[AK9723AJ]

AK9723AJ LED Driver and Sensor AFE for NDIR Gas Sensing

1. General Description

The AK9723AJ is the IR LED driver and Analog Front End (AFE) IC for signal processing of IR photo detector. The AK9723AJ has dual channel AFE and an ADC for digital output, and IR photo detector output signals can be obtained at the same time. The AK9723AJ can communicate with HOST MCU through I²C bus. The AK9723AJ is suitable for NDIR gas sensing processing using IR LED and IR photo detector.

2. Features

- Integrated LED Driver with Programmable Constant Current Circuit
- Dual Channel Input AFE
- Interrupt Function
- Power Supply Voltage Range: 2.7V to 3.6V
- Small and Thin Package: 16-pin QFN 4.0mm x 4.0mm x t0.7mm

3. Applications

• NDIR gas sensor

4. Table of Contents

1. General Description	1
2. Features	1
3. Applications	
4. Table of Contents	
5. Block Diagram and Functions	4
5.1. Block Diagram	4
5.2. Functions	
6. Pin Configurations and Functions	5
6.1. Pin Configurations	5
6.2. Functions	
7. Absolute Maximum Ratings	6
8. Operating Conditions	6
9. Power Supply Conditions	
10. Electrical Characteristics	7
10.1. Analog Characteristics	
10.1.1. Connection device specification	8
10.2. Digital Characteristics	8
10.2.1. DC Characteristics	8
10.2.2. AC Characteristics	9
11. Functional Descriptions	11
11.1. Power Supply States	11
11.2. Reset Functions	11
11.3. Operating Mode	11
11.4. Descriptions for Each Operating Mode	12
11.4.1. Power Down Mode	12
11.4.2. Stand-by Mode (MODE [1:0] bits = "00")	12
11.4.3. Single Measurement Mode (MODE [1:0] bits = "10")	12
11.5. Read Measurement Data	13
11.5.1. Recommended Measurement Procedure	13
12. Serial Interface	15
12.1. Data Transfer	
12.1.1. Changing state of the SDA line	15
12.1.2. Start / Stop Conditions	15
12.1.3. Acknowledge	
12.1.4. Slave Address	
12.1.5. Write Command	
12.1.6. Read Command	19
13. Registers	
13.1. Description of Registers	20
13.2. Register Map	
13.3. Detailed Description of Register	22
13.3.1. WIA1: Company code	
13.3.2. WIA2: Device ID	
13.3.3. INFO1, INFO2: Information	
13.3.4. ST1: Status 1	
13.3.5. IRxL, IRxM, IRxH: Measurement data of IR sensor (x=1,2)	
13.3.6. TMPL, TMPH: Measurement data of temperature sensor	
13.3.7. Vf: Measurement data of LED forward voltage	
13.3.8. CNTL1: Control1	
13.3.9. CNTL2: Control2	
13.3.10. CNTL3: Control3	
13.3.11. CNTL4: Control4	26

13.3.12. CNTL5: Control5	
13.3.13. CNTL6: Control6	
13.3.14. CNTL7: Control7	
13.3.15. CNTL8: Control8	
13.3.16. CNTL9: Control9	
13.3.17. CNTL10: Control10	
14. Recommended External Circuits	
15. Package	
15.1. Outline Dimensions	30
15.2. Pad Dimensions	
15.3. Marking	32
16. Ordering Guide	
17. Revision History	
IMPORTANT NOTICE	

5. Block Diagram and Functions

5.1. Block Diagram

Figure 5.1 Block Diagram

5.2. Functions

Table 5.1 Block Fu	nctions
--------------------	---------

Block	Function
OSC	Oscillator
VIREF	Reference voltage and reference current generator
TSENS	Temperature sensor
AFE1	Convert the IR photo detector output current path1 (IR1 path) to voltage. Cancel the offset of IR photo detector.
AFE2	Convert the IR photo detector output current path2 (IR2 path) to voltage. Cancel the offset of IR photo detector.
ADC1 / 2	Sigma delta 2nd order analog-to-digital converter
LED DRIVER	LED constant current driver
REGU	Generate 1.6V for digital circuit
I ² C I/F	Communicate with MCU by SCL and SDA in I ² C protocol. Support 400kHz fast mode.
SEQUENCER	Control of analog circuit
REGISTER	Register to store the measurement data, operation mode, timing value
ADVREF GEN1 / 2	Reference voltage generator for ADC
SH	Sample and hold circuit
PRE SH	Sample and hold circuit

6. Pin Configurations and Functions

6.1. Pin Configurations

Figure 6.1 Pin Configurations

6.2. Functions

Table 6.1 Pin Functions

Pin No.	Name	I/O	Functions
1	SCL	I	I ² C clock input pin. This pin is open drain pin output (NMOS type).
2	SDA	I/O	I ² C data input/output pin. This pin is open drain pin output (NMOS type).
3	INTN	0	Interrupt pin. INTN pin is active low at the ADC output is ready for read. This pin is open drain output (NMOS type).
4	PDN		Power down pin. When PDN pin = "H", The AK9723AJ can operate.
5	TEST1		TEST pin. TEST pin must be connected to VSS
6	TEST2		TEST pin. TEST pin must be connected to VSS
7	TEST3		TEST pin. TEST pin must be connected to VSS
8	TEST4		TEST pin. TEST pin must be connected to VSS
9	SINA1		IR photo ditector1 connection pin (anode)
10	SINC1		IR photo ditector1 connection pin (cathode)
11	SINC2	I	IR photo ditector2 connection pin (cathode)
12	SINA2		IR photo ditector2 connection pin (anode)
13	LEDO	0	LED driver output pin
14	FVDD	-	LED driver power supply pin
15	VSS	-	Ground pin
16	AVDD	-	Power supply pin

