

2.4GHz High Power 802.11ac WLAN Linear Power Amplifier

DESCRIPTION

The RFX242 is high power, high linearity power amplifier implemented in CMOS process. The device is optimized to provide all functionality of transmit power amplification for IEEE 802.11b/g/n/ac applications in the 2.4GHz frequency range.

The RFX242 provides 30dB gain and up to 25dBm linear output power with low EVM of <3% for 802.11n MCS7 HT40 and <1.8%g for 802.11ac MCS9 VHT20 signals. It has CMOS logic control, on-chip input impedance matching, as well as integrated RF decoupling for the power supply.

The RFX242 is assembled in a compact 3.0x3.0mm 16L-QFN package.

It requires minimal number of external components to greatly simplify RF front-end implementation.

APPLICATIONS

High Power WLAN AP/Router
Outdoor WLAN Hotspots

Wi-Fi Extenders

- Set-Top Box / Home Gateway
- FemtoCell
- Enterprise/SOHO Wi-Fi Networks

FEATURES

- ▶ 2.4GHz, Single Chip, Single-Die RF Power Amplifier
- 2.4GHz High Power PA with Low-Pass Harmonic Filter
- 802.11ac 256-QAM Support with <1.8% EVM up to 23dBm or <3% up to 25dBm at 5V
- High Gain of 30dB
- High Transmit Signal Linearity Meeting Standards for OFDM and CCK modulation
- Integrated Power Detector for Transmit Power Monitor and Control
- Compatible with Low Voltage (1.2V) CMOS Control Logic or levels up to VDD

- ESD Protection Circuitry on All Ports
- DC Decoupled RF Ports
- Internal RF Decoupling on All VDD Bias Pins
- Very Low DC Power Consumption
- Full On-chip Matching and Decoupling Circuitry
- Minimal External Components Required
- 50-Ohm Input / Output Matching
- 3 x 3 x 0.55mm Small Outline QFN-16 Package with Exposed Ground Pad

RFeIC® is a registered trademark of RFaxis, Inc. All rights reserved. This document and the RFX242 product are subject to change without notice.

DEVICE PIN-OUT DIAGRAM

DEVICE PIN-OUT ASSIGNMENT

Pin Number	Pin Name	Description			
1	RFIN	RF Input Signal to the PA			
2	PAEN	CMOS Logic control to Enable the PA			
3	GND	Ground – Must be connected to Ground in the Application Circuit			
4, 15	VDD0 – VDD1	DC voltage supply			
7	DET	PA Power Detector Voltage Output			
10, 11	RFOUT	RF Output Signal from the PA			
5, 6, 8, 9, 12, 13, 14, 16	NC	Not Connected			

CONTROL LOGIC TRUTH TABLE

PAEN	Mode of Operation	
0	PA is OFF; Device in Standby	
1	PA is Enabled	

Note: "1" denotes high voltage stage (>1.2V) at PAEN Control Pin; "0" denotes low voltage stage (<0.3V) at PAEN Control Pin

RFeIC® is a registered trademark of RFaxis, Inc. All rights reserved. This document and the RFX242 product are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Parameters	Min	Max	Units	Conditions	
DC VDD Voltage Supply	0	6.0	V	All VDD Pins	
DC Control Pin Voltage	0	3.6	V	All Control Pins	
DC VDD Current Consumption		800	mA	VDD Pins when PA is Enabled	
TX RF Input Power		+10	dBm		
ANT RF Input Power		+10	dBm		
Junction Temperature		150	°C		
Storage Ambient Temperature	-50	+150	°C	Appropriate care required according to JEDEC Standards	
Operating Ambient Temperature	-40	+85	°C	All Operating Modes	
ESD Voltage (HBM)	1000		V	Human Body Model	

Note: Sustained operation at or above the Absolute Maximum Ratings for any single or combinations of the above parameters may result in permanent damage to the device and is not recommended. All Maximum RF Input Power Ratings assume 50-Ohm terminal impedance.

