ACCL-9410

High Speed Quad-Channel 3/1 Digital Isolator

ACCL-9410 is a guad-channel bi-directional digital isolator.

Using capacitive coupling through an insulation barrier, the

ACCL-9410 is available in 150mils narrow body 16-pin SOIC

DC and timing AC specifications are specified over the

temperature range of -40°C to +125°C.

isolator enables high speed digital transmissions. The device is

capable of running at 25 MBd data rate, with propagation delay

package. The isolator operates at 3.3V/5V supply. The electrical

Data Sheet

Description

of 40ns.

Features

- Supply voltage: 3.3 V / 5 V
- Wide operating temperature: -40 °C to 125 °C
- High data rate: 25 MBd
- Low power consumption: 2 mA per channel
- Low propagation delay: 40 ns max
- Pulse width distortion: 8 ns max
- Propagation delay part skew: 15 ns max
- Propagation delay channel skew: 8 ns max
- Output enable function
- Safety and Regulatory Approvals (Pending)
 UL 1577

Applications

- Industrial control isolated data interfaces, eg SPI
- High speed digital systems
- Isolated DC-DC converters
- Logic level shifting

CAUTION It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. The components featured in this data sheet are not to be used in military or aerospace applications or environments

Ordering Information

Part number	Channel Configuration	Option RoHS Compliant	Package	Surface Mount	Tape & Reel	Quantity
ACCL-9410	Quad,	-000E	Narrow Body	Х		50 per tube
	Bi-directional, 3/1	-500E	SOIC-16	Х	Х	1000 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Solder Reflow Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Regulatory Information

Pending approval by the following organizations:

UL Pending UL1577, component recognition program

Truth Table

Input Supply VDD	Input	Output Supply VDD	Output Enable	Output	Remark
Н	Н	Н	H or Open	Н	Input logic High during normal operation.
Н	L	Н	H or Open	L	Input logic Low during normal operation.
Н	Х	Н	L	Z	Output is at high impedance state when output Enable is set Low
L	Х	Н	H or Open	Н	When input V_{DD} is not powered, the output default is logic High.
Х	Х	L	Х	Indeterminate	When output V_{DD} is not powered, the output goes into indeterminate state.

H - high level. L - Low level, X - insignificant

Package Outline Drawings

ACCL-9410 Narrow Body SOIC-16 Package

Insulation and Safety Related Specifications

Parameter	Symbol	ACCL-9410	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	4.0	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	4.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Tracking Resistance (Comparative Tracking Index)	CTI	400	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group		II		Material Group (DIN VDE 0110, 1/89, Table 1)

Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Units
Storage Temperature	Τ _S	-55	125	°C
Operating Temperature	T _A	-40	125	°C
Supply Voltage	V _{DD1} , V _{DD2}	0	6	V
Input Voltage	VI	-0.5	V _{DD} + 0.5	V
Output Voltage	V _O	-0.5	V _{DD} + 0.5	V
Average Output Current	۱ ₀		15	mA

Recommended Operating Conditions

Parameter	Symbol	Min	Мах	Units
Operating Temperature	T _A	-40	125	°C
Supply Voltage (3.3V)	V _{DD1} , V _{DD2}	3.15	3.6	V
Supply Voltage (5V)	V _{DD1} , V _{DD2}	4.5	5.5	V
Logic High Input Voltage	V _{IH}	2	V _{DD}	V
Logic Low Input Voltage	V _{IL}	0	0.8	V

Electrical Specifications (DC)