7. Absolute Maximum Ratings

Table 7.1 Absolute	Maximum Ratings
--------------------	-----------------

VSS =	0V
-------	----

00 = 00						
Parar	neter	Symbol	Min.	Max.	Unit	
Power supply	AVDD, FVDD pins	V+	-0.3	4.3	V	
Input voltage	All pins	Vin	-0.3	4.3	V	
Input current All pins (Except for power supply)		lin	-10	10	mA	
Storage te	Tstg	-40	125	°C		

Notes

Operation exceeding the absolute maximum ratings may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

8. Operating Conditions

Table 8.1 Operating Conditions

VSS = 0V

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply AVDD, FVDD pins	V+	2.7	3.0	3.6	V
Operation temperature	Та	-40	-	85	°C

Notes

11.....

Operation outside the recommended operating conditions is not guaranteed.

Power supply and temperature monitor is recommended.

9. Power Supply Conditions

Table 9.1 Power Supply Conditions

Unless otherwise specified, AVDD = $FVDD = 2.7 \sim 3.6V$, $Ta = -40 \sim 85^{\circ}C$							
Pa	rameter	Symbol	Min.	Тур.	Max.	Unit	
Power supply	PDN pin	PSUP	200	-	-	μs	

Figure 9.1 Power supply conditions

10. Electrical Characteristics

10.1. Analog Characteristics

Table 1	0.1 El	ectrical Ch	aracte	ristics
	~ -	a a (~ - ^ ~

Unless otherwise specified, AVDD = FVDD= 2.7 ~ 3.6V, Ta =	= -40 ~ 85⁰C	

	Parameter	Symbol	Min.	Тур.	Max.	Unit
IR sensor maximum input current 1	IR1 path IR1_AFE_GAIN [1:0] bits = "01" ITIME [7:0] bits = "00101010"	SIR1	24	30	37	nA
IR sensor maximum input current 2	IR2 path ITIME [7:0] bits = "00101010"	SIR2	2.0	2.5	3.1	μA
IR sensor output noise 1	IR1 path MLOOP [3:0] bits= "0000" IR1_AFE_GAIN [1:0] bits = "00" ITIME [7:0] bits = "00101010" R01 = 33kΩ Ta = 25 °C	SON1	-	27000	40500	LSB rms
IR sensor output noise 2	IR2 path ITIME [7:0] bits = "00101010" R02 = 33kΩ Ta = 25 °C	SON2	-	2000	3000	LSB rms
Sensor resistance measurement range 1	IR1 path Sensor resistance measurement mode	SRMR1	675	750	-	kΩ
Sensor resistance measurement range 2	IR2 path Sensor resistance measurement mode	SRMR2	405	450	-	kΩ
LED forward voltage measurement range		VFMR	0.55	-	FVDD-0.5	V
LED terminal voltage range	LEDADJ [4:0] bits= "11000"	LTVR	0.55	-	FVDD-0.5	V
LED current accuracy	LEDADJ [4:0] bits= "11000" LEDO pin = 1.5V Ta = 25 °C	LCA	97	100	103	mA
LED current step	LEDO pin = 1.5V AVDD, FVDD pins = 2.7V Ta = 25 °C	LCS	1.5	3.0	4.5	mA
	PDN pin = AVDD MODE [1:0] bits = "00"	IDD0	-	0.45	3.0	μA
Current consumption	PDN pin = AVDD MODE [1:0] bits = "10" MTIME [7:0] bits = "00000000" ITIME [7:0] bits = "01011100" LEDADJ [4:0] bits = "11000"	IDD1	-	560	750	μΑ

10.1.1. Connection device specification

Table 10.2 Connection device specification

Unless otherwise specified, AVDD = 2.7 ~ 3.6	V, Ta = -40 ~ 8	5ºC	

Parameter		Symbol	Min.	Тур.	Max.	Unit
Input current 1	IR1 path	ISIN1	1.0	8.5	51.0	nA
Input current 2	IR2 path	ISIN2	0.4	3.0	18.0	μA

10.2. Digital Characteristics 10.2.1. DC Characteristics

Table 10.3 DC Characteristics

Unless otherwise specified, AVDD = $2.7 \sim 3.6V$, Ta = $-40 \sim 85^{\circ}C$

	Parameter		Symbol	Min.	Тур.	Max.	Unit
High level	input voltage1	PDN, SCL, SDA pins	VIH	70%AVDD	-	AVDD+0.3	V
Low level	input voltage	PDN, SCL, SDA pins	VIL	-	-	30%AVDD	V
Input current	Vin = VSS or AVDD	PDN, SCL, SDA pins	lin	-10	-	10	μA
Hysteresi	s voltage (*1)	SCL, SDA pins	VHS	5%AVDD	-	-	V
Low level output voltage	IOL ≤ 3mA	SDA, INTN pins	VOL	-	-	20%AVDD	V

Note

* 1. Reference data only, not tested

10.2.2. AC Characteristics

Table 10.4 AC Characteristics (Standard Mode: fSCL \leq 100kHz) Unless otherwise specified, AVDD = 2.7 ~ 3.6V, Ta = -40 ~ 85°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	
SCL clock frequency	fSCL	-	-	100	kHz	
SCL clock high period	tHIGH	4.0	-	-	μs	
SCL clock low period	tLOW	4.7	-	-	μs	
SDA and SCL rise time (*2)	tR	-	-	1.0	μs	
SDA and SCL fall time (*2)	tF	-	-	0.3	μs	
Start condition hold time	tHD:STA	4.0	-	-	μs	
Start condition setup time	tSU:STA	4.7	-	-	μs	
SDA hold time (vs. SCL falling edge)	tHD:DAT	0	-	-	μs	
SDA setup time (vs. SCL rising edge)	tSU:DAT	250	-	-	ns	
Stop condition setup time	tSU:STO	4.0	-	-	μs	
Bus free time	tBUF	4.7	-	-	μs	