GENERAL CHARACTERISTICS

Parameters	Min	Тур	Max	Units	Conditions
Operating Frequency	2.4		2.5	GHz	
DC VDD Voltage Supply (Note 1)	4.5	5.0	5.5	V	All VDD Pins
Control Voltage "High"	1.2		3.6	V	
Control Voltage "Low"		0	0.3	V	
Control Pin Current Consumption		1		μA	
DC Shutdown Current		5		μA	
PA Turn On/Off Time			1	µsec	
Input Single-Ended Impedance		50		Ω	
θja (Note 2)		25		°C/W	
θjc Bottom <i>(Note 3)</i>		3.5		°C/W	For Indication Only
θjc Top <i>(Note 3)</i>		15		°C/W	For Indication Only

Note 1 – For normal operation of the RFX242, VDD must be continuously applied to all VDD supply pins.

Note 2 – For operation above +85 °C, use the θ as guidance for system design to assure the junction temperature will not exceed the maximum of +150 °C.

Note $3 - \theta jc$ is provided for indication only. System operational design must be based on θja .

RFeIC[®] is a registered trademark of RFaxis, Inc. All rights reserved.

This document and the RFX242 product are subject to change without notice.

TRANSMIT CHARACTERISTICS (VDD = 5.0V, PAEN = HI, $T_A = +25^{\circ}$ C, UNLESS OTHERWISE SPECIFIED, AS MEASURED ON RFX242 EVALUATION BOARD, DE-EMBEDDED TO THE DEVICE)

Parameters	Min	Тур	Max	Units	Conditions	
Operating Frequency Band	2.4		2.5	GHz	All RF Pins Terminated by 50 Ohms	
Output P1dB		+31		dBm	CW	
Linear Output Power (802.11ac)		+23		dBm	802.11ac MCS9 VHT20 < -35dB DEVM	
Linear Output Power (802.11n)		+25		dBm	802.11n MCS7 HT40 < -30dB DEVM	
Linear Output Power (802.11b)		+29		dBm	1Mbps CCK Mask Compliance	
Small-Signal Gain		32		dB	CW	
Second Harmonic		-70		dBc	$P_{OUT} = +29 dBm, CW$	
Third Harmonic		-70		dBc	$P_{OUT} = +29 dBm, CW$	
Input Return Loss		-15		dB	At RFIN Pin	
Output Return Loss		-5		dB	At RFOUT Pins	
TX Quiescent Current		240		mA	No RF Input Signal	
TX Linear Current		430		mA	P _{OUT} = +25dBm, 11n MCS7 64-QAM	
Power Detector Voltage Output		0.3-1		V	$P_{OUT} = +5$ to +27 dBm, 10K Ω Load	
Load VSWR for Stability (CW, Fix Pin for $P_{OUT} = +29$ dBm with 50 Ω Load)	4:1	6:1		N/A	All non-harmonically related spurs less than -43 dBm/Hz	
Load VSWR for Ruggedness (CW, Fix Pin for $P_{OUT} = +29$ dBm with 50 Ω Load)	8:1	10:1		N/A	No damage	

RFeIC® is a registered trademark of RFaxis, Inc. All rights reserved. This document and the RFX242 product are subject to change without notice.

RFX242 Advanced Data Sheet

Dir	Dimensions (mm)						
	Min	Nom	Max				
Α	0.5	0.55	0.6				
A 1	0.00		0.05				
b	0.2	0.25	0.3				
D	2.95	3.0	3.05				
D2	1.65	1.7	1.75				
Ε	2.95	3.0	3.05				
E2	1.65	1.7	1.75				
е	0.45	0.5	0.55				
L	0.35	0.4	0.45				

PACKAGE MARKING

RFeIC[®] is a registered trademark of RFaxis, Inc. All rights reserved. This document and the RFX242 product are subject to change without notice.

TAPE AND REEL INFORMATION:

RFeIC[®] is a registered trademark of RFaxis, Inc. All rights reserved. This document and the RFX242 product are subject to change without notice.