Over recommended temperature ($T_A = -40^{\circ}C$ to 125°C) and supply voltage ($4.5V \le V_{DD1} \le 5.5V$, $4.5V \le V_{DD2} \le 5.5V$), ($3.15V \le V_{DD1} \le 3.6V$, $3.15V \le V_{DD2} \le 3.6V$), ($4.5V \le V_{DD1} \le 5.5V$, $3.15V \le V_{DD2} \le 3.6V$) and ($3.15V \le V_{DD1} \le 3.6V$, $4.5V \le V_{DD2} \le 5.5V$). All typical specifications are at $T_A = 25^{\circ}C$.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Input Supply Current, No data ^[1]	I _{DD1(0)}		2.8	5	mA	V _{DD1} = 3.6 V, DC
			2.9	5	mA	V _{DD1} = 5.5 V, DC
Input Supply Current, 10MBd data (All channels) ^[2]	I _{DD1(10)}		3.7	6	mA	V _{DD1} = 3.6 V, 5 MHz logic signal
			4.1	7	mA	V _{DD1} = 5.5 V, 5 MHz logic signal
Input Supply Current, 25MBd data (All channels) ^[2]	I _{DD1(25)}		5.0	8	mA	V _{DD1} = 3.6 V, 12.5 MHz logic signal
			5.9	9	mA	V _{DD1} = 5.5 V, 12.5 MHz logic signal
Output Supply Current, No data [3]	I _{DD2(0)}		6.5	10	mA	V _{DD2} = 3.6 V, DC
			6.6	10	mA	V _{DD2} = 5.5 V, DC
Output Supply Current, 10MBd data (All channels) ^[4]	I _{DD2(10)}		7.6	11	mA	V _{DD2} = 3.6 V, 5 MHz logic signal
			8.1	12	mA	V _{DD2} = 5.5 V, 5 MHz logic signal
Output Supply Current, 25MBd data (All channels) ^[4]	I _{DD2(25)}		9.2	13	mA	V _{DD2} = 3.6 V, 12.5 MHz logic signal
			10.3	15	mA	V _{DD2} = 5.5 V, 12.5 MHz logic signal
Input Current	I _I	-10		10	μΑ	
Logic High Output Voltage	V _{OH}	V _{DD} -0.1	V _{DD}		V	$I_0 = -20 \ \mu A, V_1 = V_{1H}$
		V _{DD} -1.0	V _{DD}		V	$I_0 = -4 \text{ mA}, V_1 = V_{1H}$
Logic Low Output Voltage	V _{OL}		0.02	0.1	V	$I_O = 20 \ \mu\text{A}, V_I = V_{IL}$
			0.14	0.4	V	$I_0 = 4 \text{ mA}, V_I = V_{IL}$
High Level Enable Voltage	V _{EH}	0.7xV _{DD}			V	
Low Level Enable Voltage	V _{EL}			0.3xV _{DD}	V	

Switching Specifications (AC)

Over recommended temperature ($T_A = -40^{\circ}C$ to 125°C) and supply voltage ($4.5V \le V_{DD1} \le 5.5V$, $4.5V \le V_{DD2} \le 5.5V$), ($3.15V \le V_{DD1} \le 3.6V$, $3.15V \le V_{DD2} \le 3.6V$), ($4.5V \le V_{DD1} \le 5.5V$, $3.15V \le V_{DD2} \le 3.6V$) and ($3.15V \le V_{DD1} \le 3.6V$, $4.5V \le V_{DD2} \le 5.5V$). All typical specifications are at $T_A = 25^{\circ}C$.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Propagation Delay Time to Logic Low Output	t _{PHL}		29	40	ns	$V_{DD1} = V_{DD2} = 3.3 V, C_L = 15 pF,$ CMOS Signal Levels
			27	40		V _{DD1} = V _{DD2} = 5 V, C _L = 15pF, CMOS Signal Levels
Propagation Delay Time to Logic High Output	t _{PLH}		29	40	ns	$V_{DD1} = V_{DD2} = 3.3 V, C_L = 15 pF,$ CMOS Signal Levels
			27	40		V _{DD1} = V _{DD2} = 5 V, C _L = 15pF, CMOS Signal Levels
Pulse Width	t _{PW}	40			ns	CL= 15pF, CMOS Signal Levels
Maximum Data Rate				25	MBd	CL= 15pF, CMOS Signal Levels
Pulse Width Distortion t _{PHL} - t _{PLH}	PWD		0.3	8	ns	$V_{DD1} = V_{DD2} = 3.3 V, C_L = 15 pF,$ CMOS Signal Levels
			0.5	8	ns	$V_{DD1} = V_{DD2} = 5 V, C_L = 15 pF,$ CMOS Signal Levels
Propagation Delay Channel Skew	t _{CSK}		2	8	ns	CL= 15pF, CMOS Signal Levels
Propagation Delay Part Skew	t _{PSK}			15	ns	CL= 15pF, CMOS Signal Levels
Propagation Delay Time of Enable from V _{EH} to V _{EL}	t _{ELH}		8		ns	$V_{DD1} = V_{DD2} = 3.3 V, C_L = 15 pF,$ CMOS Signal Levels
			6			V _{DD1} = V _{DD2} = 5 V, C _L = 15pF, CMOS Signal Levels
Propagation Delay Time of Enable from V _{EL} to V _{EH}	t _{EHL}		26		ns	$V_{DD1} = V_{DD2} = 3.3 V, C_L = 15 pF,$ CMOS Signal Levels
			23			V _{DD1} = V _{DD2} = 5 V, C _L = 15pF, CMOS Signal Levels
Output Rise Time (10% - 90%)	t _R		3.5		ns	$V_{DD1} = V_{DD2} = 3.3 V, C_L = 15 pF,$ CMOS Signal Levels
			2			V _{DD1} = V _{DD2} = 5 V, C _L = 15pF, CMOS Signal Levels
Output Fall Time (90% - 10%)	t _F		2.5		ns	$V_{DD1} = V_{DD2} = 3.3 V, C_L = 15 pF,$ CMOS Signal Levels
			2			$V_{DD1} = V_{DD2} = 5 V, C_L = 15 pF,$ CMOS Signal Levels
Common Mode Transient Immunity at Logic High Output	CM _H		10		kV/μs	$V_{CM} = 1000 \text{ V}, T_A = 25 \text{ C}, V_{DD} = 5 \text{ V}, V_O > 2 \text{ V}$
Common Mode Transient Immunity at Logic Low Output	CM _L		10		kV/μs	$V_{CM} = 1000 \text{ V}, T_A = 25 \text{ C}, V_{DD} = 0 \text{ V}, V_O < 0.8 \text{ V}$