Note

*2. Reference data only, not tested

Table 10.5 AC Characteristics (Fast Mode: $100kHz \le fSCL \le 400kHz$) Unless otherwise specified, AVDD = $2.7 \sim 3.6V$, Ta = $-40 \sim 85^{\circ}C$

Offices office wise specified, $AVDD = 2.7 \approx 3.0^{\circ}$, $Ta = -40 \approx 65^{\circ}C$							
Symbol	Min.	Тур.	Max.	Unit			
fSCL	-	-	400	kHz			
tHIGH	0.6	-	-	μs			
tLOW	1.3	-	-	μs			
tR	-	-	0.3	μs			
tF	-	-	0.3	μs			
tHD:STA	0.6	-	-	μs			
tSU:STA	0.6	-	-	μs			
tHD:DAT	0	-	-	μs			
tSU:DAT	100	-	-	ns			
tSU:STO	0.6	-	-	μs			
tBUF	1.3	-	-	μs			
tSP	-	-	50	ns			
	Symbol fSCL tHIGH tLOW tR tF tHD:STA tSU:STA tHD:DAT tSU:DAT tSU:STO tBUF	Symbol Min. fSCL - tHIGH 0.6 tLOW 1.3 tR - tF - tHD:STA 0.6 tSU:STA 0.6 tBU:DAT 0 tSU:DAT 100 tSU:STO 0.6 tBUF 1.3	Symbol Min. Typ. fSCL - - tHIGH 0.6 - tLOW 1.3 - tR - - tF - - tF 0.6 - tSU:STA 0.6 - tSU:DAT 0 - tSU:STO 0.6 - tBUF 1.3 -	Symbol Min. Typ. Max. fSCL - - 400 tHIGH 0.6 - - tLOW 1.3 - - tR - - 0.3 tF - - 0.3 tHD:STA 0.6 - - tSU:STA 0.6 - - tSU:DAT 0 - - tSU:STO 0.6 - - tBUF 1.3 - -			

Note

*3. Reference data only, not tested.

[I²C bus interface timing]

Figure 10.1 Bus Timing

Unless otherwise specified, $AVDD = 2.7 \sim 3.6V$, $Ta = -40 \sim 65^{\circ}C$								
Parame	eter	Symbol	Min.	Тур.	Max.	Unit		
Rise time (*4)	INTN pin	tRINTN	-	-	2.0	μs		
Fall time (*4)	RL = 24kΩ CL = 50pF	tFINTN	-	-	0.25	μs		
Mata								

Table 10.6 AC Characteristics of the INTN pin
Unless otherwise specified AVDD = 2.7×3.6 V Ta = $-40 \times 85^{\circ}$ C

Note

*4. Reference data only, not tested

Figure 10.2 INTN load circuit

Table 10.7 AC Characteristics of the PDN pin Unless otherwise specified, AVDD = $2.7 \sim 3.6$ V, Ta = $-40 \sim 85^{\circ}$ C

Parameter		Symbol	Min.	Тур.	Max.	Unit
PDN pulse width	PDN pin	TPDN	1	-	-	μs
Command input disable time		TCIE	10	-	-	μs

Figure 10.3 TPDN and TCIE condition

Table 10.8 Measurement interval condition	۱
---	---

Unless otherwise specified, AVDD = 2.7 ~ 3.6V, Ta = -40 ~ 85°C
--

erneee earer mee epeemea, it b			0000			
Parameter		Symbol	Min.	Тур.	Max.	Unit
Measurement interval		TMI	1.5	-	-	ms
	4	тмі				
					_	

Single measurement mode	Stand-by mode	Single measurement mode

Figure 10.4 Measurement interval condition

11. Functional Descriptions

11.1. Power Supply States

Table 11.1 Power Supply States and Functions

State	AVDD pin, FVDD pin	PDN pin	I ² C	Analog Circuit
1	OFF(0V)	"L"	Disable	Power Down
2	2.7 ~ 3.6V	"L"	Disable	Power Down
3	2.7 ~ 3.6V	"H"	Enable	Only the regulator circuit operates

11.2. Reset Functions

The AK9723AJ has two reset functions.

(1) Hardware reset

The AK9723AJ is reset by PDN pin = VSS.

(2) Soft reset

The AK9723AJ is reset by setting SRST bit.

When the AK9723AJ is reset, all registers are set to initial values.

11.3. Operating Mode

The AK9723AJ has following three operation modes.

- (1) Power Down Mode
- (2) Stand-by Mode
- (3) Single Measurement Mode

Power Down Mode:

The all circuits are powered down for saving the current consumption.

	PDN= "H"	DN= "L"
	Γ	
Stand-by	MODE [1:0] bits = "10"	Single measurement mode:
Mode	MODE [1:0] bits = "00, 01, 11"	The measurement is done, and saving the data on the register. Stand-by mode is automatically after
	Automatic shift	measurement ended.

Figure 11.1 Operating Mode

11.4. Descriptions for Each Operating Mode

11.4.1. Power Down Mode

All circuits are powered off. The all functions of the AK9723AJ does not work in this mode.

11.4.2. Stand-by Mode (MODE [1:0] bits = "00")

Power to the circuits except for the regulator is off. All registers can be accessed in this mode. Read / write register data are retained, and reset by software reset.

