

STEC01

Ground path safety switch with programmable timers

Features

- Input voltage range from 2.2 to 5 V
- 12 mΩ typ. N-channel FET R_{DS(on)}
- 7 A continuous current capability
- PWM control signal from 4 Hz to 5 kHz, with 30% to 100% duty cycle
- 30 µA battery supply current
- 2 programmable timers: T1, T3
- 1 fixed timer T2
- Input undervoltage lockout
- VFQFPN 3x3x0.9 16L, 0.5 mm pitch package

Applications

- Electronic cigarettes
- Timing/reset circuitry
- Ground path protection circuitry

Description

The STEC01 is an integrated programmable 12 m Ω power switch managed by the timer based circuitry.

The device has 3 timers designed to interrupt the ground path of a power application after a maximum on-time and inhibits the restart of the platform during a cooling window. The maximum on-time can be set from few seconds to hundreds of seconds, while the cooling window can be programmed to 69, 345 and 1380 seconds.

3 multi-level input pins, combined with a programmable oscillator and a fixed oscillator, are used to set the timing.

An input continuous or pulsed signal applied to the PWM pin starts the internal logic and counters. In case of a normal operation, as soon as the activity on the PWM pin stops, the device automatically enters idle mode, waiting for a new valid PWM signal to be applied. If the device detects a fault condition, a reset pulse is generated and the safety MOSFET is turned off and managed according to a predefined state machine.

The STEC01 has a continuous current capability up to 7 A through the internal power MOSFET. A higher current can be supported by using an external power transistor driven through GDRV pin.

A rising edge on the HW_RESET input pin generates a 57 ms pulse on the RESET_FAULT pin. This function can be used to notify the connection of an external power source (e.g. USB).

Product status link					
STEC01					
Product summary					
Order code	STEC01PUR				
Package	VFQFPN 3x3x0.9 16L				

1 Block diagram

57

Figure 1. Block diagram

2 Pin configuration

Table 1. Pin configuration

Symbol	Pin	Description
RESET\FAULT	1	Open drain output, active low. It generates a 57 ms pulse if a fault condition is detected or when HW_RESET\USB is pulled high
VBAT	2	Battery supply voltage. Bypass this pin to GND with a 1 μF ceramic capacitor
AGND	3	Analog GND. Connect it to a dedicated ground path
TPF	4	T1 oscillator programming pin. Connect a resistor to GND, to achieve a frequency ranging from 100 kHz to 400 kHz
T1P1	5	T1 timer programming pin. Connect to VBAT, GND or floating to select T1 prescaler (hard
T1P2	6	wired). See Figure 5. Timer configuration truth table
T3P	7	T3 timer programming pin. Connect to VBAT, GND or floating (hard wired). See Figure 5. Timer configuration truth table
PGND	8, 9, 10	Power ground (internal N-channel power MOS source terminal)
PWR	11, 12, 13	Input power voltage (internal N-channel power MOS drain terminal)
GDRV	14	Gate driver output. Leave floating if it is not used
HW_RESET\USB	15	Input hardware reset. Do not leave floating. If it is not used, put to GND
PWM	16	Input control signal, 4 Hz to 5 kHz, 30%-100% duty cycle
GND	EXP	Exposed pad, connect to thermal ground plane

3 Typical application diagram

Main control board L I цI. PChannel DC-DC B A T T E R Y П **PWM FET** ACTUATOR L I L I L I MCU _ PWM Т PWR VBAT Protection board 1uF GDRV T1p1 T1p2 STEC01 -O Up to 30V Т3р Reset\Fault 200kΩ TPF HW_reset 100nF 100kΩ (1) Suggested for high inductive actuator

