kV using the Human Body Model (HBM) - ± 8kV using IEC 61000-4-2 Contact Discharge - ± 15kV using IEC 61000-4-2 Air Gap Discharge The IEC 61000-4-2 standard is more rigorous than HBM, resulting in lower voltage levels compared with HBM for the same level of ESD protection. Because IEC 61000-4-2 specifies a lower series resistance, the peak current is higher than HBM. The SP339 has passed both HBM and IEC 61000-4-2 testing without damage. #### **DIAGNOSTIC LOOPBACK MODE** The SP339 includes a diagnostic digital loop back mode for system testing as shown in Figure 1. The loopback mode connects the TTL driver inputs to the TTL receiver outputs, bypassing the analog driver and receiver circuitry. The analog/bus pins are internally disconnected in this mode. ### **MECHANICAL DIMENSIONS** #### FIGURE 15. QFN-40 PACKAGE OUTLINE DRAWING | DIMENSION TABLE | | | | | |-----------------|----------|---------|------|------| | SYMBOL | MIN | NOM | MAX | NOTE | | А | 0.80 | 0.90 | 1.00 | | | A1 | 0.00 | 0.02 | 0.05 | | | A3 | | 0.20Ref | | | | b | 0.20 | 0.25 | 0.30 | | | D | 6.00 BSC | | | | | E | 6.00 BSC | | | | | е | 0.50 BSC | | | | | D2 | 4.50 | 4.65 | 4.80 | | | E2 | 4.50 | 4.65 | 4.80 | | | L | 0.35 | 0.40 | 0.45 | | | K | 0.20 | _ | _ | | | aaa | | 0.15 | | | | bbb | | 0.10 | | | | ccc | | 0.10 | | | | ddd | | 0.05 | | | | eee | | 0.08 | | | | N | | 40 | | | #### TERMINAL DETAILS - ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES. - DIMENSIONS AND TOLERANCE PER JEDEC MO-220. Drawing No.: POD-00000041 Revision: B.3 ### RECOMMENDED LAND PATTERN AND STENCIL #### FIGURE 16. QFN-40 RECOMMENDED PCB LAND PATTERN AND STENCIL FIGURE 17. PIN 1 ORIENTATION IN TAPE #### **REVISION HISTORY** | DATE | REVISION | DESCRIPTION | |---------------|----------|--| | October 2011 | 1.0.0 | Production Release | | December 2011 | 1.0.1 | Added C _L and R _L test conditions to figures 13 and 14 on page 9 Absolute max rating ±18V on page 2 Text edits in product summary on page 19 | | February 2013 | 1.0.2 | Clarified test conditions for Driver Output Leakage Current on page 7 Added ±15kV Air Gap ESD per PCN 12-1009-01 Added ±4kV HBM ESD to non-bus pins per PCN 12-1009-01 | | November 2013 | 1.0.3 | Added recommended PCB land pattern drawing. | | December 2013 | 1.0.4 | Combined QFN-40 package outline drawing and recommended PCB land pattern in Figure 16. Added table for "Suggested DB9 Connector Pinout" on page 5 and Figure 17 for pin 1 orientation in tape. | | February 2018 | 1.0.5 | Update to MaxLinear logo. Update format and Ordering Information. Corrected typo for pin 28, Mode 11 in Pin Description. Moved ESD ratings on page 2. | | January 2019 | 1.0.6 | Corrected typo in recommended stencil. Updated Ordering Information. | | April 2020 | 1.0.7 | Added Operating Conditions table and added additional thermal data. Split out ESD Ratings table. | Corporate Headquarters: 5966 LaPlace Court Suite 100 Carlsbad, CA 92008 Tel.:+1 (760) 692-0711 Fax:+1 (760) 444-8598 www.maxlinear.com The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc. MaxLinear, Inc. assumes no responsibility or lability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc. Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assurances all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances. MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. MaxLinear, the MaxLinear logo, and any MaxLinear trademarks, MxL, Full-Spectrum Capture, FSC, G.now, AirPHY and the MaxLinear logo are all on the products sold, are all trademarks of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved. Other company trademarks and product names appearing herein are the property of their respective owners. © 2011 - 2020 MaxLinear, Inc. All rights reserved.