11.4.3. Single Measurement Mode (MODE [1:0] bits = "10")

When the AK9723AJ is set to single measurement mode (MODE [1:0] bits = "10"), measurement is done once, and the measurement data is stored to the measurement data registers (IR1L to VFH). After completing measurement, The AK9723AJ outputs "Low" from INTN pin and goes to stand-by mode (MODE [1:0] bits = "00") automatically.

Figure 11.2 Single Measurement Mode

11.5. Read Measurement Data

After measurement data is set to internal buffer and ready to read, "DRDY" bit in ST1 register is set to "1". This state is called "Data Ready". When the DRDY bit is "1", the output of the INTN pin becomes "L". When the ST1 read is complete, the DRDY bit is set to "0" and INTN pin output becomes "H".

The AK9723AJ recommends monitoring the INTN pin.

When you do not use the INTN pin, please note the following points.

If the measurement is completed while reading ST1, the DRDY bit may not be updated properly. Therefore, secure 10% or more margin for the set measurement time and execute DRDY bit read.

11.5.1. Recommended Measurement Procedure

Recommended measurement procedure of AK9723AJ is shown below.

(1) Setting before measurement

Confirm INTN pin = "H" and write the data to the following registers. Soft Reset: Write FFh to register address 18h Measurement number of intermediate data setting Measurement time of intermediate data setting Integration time LED current adjustment setting Test mode: Write 00h to register address 17h

(2) Start measure

Measurement is executed by writing 02h to the Measurement mode setting register.

- (3) Read measurement data
 INTN pin output turns to "L" (Active) after completion of data ready. Read measurement data in the following order. Status 1 Measurement data of IR sensor Measurement data of temperature sensor Measurement data of LED forward voltage INTN pin turns to "H" when reading the Status 1 register.
 (4) Wait 1 5ms or more
- (4) Wait 1.5ms or more
- For measurement again, execute from (1).

Figure 11.4 Recommended Measurement Procedure

12. Serial Interface

The I²C bus interface of the AK9723AJ supports standard mode (Max, 100kHz) and high-speed mode (Max. 400kHz).

12.1. Data Transfer

Initially the start condition should be input to access the AK9723AJ through the bus. Next, send a one byte slave address, which includes the device address. The AK9723AJ compares the slave address, and if these addresses match, the AK9723AJ generates an acknowledge signal and executes a read / write command. The stop condition should be input after executing a command.

12.1.1. Changing state of the SDA line

The SDA line state should be changed only while the SCL line is "L". The SDA line state must be maintained while the SCL line is "H". The SDA line state can be changed while the SCL line is "H", only when a start condition or a stop condition is input.

Figure 12.1 Changing State of SDA Line

12.1.2. Start / Stop Conditions

A start condition is generated when the SDA line state is changed from "H" to "L" while the SCL line is "H". All commands start from a start condition.

A stop condition is generated when the SDA line state is changed from "L" to "H" while the SCL line is "H". All commands end after a stop condition.

Figure 12.2 Start / Stop Conditions

12.1.3. Acknowledge

The device transmitting data will release the SDA line after transmitting one byte of data (SDA line state is "H"). The device receiving data will pull the SDA line to "L" during the next clock. This operation is called "Acknowledge". The acknowledge signal can be used to indicate successful data transfers.

The AK9723AJ will output an acknowledge signal after receiving a start condition and slave address.

The AK9723AJ will output an acknowledge signal after receiving each byte, when the write instruction is transmitted.

The AK9723AJ will transmit the data stored in the selected address after outputting an acknowledge signal, when read instruction is transmitted. Then the AK9723AJ will monitor the SDA line after releasing the SDA line. If the master device generates an acknowledge instead of stop condition, the AK9723AJ transmits an 8-bit data stored in the next address. When the acknowledge is not generated, transmitting data is terminated.

12.1.4. Slave Address

The slave address of the AK9723AJ is 65h.

1 1 0 0 1 0 1 R/W	MSB							LSB	_
	1	1	0	0	1	0	1	R/W	

Figure 12.4 Slave Address

When the first one byte data including the slave address is transmitted after a start condition, the device, which is specified as the communicator by the slave address on bus, selected.

After transmitting the slave address, the device that has the corresponding device address will execute a command after transmitting an acknowledge signal. The 8-bit (Least Significant bit-LSB) of the first one byte is the R/W bit.

When the R/W bit is set to "1", a read command is executed. When the R/W bit is set to "0", a write command is executed.

12.1.5. Write Command

When the R/W bit set to "0", the AK9723AJ executes a write operation. The AK9723AJ will out an acknowledge signal and receive the second byte, after receiving a start condition and first one byte (slave address) in a write operation. The second byte has an MSB-first configuration, and specifies the address of the internal control register.

Figure 12.5 Register Address

The AK9723AJ will generate an acknowledge and receive the third byte after receiving the second byte (register address).

The data after the third byte is the control data. The control data consists of 8-bit and has an MSB-first configuration. The AK9723AJ generates an acknowledge for each byte received. The data transfer is terminated by a stop condition, generated by the master device.

Two or more bytes can be written at once. The AK9723AJ generates an acknowledge and receives the next data after receiving the third byte (control data). When the following data is transmitted without a stop condition, after transmitting one byte, the internal address counter is automatically incremented, and data is written in the next address.

The automatic increment function works in the address from 0Fh to 17h. When the start address is "0Fh", the address is repeatedly incremented as. "0Fh -> 10h -> ... -> 17h -> 0Fh -> 10h..."

12.1.6. Read Command

When the R/W bit is set to "1", the AK9723AJ executes a read operation. When the AK9723AJ transmits data from the specified address, the master device generates an acknowledge instead of a stop condition and the next address data can be read-out.