Figure 3. Typical application diagram, Iload up to 7 A

4 Maximum ratings

57

Symbol	Parameter	Value	Unit
VBAT	Supply voltage pin to AGND	-0.3 to 6	V
PWM	PWM input signal to AGND	-0.3 to 11.5	V
T1P1,T1P2 ,T3P	Timing setting pins to AGND	-0.3 to VBAT+0.3	V
TPF	T1 oscillator programming pin to AGND	-0.3 to 1.8	V
HW_RESET	Hardware reset pin to AGND	-0.3 to 11.5	V
RESET/FAULT	Open drain pin to PGND	-0.3 to 6	V
GDRV	Gate driver pin to PGND	-0.3 to VBAT+0.3	V
PWR	Input power voltage pin to PGND	-0.3 to 11.5	V
IPWR	DC N-channel power MOSFET current	7	Α
T _{J-MAX}	Maximum junction temperature	150	°C
T _{STG}	Storage temperature	-55 to 150	°C

Table 2. Absolute maximum ratings

Table 3. Thermal data

Symbol	Parameter		Unit
R _{thja}	Thermal resistance, junction-to-ambient	42	°C/W
R _{thjc}	Thermal resistance, junction-to-case	5	°C/W

Note: thermal test board JESD51-7, 4-layer PCB (2s2p)

5 Electrical characteristics

 T_A = 25 °C, VBAT = 3.7 V, C_{BAT} = 1 µF, T1P1=T1P2=GND, R_{TPF} = 100 k Ω , T3P = GND, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Uni
VBAT	Supply voltage range		2.2		5	V
V _{UVLO}	Undervoltage lockout	Turn-on, voltage rising, T _A from -40 to 85 °C	1.7	1.9	2.2	v
V _{Hyst}	UVLO hysteresis	VBAT falling		0.05		V
t _{BATT_PWM}	VBAT valid to PWM time	VBAT rising above UVLO then PWM rising		1	3.5	m
V _{PWM}	PWM input voltage range	T _A from -40 to 85 °C	1		10	V
V _{IL_MAX}		T. frame 40.4-05.80			0.3	-
V _{IH_MIN}	PWM threshold	T _A from -40 to 85 °C	0.9			V
PWM_HysT	PWM hysteresis			0.006	0.05	
F _{PWM}	PWM operating frequency	(1)	4		5000	H:
t _{PWM_HI}	PWM minimum high time		40			μ
		VBAT = 2.5 V, I _{PWR} =1 A		12		
R _{DS(on)}	Internal power MOSFET on- resistance	VBAT = 3 V, I _{PWR} =1 A		11.3		mΩ
	TESISIAILE	T _A from -40 to 85 °C, VBAT=>2.5 V I _{PWR} =1 A			20	
I _{L_PWR}	NFET leakage current	PWR=10 V, fault condition			1.5	μ
I _{BATT}	Battery supply current	VBAT from 2.2 to 5 V, active mode		30		μı
		IC in idle-mode		2	4	
IBATT_IDLE	Idle battery current	IC in idle-mode,			40	μA
		T _A from -40 to 85 °C			10	
R _{GDRV_H}	Gate drive high resistance	IGDRV=5 mA, PWM=high,		30		
"GDRV_H		T1 and T2 not expired				Ω ا
R _{GDRV_L}	Gate drive low resistance	IGDRV=-5 mA,		8		
		IC idle or in fault mode				
V _{HW_RESET}	Hardware reset threshold	T _A from -40 to 85 °C	0.3		0.9	V
I _{HW_RESET}	Hardware reset leakage	T_A from -40 to 85 °C, V_{HW_RESET} =10 V			1	μı
tHW_RESET_dl	Hardware reset deglitch time			10		m
VRESET/FAULT	VOL_MAX	I _{RESET} =2 mA, fault condition,			0.2	V
	-	T _A from -40 to 85 °C				
IRESET/FAULT	Reset leakage current	V _{RESET/FAULT} =5 V,			1	μ
	~	T _A from -40 to 85 °C				Ľ
t _{PW_RESET}	Reset pulse width		50	57	66	m
V _{PT}	Programming threshold pins VIL, input logic low	Applies to T1P1, T1P2, T3P			0.2	v