Package Characteristics

All typical at $T_A = 25 \degree C$

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Input-Output Insulation ^[5]	V _{ISO}	1500			Vrms	RH < 50% for 1 min. $T_A = 25 \degree C$
Input-Output Resistance	R _{I-O}		10 ¹⁵			V _{I-O} = 500 V
Input-Output Capacitance	C _{I-O}		1.6		pF	f=1 MHz, T _A = 25 °C
Package Power Dissipation	P _{PD}			155	mW	

Notes:

1. $I_{DD1(0)}$ is the supply current consumption at V_{DD1} when there is no signal to all inputs.

2. I_{DD1(F)} is the supply current consumption at V_{DD1} when inputs are switching at the specified data rate, and outputs are switching at same data rate with no load.

3. $I_{DD2(0)}$ is the supply current consumption at V_{DD2} when there is no signal to all inputs.

4. I_{DD2(F)} is the supply current consumption at V_{DD2} when inputs are switching at the specified data rate, and outputs are switching at same data rate with no load.

5. In accordance with UL 1577, each isolator is proof tested by applying an insulation test voltage \geq 1800 Vrms for 1 second (leakage detection current limit, $I_{LO} \leq 5 \ \mu$ A).

Performance

Figure 1 Typical I_{DD1(0)} vs Temperature

Figure 2 Typical I_{DD1(25)} vs Temperature

Figure 3 Typical I_{DD2(0)} vs Temperature

Figure 5 Typical Propagation Delay t_{PLH} vs Temperature

Figure 7 Typical Pulse Width Distortion PWD vs Temperature

Figure 4 Typical I_{DD2(25)} vs Temperature

Figure 6 Typical Propagation Delay t_{PHL} vs Temperature

Bypassing and PC Board Layout

The ACCL-9410 digital isolator is easy to use. No external interface circuitry is required because its high speed CMOS IC technology allows CMOS logic to be connected directly to the inputs and outputs. As shown in Figure 9, the external components required for proper operation are two bypass capacitors for decoupling the power supply. Capacitor values should be 0.1 μ F and the capacitor be placed as close as possible to the isolator. The total lead length between both capacitor ends and the power supply pins is not more than 20 mm.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago Technologies and the A logo are trademarks of Avago Technologies in the United States and other countries. All other brand and product names may be trademarks of their respective companies.

Data subject to change. Copyright © 2015-2016 Avago Technologies. All Rights Reserved.

pub-005306 - January 27, 2016