Address can be 00h to 0Eh, 0Fh to 17h. When the address is 00h to 0Eh, the address is incremented 00h -> 01h -> ... -> 0Eh, and the address goes back to 04h after 0Eh. When the address is 0Fh to17h, the address goes back to 0Fh after 17h.

The AK9723AJ supports both current address read and random address read.

(1) Current Address Read

The AK9723AJ has an integrated address counter. The data specified by the counter is read-out in the current address read operation. The internal address counter retains the next address which is accessed at last. For example, when the address which was accessed last is "n", the data of address "n+1" is read-out by the current address read instruction.

The AK9723AJ generates an acknowledge after receiving a read instruction (R/W bit = "1"). Then the AK9723AJ will start to transmit the data specified by the internal address counter at the next clock, and will increment the internal address counter by one. The read operation terminates when the master device generates a stop condition instead of an acknowledge after the AK9723AJ transmits one byte data.

Figure 12.8 Current Address Read

(2) Random Read

Data from an arbitrary address can be read-out by a random read operation. A random read requires the input of a dummy write instruction before the input of a slave address of a read instruction (R/W bit = "1").

To execute random read, the master device generates a start condition, and then the slave address (R/W bit = "0") of the write instruction and the read address are sequentially input. The AK9723AJ generates an acknowledge after receiving the write instruction. After that, the master device input a start condition and a slave address of the read instruction (R/W bit = "1"). The AK9723AJ generates an acknowledge in response to the input of this slave address. Next, the AK9723AJ outputs the data at the specified address, then increments the internal address counter by one. The read operation terminates when the master device generates a stop condition instead of an acknowledge after the AK9723AJ transmits the data.

Figure 12.9 Random Read

13. Registers

13.1. Description of Registers

The AK9723AJ has registers of 25 addresses as indicated in Table 13.1 Every address consists of 8-bit data. Data is transferred to or received from the external MCU via the serial interface described previously.

-		٦	Table 13.	1 Register Table	
Name	Address	SRST	R/W	Data	
Name	Address	5751		Content	bit
WIA1	00h	Disable	R	Company Code	8
WIA2	01h	Disable	R	Device ID	8
INFO1	02h	Disable	R	Information	8
INFO2	03h	Disable	R	Information	8
ST1	04h	Enable	R	Status 1	3
IR1L	05h	Enable	R	Measurement data of IR1 (Low)	8
IR1M	06h	Enable	R	Measurement data of IR1 (Middle)	8
IR1H	07h	Enable	R	Measurement data of IR1 (High)	8
IR2L	08h	Enable	R	Measurement data of IR2 (Low)	8
IR2M	09h	Enable	R	Measurement data of IR2 (Middle)	8
IR2H	0Ah	Enable	R	Measurement data of IR2 (High)	8
TMPL	0Bh	Enable	R	Measurement data of temperature sensor(Low)	8
ТМРН	0Ch	Enable	R	Measurement data of temperature sensor(High)	8
VFL	0Dh	Enable	R	Measurement data of LED forward voltage(Low)	8
VFH	0Eh	Enable	R	Measurement data of LED forward voltage (High)	8
CNTL1	0Fh	Enable	R/W	Measurement number of intermediate data	4
CNTL2	10h	Enable	R/W	Measurement time of intermediate data	8
CNTL3	11h	Enable	R/W	Integration time	8
CNTL4	12h	Enable	R/W	IR2 integrated time setting	8
CNTL5	13h	Enable	R/W	INTN pin output setting	2
CNTL6	14h	Enable	R/W	Mode setting	2
CNTL7	15h	Enable	R/W	Detection range switching	7
CNTL8	16h	Enable	R/W	LED current setting	5
CNTL9	17h	Enable	R/W	Resistance measurement mode setting	1
CNTL10	18h	Enable	R/W	Soft reset	1

Addresses 00h to 0Eh, 0Fh to 17h are compliant with automatic increment function of serial interface respectively. When the address is in 00h to 0Eh, the address is incremented 00h -> 01h -> 02h -> ... -> 0Eh, and the address goes back to 04h after 0Eh. When the address is in 0Fh to 17h, the address goes back to 0Fh after 17h.