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{PT}	Programming threshold pins VIH, input logic high	Applies to T1P1, T1P2, T3P	1.9			V
I _{PT}	Programming input pins leakage current	Applies to T1P1, T1P2, T3P. VPT=5 V			1	μA
T1		T1P1,T1P2=GND, R _{TPF} =91 kΩ	4	5	6	
T2	Timer accuracy		0.250	0.285	0.330	s
Т3		T3P=GND	60	69	80	
OTP	Overtemperature protection	PWR OFF		160		°C
OTP_HYST	OTP hysteresis	PWR ON		20		

1. Guaranteed by design.

Figure 5. Timer configuration truth table

T1p1	T1P2	Prescaler	T1 [s]	T2 [ms]
0	0	x1	5 - 20	250
Floating	0	x4	20 - 80	
1	0	x16	80 - 320	
0	1	x64	320 - 1280	Т3р
Floating	1	x256	1280 - 5120	0
1	1	x1024	5120 - 20480	Floating
0	Floating			1
Floating	Floating	Do not	use	
1	Floating	201100		

Connect 100 k Ω 1% tolerance between RTPF and GND to obtain minimum values Connect 400 k Ω 1% tolerance between RTPF and GND to obtain maximum values

Note: See Section 6.1 T1 timer settings for more details.

6 General description

The STEC01 is an integrated low-side 12 m Ω N-channel power MOSFET used to protect applications where a big amount of current flows from the battery to an actuator such as the heater inside an e-cigarette. The maximum on-time can be configured for the actuator with a range from 5 s to 20480 s. Once the set time expires, the actuator is disconnected from the GND path.

The device monitors the PWM activity and as soon as a rising edge is detected it exits the idle mode, turns the Nchannel power MOSFET on to connect the actuator to the GND path and starts the setting on-time timer (T1). As soon as a falling edge on PWM is detected, a 285 ms timer (T2) is started and, if within such time no further PWM activity is recognized, the N-channel MOSFET is turned off and the device enters idle mode till a new PWM signal is detected (Figure 6. T1 vs R_{TPF}- prescaler x1). Depending on the user's application, the device works with a continuous or pulsed PWM signal.

If, for any reason, the PWM duration is longer than the value set for timer T1, a fault event is detected, the Nchannel MOSFET is turned off and a fault signal is generated. In order to exit fault mode, a stable low voltage level on the PWM pin is required. Once the PWM goes low, T2 starts counting about 250 ms to make sure the fault has been removed and as soon as it expires, the T3 timer is started. Timer T3 sets the cooling window during which any new activity on the PWM pin is ignored and the internal N-channel power MOSFET is kept OFF (T3 can be programmed to 69 s, 345 s or 1380 s). Once T3 expires, a new power cycle can be started by a valid PWM signal.

The STEC01 is able to manage a continuous current up to 7 A through the internal power MOSFET. A higher current can be supported by using an external N-channel power MOSFET driven through GDRV pin.

A rising edge on the HW_RESET input pin generates a 57 ms pulse on the RESET_FAULT pin that can be detected by a dedicated MCU GPIO. This function can be used to notify the connection of an external power source (e.g. USB).

6.1 T1 timer settings

Figure 6. T1 vs R_{TPF} - prescaler x1 reports the typical T1 curve vs setting resistor R_{TPF} when the prescaler x1 is selected. It allows the user to set T1 from 5 s to 20 s as reported in Figure 5. Timer configuration truth table.

Figure 6. T1 vs R_{TPF}- prescaler x1

For a longer setting time, please refer to the example below:

The typical example of R_{TPF} calculation to obtain T1=6 minutes (3600 s): select the x256 pre-scaler (according to the ranges reported in Figure 5. Timer configuration truth table, by keeping T1P1 floating and T1P2=1. Divide 3600 s by selected pre-scaler value (256) and obtain 14.06 s that in the graph above corresponds to R_{TPF} = 280 k Ω .

6.2 Timer expiration: normal mode

Figure 7. Normal power cycle shows a typical power cycle not triggering a fault condition. In this example a PWM signal with duty cycle lower than 100% is applied to also show T2 timer functionality but a 100% duty cycle can be used as well.

When a rising edge on the PWM input pin is detected (a), T1 is started, the internal power MOSFET is turned on and the external gate drive pin is activated. As soon as a falling edge of the PWM signal is detected, T2 is started. The purpose of T2 is to detect the end of the power cycle. After the power cycle starts, every high level of the PWM signal resets T2.

If the PWM signal is in line with requirements (4 Hz < f_{PWM} <5 kHz, duty cycle >30%), its low time is always lower than 285 ms (typ., T2 fixed value) and T2 never expires till the end of the power cycle (b). T2 is started and reset at each PWM period.

After the power cycles ends, the voltage at PWM input remains low for more than 285 ms causing the expiration of T2 (c). When T2 expires, the internal N-channel power MOSFET is turned off, the GDRV output is deactivated and the device enters idle mode (low power consumption mode) during which it keeps monitoring the PWM line waiting for a new cycle to start.

In this example the time duration of the full power cycle (a to c) is lower than the maximum on-time programmed for T1.

Figure 7. Normal power cycle

a) Start on first PWM rising edge. Global reset

b) 8 s elapsed, PWM stops toggling

c) T2 expires, T1/T2 are reset, IC goes to idle mode, ready for next PWM cycle

6.3 T1 timer expiration: fault mode

Figure 8. T1 expiration, fault mode shows an example of platform failure triggering the protection function of the IC. In this case, the power control unit keeps generating the power PWM signal for a time longer than expected.

As per previous case, the device exits idle mode, starts T1, turns on the internal N-channel power MOSFET and activates the GDRV output as soon as a rising edge on PWM is detected (a).

The PWM signal keeps commutating for more than the maximum programmed on-time causing T1 to expire and making the device enter fault mode (b).

In fault mode, the internal power MOSFET is turned off, the GDRV output is deactivated, a reset pulse on the RESET/FAULT pin is generated and the device starts waiting for the fault condition to be removed. The condition to exit fault mode is a low voltage level at the PWM pin for more than T2 ((d) to (e), 285 ms typ.). When the fault removal is detected (e), T3 timer is started. During T3 (cooling window), any activity on the PWM line is ignored and the power MOSFETs (both internal or external if used) are kept off to let the application cool down. After T3 expires, the device enters again idle mode and is ready for a new cycle.

(a) (c) (d) (f) (b) (e) SF ON SF GDRV Status OFF IC IDLE MODE тз nnnnnnnnnnnnnnnnr 285ms Т2 Τ1 Reset PWM: 30%up to 100% duty cycle SW FAULT EXAMPLE

Figure 8. T1 expiration, fault mode

a) Global reset on first PWM rising edge, T1 starts, SF ON

b) T1 expires, SF is turned OFF and 57 ms reset pulse is generated

c) 57 ms reset pulse ends

- d) PWM stops toggling (or goes stable low) and T2 starts 285 ms timer
- e) T2 expires and T3 starts

f) T3 expires, the device goes to idle mode and SF can be turned ON again if needed (by PWM rising edge)

6.4 HW_RESET functionality

The HW_RESET input can be used to monitor an input power line (e.g. USB) to notify the connection to the platform control unit.

When the signal on the HW_REST pin is more than V_{HW_RESET} threshold, after a deglitch time of the 10 ms (typ.), a 57 ms (typ.) pulse is generated on the RESET/FAULT output pin. If several pulses longer than the deglitch time are detected, during the RESET/FAULT low time, the pulse duration is extended (see events (a) and (b) in the example below).

Figure 9. HW_RESET input functionality

a) HW_RESET is higher than V_{HW_RESET} threshold for more than the deglitch time of 10 ms (typ.), a 57 ms reset fault pulse is generated

b) HW_RESET goes down and rises again above the V_{HW_RESET} threshold for more than the deglitch time, a new 50 ms reset fault signal is generated overlapping the previous one

c) HW_RESET is higher than V_{HW RESET} threshold for more than deglitch time on rising edge and remains high

Note: A Schmitt trigger is used in the input stage of HW_RESET. If the HW_RESET is used for USB V_{Bus} line monitoring, during USB disconnection, in case of voltage bouncing, a reset might be generated.