1 March 199				

13.2. Register Map

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
00h	WIA1	0	1	0	0	1	0	0	0
01h	WIA2	0	0	1	0	0	0	1	1
02h	INFO1	0	0	0	0	0	0	0	0
03h	INFO2	0	0	0	0	0	0	0	0
04h	ST1	1	1	1	1	1	OVCUR _DET	ERR_FLAG	DRDY
05h	IR1L	IR1L_7	IR1L_6	IR1L_5	IR1L_4	IR1L_3	IR1L_2	IR1L_1	IR1L_0
06h	IR1M	IR1M_15	IR1M_14	IR1M_13	IR1M_12	IR1M_11	IR1M_10	IR1M_9	IR1M_8
07h	IR1H	IR1H_23	IR1H_22	IR1H_21	IR1H_20	IR1H_19	IR1H_18	IR1H_17	IR1H_16
08h	IR2L	IR2L_7	IR2L_6	IR2L_5	IR2L_4	IR2L_3	IR2L_2	IR2L_1	IR2L_0
09h	IR2M	IR2M_15	IR2M_14	IR2M_13	IR2M_12	IR2M_11	IR2M_10	IR2M_9	IR2M_8
0Ah	IR2H	IR2H_23	IR2H_22	IR2H_21	IR2H_20	IR2H_19	IR2H_18	IR2H_17	IR2H_16
0Bh	TMPL	TMPL_7	TMPL_6	TMPL_5	TMPL_4	TMPL_3	TMPL_2	TMPL_1	TMPL_0
0Ch	TMPH	TMPH_15	TMPH_14	TMPH_13	TMPH_12	TMPH_11	TMPH_10	TMPH_9	TMPH_8
0Dh	VFL	VFL_7	VFL_6	VFL_5	VFL_4	VFL_3	VFL_2	VFL_1	VFL_0
0Eh	VFH	VFH_15	VFH_14	VFH_13	VFH_12	VFH_11	VFH_10	VFH_9	VFH_8
0Fh	CNTL1	1	1	1	1	MLOOP_3	MLOOP_2	MLOOP_1	MLOOP_0
10h	CNTL2	MTIME_7	MTIME_6	MTIME_5	MTIME_4	MTIME_3	MTIME_2	MTIME_1	MTIME_0
11h	CNTL3	ITIME_7	ITIME_6	ITIME_5	ITIME_4	ITIME_3	ITIME_2	ITIME_1	ITIME_0
12h	CNTL4	IR2INT_7	IR2INT_6	IR2INT_5	IR2INT_4	IR2INT_3	IR2INT_2	IR2INT_1	IR2INT_0
13h	CNTL5	1	1	1	1	1	1	ERR_DIS	DRDY_DIS
14h	CNTL6	1	1	1	1	1	1	MODE_1	MODE_0
15h	CNTL7	1	IR2_ MSRIUP	IR1_ MSRIUP	IR2_SH _GAIN	IR1_ADC _RNG	IR1_SH _GAIN	IR1_AFE _GAIN_1	IR1_AFE _GAIN_0
16h	CNTL8	1	1	1	LEDADJ_4	LEDADJ_3	LEDADJ_2	LEDADJ_1	LEDADJ_0
17h	CNTL9	1	1	1	1	1	1	1	TST
18h	CNTL10	1	1	1	1	1	1	1	SRST

The ERR_FLAG bit is reset in the single measurement mode setting. At this time, the DRDY bit is not reset.

The DRDY bit is reset by reading the ST1 register. At this time, the ERR_FLAG bit is not reset.

13.3. Detailed Description of Register

13.3.1. WIA1: Company code

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0		
00h WIA1 0 1 0 0 1 0 0											
4 D 1 . C .	A Dute fined and an Openness and at AKM										

1 Byte fixed code as Company code of AKM.

13.3.2. WIA2: Device ID

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0		
01h WIA2 0 0 1 0 0 1											
1 Buto fixed code as AKM dovice ID											

1 Byte fixed code as AKM device ID.

13.3.3. INFO1, INFO2: Information

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
02h	INFO1	0	0	0	0	0	0	0	0
03h	INFO2	0	0	0	0	0	0	0	0

INFO1 [7:0]: Reserved register for AKM.

INFO2 [7:0]: Reserved register for AKM.

13.3.4. ST1: Status 1

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
04h ST1							OVCUR_DET	ERR_FLAG	DRDY
Reset		1	1	1	1	1	0	0	0

OVCUR_DET: Error flag

"0": Normal state

"1": Error state

Error flag is set when LED overcurrent is detected.

ERR_FLAG: Error flag "0": Normal state

"1": Error state

The ERR_FLAG bit is "1" when register setting satisfies the following conditions.

Error judgment condition: (Integration time) x 18 > (Measurement time)

DRDY: Data ready "0": Normal state "1": Data ready

When data can be read, the DRDY bit becomes "1". This bit returns to "0" when reading of ST1 register is completed.

	, ,								
Address Name		D7	D6	D5	D4	D3	D2	D1	D0
05h	IR1L	IR1L_7	IR1L_6	IR1L_5	IR1L_4	IR1L_3	IR1L_2	IR1L_1	IR1L_0
06h	IR1M	IR1M_15	IR1M_14	IR1M_13	IR1M_12	IR1M_11	IR1M_10	IR1M_9	IR1M_8
07h	IR1H	IR1H_23	IR1H_22	IR1H_21	IR1H_20	IR1H_19	IR1H_18	IR1H_17	IR1H_16
08h	IR2L	IR2L_7	IR2L_6	IR2L_5	IR2L_4	IR2L_3	IR2L_2	IR2L_1	IR2L_0
09h	IR2M	IR2M_15	IR2M_14	IR2M_13	IR2M_12	IR2M_11	IR2M_10	IR2M_9	IR2M_8
0Ah	IR2H	IR2H_23	IR2H_22	IR2H_21	IR2H_20	IR2H_19	IR2H_18	IR2H_17	IR2H_16
Reset		0	0	0	0	0	0	0	0

13.3.5. IRxL, IRxM, IRxH: Measurement data of IR sensor (x=1,2)

Measurement data of IR sensor

IR1L [7:0]: IR1 measurement data lower 8-bit IR1M [15:8]: IR1 measurement data middle 8-bit IR1H [23:16]: IR1 measurement data upper 8-bit IR2L [7:0]: IR2 measurement data lower 8-bit IR2M [15:8]: IR2 measurement data middle 8-bit IR2H [23:16]: IR2 measurement data upper 8-bit

24-bit data is stored in two's complement and little endian format.

10		
IRx [23:	0] (x=1,2)	IR Sensor output [mV]
Hex	Decimal	
7FFFFF	8388607	750
1		
555555	5592405	500
1		
111111	1118481	100
1		
000001	1	8.94x10 ⁻⁵
000000	0	0
FFFFF	-1	-8.94x10 ⁻⁵
EEEEF	-1118481	-100
AAAAAB	-5592405	-500
800001	-8388607	-750

Table 13.1 Measurement data of IR sensor

13.3.6. TMPL, TMPH: Measurement data o	of temperature sensor
--	-----------------------

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
0Bh	TMPL	TMPL_7	TMPL_6	TMPL_5	TMPL_4	TMPL_3	TMPL_2	TMPL_1	TMPL_0
0Ch	TMPH	TMPH_15	TMPH_14	TMPH_13	TMPH_12	TMPH_11	TMPH_10	TMPH_9	TMPH_8
Res	et	0	0	0	0	0	0	0	0

Measurement data of temperature sensor TMPL [7:0]: Temperature data lower 8-bit TMPH [15:8]: Temperature data upper 8-bit

16-bit data is stored in two's complement and little endian format.

By two-point calibration, it is possible to can accurately detect the temperature of -40 °C to 85 °C. For details, refer to the application note "Calibrating the Temperature sensor".

13.3.7. Vf: Measurement data of LED forward voltage

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
0Dh	VFL	VFL_7	VFL_6	VFL_5	VFL_4	VFL_3	VFL_2	VFL_1	VFL_0
0Eh	VFH	VFH_15	VFH_14	VFH_13	VFH_12	VFH_11	VFH_10	VFH_9	VFH_8
Res	et	0	0	0	0	0	0	0	0

Measurement data of LED forward voltage VFL [7:0]: Vf data lower 8-bit VFH [15:8]: Vf data upper 8-bit

16-bit data is stored in two's complement and little endian format.

Table 13.3 Measurement data of LED	forward voltage
------------------------------------	-----------------

	Vf [15:0]					
Hex	Decimal	LED forward voltage [mV]				
7FFF	32767	2900				
	E					
4444	17476	2200				
1	1					
2222	8738	1800				
l.	l					
0001	1	1400.05				
0000	0	1400				
FFFF	-1	1399.95				
l l						
DDDE	-8738	1000				
l	1					
BBBC	-17476	600				
8001	-32767	-100				

13.3.8. CNTL1: Control1

		-							
Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
0Fh	CNTL1					MLOOP_3	MLOOP_2	MLOOP_1	MLOOP_0
Re	set	1	1	1	1	0	0	0	0

MLOOP [3:0]: Measurement number of intermediate data setting

Table 13.4 Measurement number of intermediate data

MLOO	P [3:0]	Number of measurements [times]
Hex	Decimal	
A, B, C, D, E, F	10,11,12,13,14,15	1024
9	9	512
8	8	256
3	3	8
2	2	4
1	1	2
0	0	1

13.3.9. CNTL2: Control2

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
10h	CNTL2	MTIME_7	MTIME_6	MTIME_5	MTIME_4	MTIME_3	MTIME_2	MTIME_1	MTIME_0
Re	eset	0	0	0	0	0	0	0	0

MTIME [7:0]: Measurement time of intermediate data setting

MTIM	E [7:0]	Measurement time [ms]
Hex	Decimal	
FF	255	515
1	1	
51	81	167
03	3	11
02	2	9
01	1	7
00	0	5

Table 13.5 Measurement time of intermediate data

13.3.10. CNTL3: Control3

Address	Nomo		D6	D5	D4	50	50	D1	D0
Address	Name	וט	00	D3	D4	D3	DZ	וט	D0
11h	CNTL3	ITIME_7	ITIME_6	ITIME_5	ITIME_4	ITIME_3	ITIME_2	ITIME_1	ITIME_0
Re	eset	0	0	0	0	0	0	0	0

ITIME [7:0]: Integration time setting

The light emission time of the LED can be obtained by the following formula. LED light emission time = Integration time $x + 26 [\mu s]$

	Table 13.6 Integra	
ITIM	Ξ [7:0]	Integration time [µs]
Hex	Decimal	integration time [µs]
FF	255	520.9
2A	42	100.0
29	41	98.0
28	40	96.1
02	2	21.0
01	1	19.0
00	0	17.0

Table 13.6 Integration time

13.3.11. CNTL4: Control4

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
12h	CNTL4	IR2INT_7	IR2INT_6	IR2INT_5	IR2INT_4	IR2INT_3	IR2INT_2	IR2INT_1	IR2INT_0
Re	eset	0	0	0	0	0	0	0	0

IR2INT [7:0]: Integration time adjustment of IR2

Since the input ranges of IR1 and IR2 are different, the integration time of IR2 can be adjusted to match the measurement range of IR1.

The integration time of IR2 is shown below.

IR2 integration time = Integration time – IR2 mask time $[\mu s]$

I able	13.7 Integration ti	
IR2IN	T [7:0]	IR2mask time [µs]
Hex	Decimal	IRZINASK line [µs]
FF	255	503.9
82	130	256.9
03	3	5.9
02	2	4.0
01	1	2.0
00	0	0

Table 13.7 Integration time adjustment

13.3.12. CNTL5: Control5

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
13h	CNTL5							ERR_DIS	DRDY_DIS
Re	set	1	1	1	1	1	1	0	0

DRDY_DIS: DRDY interrupt setting

"0": Enable

"1": Disenable

ERR_DIS: Error flag interrupt setting "0": Enable "1": Disenable

If you do not want to interrupt the HOST from the INTN pin, set the above bit to "1".

13.3.13. CNTL6: Control6

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
14h	CNTL6							MODE_1	MODE_0
Re	set	1	1	1	1	1	1	0	0

MODE [1:0]: Measurement mode setting "00, 01, 11": Stand-by Mode "10": Single Measurement Mode

13.3.14. CNTL7: Control7

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
15h	CNTL7		IR2_ MSRIUP	IR1_ MSRIUP	IR2_SH _GAIN	IR1_ADC _RNG	IR1_SH _GAIN	IR1_AFE _GAIN_1	IR1_AFE _GAIN_0
Re	eset	1	0	0	0	0	0	0	0

IR1_AFE_GAIN [1:0]: Selection of AFE gain of IR1 measurement path

"00": 2 times "01": 1 times "10": 2/3 times

"11": 1/2 times

IR1_SH_GAIN: Selection of SH gain of IR1 measurement path "0": 1 times

"1": 2 times

IR1_ADC_RNG: Selection of ADC range of IR1 measurement path "0": 1000 mV "1": 500 mV

IR2_SH_GAIN: Selection of SH gain of IR2 measurement path "0": 0.5 times "1": 0.33 times

IR1_MSRIUP: Resolution selection in IR1 resistance measurement mode

"0": 1 times (Measurement range: Maximum 750kΩ)

"1": 4 times (Measurement range: Maximum 187.5k Ω)

IR2_MSRIUP: Resolution selection in IR2 resistance measurement mode

"0": 1 times (Measurement range: Maximum 450kΩ)

"1": 4 times (Measurement range: Maximum 112.5k Ω)

13.3.15. CNTL8: Control8

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
16h	CNTL8				LEDADJ_4	LEDADJ_3	LEDADJ_2	LEDADJ_1	LEDADJ_0
Re	set	1	1	1	0	0	0	0	0

LEDADJ [4:0]: LED current adjustment

Table	e 13.8 LED currer	nt adjustment
LEDAI	OJ [4:0]	LED current [mA]
Hex	Decimal	
1F	31	121
1E	30	118
19	25	103
18	24	100
17	23	97
01	1	31
00	0	28

13.3.16. CNTL9: Control9

13.3.10. 0		1015							
Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
17h	CNTL9								TST
Re	eset	1	1	1	1	1	1	1	0

TST:

"0": Normal mode "1": TEST mode

This bit is for analysis. It is not used during normal measurement. Please be sure to set "0".

13.3.17. CNTL10: Control10

Address	Name	D7	D6	D5	D4	D3	D2	D1	D0
18h	CNTL10								SRST
Re	set	1	1	1	1	1	1	1	0

SRST: Soft reset "0": Normal state "1": Reset

All registers are reset by setting SRST bit to "1". SRST bit automatically returns to "0" after reset is activated.

Figure 14.1 Recommended External Circuits

Pull-up resistance of SDA, SCL and INTN should be connected to DVDD. Please refer the I²C bus specification Ver2.1 and select the suitable resistance value. The resistance value in Figure 14.1 is reference.

In order to stabilize the operation of AK9723AJ, it is preferable to put a capacitor $(0.1 \sim 1.0 \mu F)$ between AVDD and VSS and another capacitor $(0.1 \sim 1.0 \mu F)$ between FVDD and VSS. In addition, the TESTx pin (x = 1, 2, 3, 4) must be connected to VSS.

Specification can not be guaranteed if each pin is open / short resulting in a state different from the above configuration.

15. Package

15.1. Outline Dimensions

Figure 15.1 Outline Dimensions

15.2. Pad Dimensions

Unit: mm

Figure 15.2 Pad Dimensions

The exposed pad must be electrically disconnected. Do not connect a land for the exposed pad to land of other pins.

15.3. Marking

Y:	Year		WW:	Week		L: I	Lot
Mark	Year	Mark	Week	Mark	Week	Mark	Lot
0	2020	01	1	32	32	Α	1
1	2021	02	2	33	33	В	2
2	2022	03	3	34	34	С	3
3	2023	04	4	35	35	D	4
4	2024	05	5	36	36	E	5
5	2025	06	6	37	37	F	6
6	2026	07	7	38	38	G	7
7	2027	08	8	39	39	Н	8
8	2028	09	9	40	40	J	9
9	2019	10	10	41	41	K	10
		11	11	42	42	L	11
		12	12	43	43	М	12
		13	13	44	44	Ν	13
		14	14	45	45	Р	14
		15	15	46	46	Q	15
		16	16	47	47	R	16
		17	17	48	48	Т	17
		18	18	49	49	U	18
		19	19	50	50	V	19
		20	20	51	51	W	20
		21	21	52	52	Х	21
		22	22	53	53	Y	22
		23	23			Z	23
		24	24			1	24
		25	25			2	25
		26	26			3	26
		27	27			4	27
		28	28			5	28
		29	29			6	29
		30	30			7	30
		31	31			8	31
						9	32

16. Ordering Guide

16-pin QFN

AK9723AJ

-40 ~ 85⁰C

Industrial Grade

17. Revision History

Date (Y/M/D)	Revision	Reason	Page	Contents
19/3/8	00	First Edition		
19/8/23	01	Updated	4, 5	Figure and table numbers
		Updated	7	ITME [7:0] and MLOOP [3:0] value in Table 10.1
		Updated	9	Symbol name of "Bus free time" in Table 10.4
				and Table 10.5
		Added	10	Table 10.8 Measurement interval condition
		Updated	11	Analog circuit status in Table 11.1
		Updated	12	MLOOP [3:0] in Figure 11.2
		Updated	13	Text of Section 11.5
		Updated	14	Added wait time in Figure 11.4
		Updated	19	Text of Section 12.1.6 (1) and (2)

		Updated	20	Changed the number of bits in ST1 and CNTL1 registers in Table 13.1
		Updated	23, 24, 25, 26, 27, 28	Section number
		Updated	24	LED forward voltage in Table 13.3
21/9/8	02	Updated	7	Current consumption
		Updated	30	Outline dimensions

IMPORTANT NOTICE

- 0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.
- 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
- 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.
- 3. Though AKM works continually to improve the Product's quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.
- 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.
- 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.
- 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.

Rev.1