7

Typical performance characteristics

15 35 Temp [°C]

55

75

95

Figure 18. IBATT_ACTIVE: VBAT=3.7 V

Figure 19. IBATT_IDLE: VBAT=3.7V

57

55.00

4

3 ∔ -45

-25

-5

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

8.1 VFQFPN 3x3x0.9 16L package information

Figure 22. VFQFPN 3x3x0.9 package outline

Symbol	Milimeters		
Symbol	Min	Тур	Мах
A	0.80	0.90	1.00
A1	0	0.02	0.05
A3		0.20	
b	0.18	0.25	0.30
D		3.00	
D2	1.55	1.70	1.80
E		3.00	
E2	1.55	1.70	1.80
e		0.50	
L	0.20	0.30	0.40
К	0.20		
ааа		0.05	
bbb		0.10	
ccc		0.10	
ddd		0.05	
eee		0.08	

Table 5. VFQFPN 3x3x0.9 mechanical data

Note:

VFQFPN - standard for thermally enhanced very thin fine pitch quad flat package no leads. The leads size is comprehensive of the thickness of the leads finishing material. Dimensions do not include mold protrusion, not to exceed 0,15 mm. Package outline exclusive of metal burr dimensions.

Figure 23. VFQFPN 3x3x0.9 recommended footprint

Revision history

Table 6. Document revision history

Date	Version	Changes
14-Jan-2020	1	Initial release.
20-Oct-2020	2	Updated Section 3 Typical application diagram and Table 2. Absolute maximum ratings.

Contents

1	Bloo	ck diagram	2
2	Pin	configuration	3
3	Турі	ical application diagram	4
4	Мах	kimum ratings	5
5	Elec	ctrical characteristics	6
6	Gen	eral description	8
	6.1	T1 timer settings	8
	6.2	Timer expiration: normal mode	9
	6.3	T1 timer expiration: fault mode	10
	6.4	HW_RESET functionality	11
7	Турі	ical performance characteristics	12
8	Pac	kage information	14
	8.1	VFQFPN 3x3x0.9 16L package information.	15
Rev	ision	history	

List of tables

Table 1.	Pin configuration	3
Table 2.	Absolute maximum ratings	5
	Thermal data	
	Electrical characteristics	
	VFQFPN 3x3x0.9 mechanical data	
Table 6.	Document revision history	3

List of figures

Figure 1.	Block diagram	. 2
Figure 2.	Pin configuration.	. 3
Figure 3.	Typical application diagram, I _{load} up to 7 A	. 4
Figure 4.	Typical application diagram, I _{load} > 7 A, external MOSFET	. 4
Figure 5.	Timer configuration truth table	. 7
Figure 6.	T1 vs R _{TPF} - prescaler x1	. 8
Figure 7.	Normal power cycle.	. 9
Figure 8.	T1 expiration, fault mode	10
Figure 9.	HW_RESET input functionality	11
Figure 10.	R _{DS(on)} vs VBAT, room temperature.	12
Figure 11.	R _{DS(on)} vs VBAT@-40 °C	
Figure 12.	R _{DS(on)} vs VBAT@-85 °C	12
Figure 13.	Reset pulse width: VBAT=3.7 V T1P1=T1P2=T3P=GND, ROSC=100 kΩ	12
Figure 14.	PWM V _{IH_MIN} : VBAT=3.7 V	12
Figure 15.	PWM V _{IL_MAX} : VBAT=3.7 V	12
Figure 16.	HW_RESET V _{IH_MIN} : VBAT=3.7 V	
Figure 17.	HW_RESET V _{IL_MAX} : VBAT=3.7 V	13
Figure 18.	IBATT_ACTIVE: VBAT=3.7 V	13
Figure 19.	IBATT_IDLE: VBAT=3.7V	13
Figure 20.	Leakage TxPy pin: V _{TxPY} @5 V	13
Figure 21.	Leakage PWR: V _{PWR} @10 V	13
Figure 22.	VFQFPN 3x3x0.9 package outline	15
Figure 23.	VFQFPN 3x3x0.9 recommended footprint	17

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved